mm: save soft-dirty bits on swapped pages
[deliverable/linux.git] / include / asm-generic / pgtable.h
1 #ifndef _ASM_GENERIC_PGTABLE_H
2 #define _ASM_GENERIC_PGTABLE_H
3
4 #ifndef __ASSEMBLY__
5 #ifdef CONFIG_MMU
6
7 #include <linux/mm_types.h>
8 #include <linux/bug.h>
9
10 /*
11 * On almost all architectures and configurations, 0 can be used as the
12 * upper ceiling to free_pgtables(): on many architectures it has the same
13 * effect as using TASK_SIZE. However, there is one configuration which
14 * must impose a more careful limit, to avoid freeing kernel pgtables.
15 */
16 #ifndef USER_PGTABLES_CEILING
17 #define USER_PGTABLES_CEILING 0UL
18 #endif
19
20 #ifndef __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
21 extern int ptep_set_access_flags(struct vm_area_struct *vma,
22 unsigned long address, pte_t *ptep,
23 pte_t entry, int dirty);
24 #endif
25
26 #ifndef __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
27 extern int pmdp_set_access_flags(struct vm_area_struct *vma,
28 unsigned long address, pmd_t *pmdp,
29 pmd_t entry, int dirty);
30 #endif
31
32 #ifndef __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
33 static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
34 unsigned long address,
35 pte_t *ptep)
36 {
37 pte_t pte = *ptep;
38 int r = 1;
39 if (!pte_young(pte))
40 r = 0;
41 else
42 set_pte_at(vma->vm_mm, address, ptep, pte_mkold(pte));
43 return r;
44 }
45 #endif
46
47 #ifndef __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
48 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
49 static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
50 unsigned long address,
51 pmd_t *pmdp)
52 {
53 pmd_t pmd = *pmdp;
54 int r = 1;
55 if (!pmd_young(pmd))
56 r = 0;
57 else
58 set_pmd_at(vma->vm_mm, address, pmdp, pmd_mkold(pmd));
59 return r;
60 }
61 #else /* CONFIG_TRANSPARENT_HUGEPAGE */
62 static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
63 unsigned long address,
64 pmd_t *pmdp)
65 {
66 BUG();
67 return 0;
68 }
69 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
70 #endif
71
72 #ifndef __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
73 int ptep_clear_flush_young(struct vm_area_struct *vma,
74 unsigned long address, pte_t *ptep);
75 #endif
76
77 #ifndef __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
78 int pmdp_clear_flush_young(struct vm_area_struct *vma,
79 unsigned long address, pmd_t *pmdp);
80 #endif
81
82 #ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR
83 static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
84 unsigned long address,
85 pte_t *ptep)
86 {
87 pte_t pte = *ptep;
88 pte_clear(mm, address, ptep);
89 return pte;
90 }
91 #endif
92
93 #ifndef __HAVE_ARCH_PMDP_GET_AND_CLEAR
94 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
95 static inline pmd_t pmdp_get_and_clear(struct mm_struct *mm,
96 unsigned long address,
97 pmd_t *pmdp)
98 {
99 pmd_t pmd = *pmdp;
100 pmd_clear(pmdp);
101 return pmd;
102 }
103 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
104 #endif
105
106 #ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
107 static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
108 unsigned long address, pte_t *ptep,
109 int full)
110 {
111 pte_t pte;
112 pte = ptep_get_and_clear(mm, address, ptep);
113 return pte;
114 }
115 #endif
116
117 /*
118 * Some architectures may be able to avoid expensive synchronization
119 * primitives when modifications are made to PTE's which are already
120 * not present, or in the process of an address space destruction.
121 */
122 #ifndef __HAVE_ARCH_PTE_CLEAR_NOT_PRESENT_FULL
123 static inline void pte_clear_not_present_full(struct mm_struct *mm,
124 unsigned long address,
125 pte_t *ptep,
126 int full)
127 {
128 pte_clear(mm, address, ptep);
129 }
130 #endif
131
132 #ifndef __HAVE_ARCH_PTEP_CLEAR_FLUSH
133 extern pte_t ptep_clear_flush(struct vm_area_struct *vma,
134 unsigned long address,
135 pte_t *ptep);
136 #endif
137
138 #ifndef __HAVE_ARCH_PMDP_CLEAR_FLUSH
139 extern pmd_t pmdp_clear_flush(struct vm_area_struct *vma,
140 unsigned long address,
141 pmd_t *pmdp);
142 #endif
143
144 #ifndef __HAVE_ARCH_PTEP_SET_WRPROTECT
145 struct mm_struct;
146 static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long address, pte_t *ptep)
147 {
148 pte_t old_pte = *ptep;
149 set_pte_at(mm, address, ptep, pte_wrprotect(old_pte));
150 }
151 #endif
152
153 #ifndef __HAVE_ARCH_PMDP_SET_WRPROTECT
154 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
155 static inline void pmdp_set_wrprotect(struct mm_struct *mm,
156 unsigned long address, pmd_t *pmdp)
157 {
158 pmd_t old_pmd = *pmdp;
159 set_pmd_at(mm, address, pmdp, pmd_wrprotect(old_pmd));
160 }
161 #else /* CONFIG_TRANSPARENT_HUGEPAGE */
162 static inline void pmdp_set_wrprotect(struct mm_struct *mm,
163 unsigned long address, pmd_t *pmdp)
164 {
165 BUG();
166 }
167 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
168 #endif
169
170 #ifndef __HAVE_ARCH_PMDP_SPLITTING_FLUSH
171 extern void pmdp_splitting_flush(struct vm_area_struct *vma,
172 unsigned long address, pmd_t *pmdp);
173 #endif
174
175 #ifndef __HAVE_ARCH_PGTABLE_DEPOSIT
176 extern void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
177 pgtable_t pgtable);
178 #endif
179
180 #ifndef __HAVE_ARCH_PGTABLE_WITHDRAW
181 extern pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp);
182 #endif
183
184 #ifndef __HAVE_ARCH_PMDP_INVALIDATE
185 extern void pmdp_invalidate(struct vm_area_struct *vma, unsigned long address,
186 pmd_t *pmdp);
187 #endif
188
189 #ifndef __HAVE_ARCH_PTE_SAME
190 static inline int pte_same(pte_t pte_a, pte_t pte_b)
191 {
192 return pte_val(pte_a) == pte_val(pte_b);
193 }
194 #endif
195
196 #ifndef __HAVE_ARCH_PMD_SAME
197 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
198 static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b)
199 {
200 return pmd_val(pmd_a) == pmd_val(pmd_b);
201 }
202 #else /* CONFIG_TRANSPARENT_HUGEPAGE */
203 static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b)
204 {
205 BUG();
206 return 0;
207 }
208 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
209 #endif
210
211 #ifndef __HAVE_ARCH_PAGE_TEST_AND_CLEAR_YOUNG
212 #define page_test_and_clear_young(pfn) (0)
213 #endif
214
215 #ifndef __HAVE_ARCH_PGD_OFFSET_GATE
216 #define pgd_offset_gate(mm, addr) pgd_offset(mm, addr)
217 #endif
218
219 #ifndef __HAVE_ARCH_MOVE_PTE
220 #define move_pte(pte, prot, old_addr, new_addr) (pte)
221 #endif
222
223 #ifndef pte_accessible
224 # define pte_accessible(pte) ((void)(pte),1)
225 #endif
226
227 #ifndef flush_tlb_fix_spurious_fault
228 #define flush_tlb_fix_spurious_fault(vma, address) flush_tlb_page(vma, address)
229 #endif
230
231 #ifndef pgprot_noncached
232 #define pgprot_noncached(prot) (prot)
233 #endif
234
235 #ifndef pgprot_writecombine
236 #define pgprot_writecombine pgprot_noncached
237 #endif
238
239 /*
240 * When walking page tables, get the address of the next boundary,
241 * or the end address of the range if that comes earlier. Although no
242 * vma end wraps to 0, rounded up __boundary may wrap to 0 throughout.
243 */
244
245 #define pgd_addr_end(addr, end) \
246 ({ unsigned long __boundary = ((addr) + PGDIR_SIZE) & PGDIR_MASK; \
247 (__boundary - 1 < (end) - 1)? __boundary: (end); \
248 })
249
250 #ifndef pud_addr_end
251 #define pud_addr_end(addr, end) \
252 ({ unsigned long __boundary = ((addr) + PUD_SIZE) & PUD_MASK; \
253 (__boundary - 1 < (end) - 1)? __boundary: (end); \
254 })
255 #endif
256
257 #ifndef pmd_addr_end
258 #define pmd_addr_end(addr, end) \
259 ({ unsigned long __boundary = ((addr) + PMD_SIZE) & PMD_MASK; \
260 (__boundary - 1 < (end) - 1)? __boundary: (end); \
261 })
262 #endif
263
264 /*
265 * When walking page tables, we usually want to skip any p?d_none entries;
266 * and any p?d_bad entries - reporting the error before resetting to none.
267 * Do the tests inline, but report and clear the bad entry in mm/memory.c.
268 */
269 void pgd_clear_bad(pgd_t *);
270 void pud_clear_bad(pud_t *);
271 void pmd_clear_bad(pmd_t *);
272
273 static inline int pgd_none_or_clear_bad(pgd_t *pgd)
274 {
275 if (pgd_none(*pgd))
276 return 1;
277 if (unlikely(pgd_bad(*pgd))) {
278 pgd_clear_bad(pgd);
279 return 1;
280 }
281 return 0;
282 }
283
284 static inline int pud_none_or_clear_bad(pud_t *pud)
285 {
286 if (pud_none(*pud))
287 return 1;
288 if (unlikely(pud_bad(*pud))) {
289 pud_clear_bad(pud);
290 return 1;
291 }
292 return 0;
293 }
294
295 static inline int pmd_none_or_clear_bad(pmd_t *pmd)
296 {
297 if (pmd_none(*pmd))
298 return 1;
299 if (unlikely(pmd_bad(*pmd))) {
300 pmd_clear_bad(pmd);
301 return 1;
302 }
303 return 0;
304 }
305
306 static inline pte_t __ptep_modify_prot_start(struct mm_struct *mm,
307 unsigned long addr,
308 pte_t *ptep)
309 {
310 /*
311 * Get the current pte state, but zero it out to make it
312 * non-present, preventing the hardware from asynchronously
313 * updating it.
314 */
315 return ptep_get_and_clear(mm, addr, ptep);
316 }
317
318 static inline void __ptep_modify_prot_commit(struct mm_struct *mm,
319 unsigned long addr,
320 pte_t *ptep, pte_t pte)
321 {
322 /*
323 * The pte is non-present, so there's no hardware state to
324 * preserve.
325 */
326 set_pte_at(mm, addr, ptep, pte);
327 }
328
329 #ifndef __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
330 /*
331 * Start a pte protection read-modify-write transaction, which
332 * protects against asynchronous hardware modifications to the pte.
333 * The intention is not to prevent the hardware from making pte
334 * updates, but to prevent any updates it may make from being lost.
335 *
336 * This does not protect against other software modifications of the
337 * pte; the appropriate pte lock must be held over the transation.
338 *
339 * Note that this interface is intended to be batchable, meaning that
340 * ptep_modify_prot_commit may not actually update the pte, but merely
341 * queue the update to be done at some later time. The update must be
342 * actually committed before the pte lock is released, however.
343 */
344 static inline pte_t ptep_modify_prot_start(struct mm_struct *mm,
345 unsigned long addr,
346 pte_t *ptep)
347 {
348 return __ptep_modify_prot_start(mm, addr, ptep);
349 }
350
351 /*
352 * Commit an update to a pte, leaving any hardware-controlled bits in
353 * the PTE unmodified.
354 */
355 static inline void ptep_modify_prot_commit(struct mm_struct *mm,
356 unsigned long addr,
357 pte_t *ptep, pte_t pte)
358 {
359 __ptep_modify_prot_commit(mm, addr, ptep, pte);
360 }
361 #endif /* __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION */
362 #endif /* CONFIG_MMU */
363
364 /*
365 * A facility to provide lazy MMU batching. This allows PTE updates and
366 * page invalidations to be delayed until a call to leave lazy MMU mode
367 * is issued. Some architectures may benefit from doing this, and it is
368 * beneficial for both shadow and direct mode hypervisors, which may batch
369 * the PTE updates which happen during this window. Note that using this
370 * interface requires that read hazards be removed from the code. A read
371 * hazard could result in the direct mode hypervisor case, since the actual
372 * write to the page tables may not yet have taken place, so reads though
373 * a raw PTE pointer after it has been modified are not guaranteed to be
374 * up to date. This mode can only be entered and left under the protection of
375 * the page table locks for all page tables which may be modified. In the UP
376 * case, this is required so that preemption is disabled, and in the SMP case,
377 * it must synchronize the delayed page table writes properly on other CPUs.
378 */
379 #ifndef __HAVE_ARCH_ENTER_LAZY_MMU_MODE
380 #define arch_enter_lazy_mmu_mode() do {} while (0)
381 #define arch_leave_lazy_mmu_mode() do {} while (0)
382 #define arch_flush_lazy_mmu_mode() do {} while (0)
383 #endif
384
385 /*
386 * A facility to provide batching of the reload of page tables and
387 * other process state with the actual context switch code for
388 * paravirtualized guests. By convention, only one of the batched
389 * update (lazy) modes (CPU, MMU) should be active at any given time,
390 * entry should never be nested, and entry and exits should always be
391 * paired. This is for sanity of maintaining and reasoning about the
392 * kernel code. In this case, the exit (end of the context switch) is
393 * in architecture-specific code, and so doesn't need a generic
394 * definition.
395 */
396 #ifndef __HAVE_ARCH_START_CONTEXT_SWITCH
397 #define arch_start_context_switch(prev) do {} while (0)
398 #endif
399
400 #ifndef CONFIG_HAVE_ARCH_SOFT_DIRTY
401 static inline int pte_soft_dirty(pte_t pte)
402 {
403 return 0;
404 }
405
406 static inline int pmd_soft_dirty(pmd_t pmd)
407 {
408 return 0;
409 }
410
411 static inline pte_t pte_mksoft_dirty(pte_t pte)
412 {
413 return pte;
414 }
415
416 static inline pmd_t pmd_mksoft_dirty(pmd_t pmd)
417 {
418 return pmd;
419 }
420
421 static inline pte_t pte_swp_mksoft_dirty(pte_t pte)
422 {
423 return pte;
424 }
425
426 static inline int pte_swp_soft_dirty(pte_t pte)
427 {
428 return 0;
429 }
430
431 static inline pte_t pte_swp_clear_soft_dirty(pte_t pte)
432 {
433 return pte;
434 }
435 #endif
436
437 #ifndef __HAVE_PFNMAP_TRACKING
438 /*
439 * Interfaces that can be used by architecture code to keep track of
440 * memory type of pfn mappings specified by the remap_pfn_range,
441 * vm_insert_pfn.
442 */
443
444 /*
445 * track_pfn_remap is called when a _new_ pfn mapping is being established
446 * by remap_pfn_range() for physical range indicated by pfn and size.
447 */
448 static inline int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot,
449 unsigned long pfn, unsigned long addr,
450 unsigned long size)
451 {
452 return 0;
453 }
454
455 /*
456 * track_pfn_insert is called when a _new_ single pfn is established
457 * by vm_insert_pfn().
458 */
459 static inline int track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot,
460 unsigned long pfn)
461 {
462 return 0;
463 }
464
465 /*
466 * track_pfn_copy is called when vma that is covering the pfnmap gets
467 * copied through copy_page_range().
468 */
469 static inline int track_pfn_copy(struct vm_area_struct *vma)
470 {
471 return 0;
472 }
473
474 /*
475 * untrack_pfn_vma is called while unmapping a pfnmap for a region.
476 * untrack can be called for a specific region indicated by pfn and size or
477 * can be for the entire vma (in which case pfn, size are zero).
478 */
479 static inline void untrack_pfn(struct vm_area_struct *vma,
480 unsigned long pfn, unsigned long size)
481 {
482 }
483 #else
484 extern int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot,
485 unsigned long pfn, unsigned long addr,
486 unsigned long size);
487 extern int track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot,
488 unsigned long pfn);
489 extern int track_pfn_copy(struct vm_area_struct *vma);
490 extern void untrack_pfn(struct vm_area_struct *vma, unsigned long pfn,
491 unsigned long size);
492 #endif
493
494 #ifdef __HAVE_COLOR_ZERO_PAGE
495 static inline int is_zero_pfn(unsigned long pfn)
496 {
497 extern unsigned long zero_pfn;
498 unsigned long offset_from_zero_pfn = pfn - zero_pfn;
499 return offset_from_zero_pfn <= (zero_page_mask >> PAGE_SHIFT);
500 }
501
502 #define my_zero_pfn(addr) page_to_pfn(ZERO_PAGE(addr))
503
504 #else
505 static inline int is_zero_pfn(unsigned long pfn)
506 {
507 extern unsigned long zero_pfn;
508 return pfn == zero_pfn;
509 }
510
511 static inline unsigned long my_zero_pfn(unsigned long addr)
512 {
513 extern unsigned long zero_pfn;
514 return zero_pfn;
515 }
516 #endif
517
518 #ifdef CONFIG_MMU
519
520 #ifndef CONFIG_TRANSPARENT_HUGEPAGE
521 static inline int pmd_trans_huge(pmd_t pmd)
522 {
523 return 0;
524 }
525 static inline int pmd_trans_splitting(pmd_t pmd)
526 {
527 return 0;
528 }
529 #ifndef __HAVE_ARCH_PMD_WRITE
530 static inline int pmd_write(pmd_t pmd)
531 {
532 BUG();
533 return 0;
534 }
535 #endif /* __HAVE_ARCH_PMD_WRITE */
536 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
537
538 #ifndef pmd_read_atomic
539 static inline pmd_t pmd_read_atomic(pmd_t *pmdp)
540 {
541 /*
542 * Depend on compiler for an atomic pmd read. NOTE: this is
543 * only going to work, if the pmdval_t isn't larger than
544 * an unsigned long.
545 */
546 return *pmdp;
547 }
548 #endif
549
550 /*
551 * This function is meant to be used by sites walking pagetables with
552 * the mmap_sem hold in read mode to protect against MADV_DONTNEED and
553 * transhuge page faults. MADV_DONTNEED can convert a transhuge pmd
554 * into a null pmd and the transhuge page fault can convert a null pmd
555 * into an hugepmd or into a regular pmd (if the hugepage allocation
556 * fails). While holding the mmap_sem in read mode the pmd becomes
557 * stable and stops changing under us only if it's not null and not a
558 * transhuge pmd. When those races occurs and this function makes a
559 * difference vs the standard pmd_none_or_clear_bad, the result is
560 * undefined so behaving like if the pmd was none is safe (because it
561 * can return none anyway). The compiler level barrier() is critically
562 * important to compute the two checks atomically on the same pmdval.
563 *
564 * For 32bit kernels with a 64bit large pmd_t this automatically takes
565 * care of reading the pmd atomically to avoid SMP race conditions
566 * against pmd_populate() when the mmap_sem is hold for reading by the
567 * caller (a special atomic read not done by "gcc" as in the generic
568 * version above, is also needed when THP is disabled because the page
569 * fault can populate the pmd from under us).
570 */
571 static inline int pmd_none_or_trans_huge_or_clear_bad(pmd_t *pmd)
572 {
573 pmd_t pmdval = pmd_read_atomic(pmd);
574 /*
575 * The barrier will stabilize the pmdval in a register or on
576 * the stack so that it will stop changing under the code.
577 *
578 * When CONFIG_TRANSPARENT_HUGEPAGE=y on x86 32bit PAE,
579 * pmd_read_atomic is allowed to return a not atomic pmdval
580 * (for example pointing to an hugepage that has never been
581 * mapped in the pmd). The below checks will only care about
582 * the low part of the pmd with 32bit PAE x86 anyway, with the
583 * exception of pmd_none(). So the important thing is that if
584 * the low part of the pmd is found null, the high part will
585 * be also null or the pmd_none() check below would be
586 * confused.
587 */
588 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
589 barrier();
590 #endif
591 if (pmd_none(pmdval))
592 return 1;
593 if (unlikely(pmd_bad(pmdval))) {
594 if (!pmd_trans_huge(pmdval))
595 pmd_clear_bad(pmd);
596 return 1;
597 }
598 return 0;
599 }
600
601 /*
602 * This is a noop if Transparent Hugepage Support is not built into
603 * the kernel. Otherwise it is equivalent to
604 * pmd_none_or_trans_huge_or_clear_bad(), and shall only be called in
605 * places that already verified the pmd is not none and they want to
606 * walk ptes while holding the mmap sem in read mode (write mode don't
607 * need this). If THP is not enabled, the pmd can't go away under the
608 * code even if MADV_DONTNEED runs, but if THP is enabled we need to
609 * run a pmd_trans_unstable before walking the ptes after
610 * split_huge_page_pmd returns (because it may have run when the pmd
611 * become null, but then a page fault can map in a THP and not a
612 * regular page).
613 */
614 static inline int pmd_trans_unstable(pmd_t *pmd)
615 {
616 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
617 return pmd_none_or_trans_huge_or_clear_bad(pmd);
618 #else
619 return 0;
620 #endif
621 }
622
623 #ifdef CONFIG_NUMA_BALANCING
624 #ifdef CONFIG_ARCH_USES_NUMA_PROT_NONE
625 /*
626 * _PAGE_NUMA works identical to _PAGE_PROTNONE (it's actually the
627 * same bit too). It's set only when _PAGE_PRESET is not set and it's
628 * never set if _PAGE_PRESENT is set.
629 *
630 * pte/pmd_present() returns true if pte/pmd_numa returns true. Page
631 * fault triggers on those regions if pte/pmd_numa returns true
632 * (because _PAGE_PRESENT is not set).
633 */
634 #ifndef pte_numa
635 static inline int pte_numa(pte_t pte)
636 {
637 return (pte_flags(pte) &
638 (_PAGE_NUMA|_PAGE_PRESENT)) == _PAGE_NUMA;
639 }
640 #endif
641
642 #ifndef pmd_numa
643 static inline int pmd_numa(pmd_t pmd)
644 {
645 return (pmd_flags(pmd) &
646 (_PAGE_NUMA|_PAGE_PRESENT)) == _PAGE_NUMA;
647 }
648 #endif
649
650 /*
651 * pte/pmd_mknuma sets the _PAGE_ACCESSED bitflag automatically
652 * because they're called by the NUMA hinting minor page fault. If we
653 * wouldn't set the _PAGE_ACCESSED bitflag here, the TLB miss handler
654 * would be forced to set it later while filling the TLB after we
655 * return to userland. That would trigger a second write to memory
656 * that we optimize away by setting _PAGE_ACCESSED here.
657 */
658 #ifndef pte_mknonnuma
659 static inline pte_t pte_mknonnuma(pte_t pte)
660 {
661 pte = pte_clear_flags(pte, _PAGE_NUMA);
662 return pte_set_flags(pte, _PAGE_PRESENT|_PAGE_ACCESSED);
663 }
664 #endif
665
666 #ifndef pmd_mknonnuma
667 static inline pmd_t pmd_mknonnuma(pmd_t pmd)
668 {
669 pmd = pmd_clear_flags(pmd, _PAGE_NUMA);
670 return pmd_set_flags(pmd, _PAGE_PRESENT|_PAGE_ACCESSED);
671 }
672 #endif
673
674 #ifndef pte_mknuma
675 static inline pte_t pte_mknuma(pte_t pte)
676 {
677 pte = pte_set_flags(pte, _PAGE_NUMA);
678 return pte_clear_flags(pte, _PAGE_PRESENT);
679 }
680 #endif
681
682 #ifndef pmd_mknuma
683 static inline pmd_t pmd_mknuma(pmd_t pmd)
684 {
685 pmd = pmd_set_flags(pmd, _PAGE_NUMA);
686 return pmd_clear_flags(pmd, _PAGE_PRESENT);
687 }
688 #endif
689 #else
690 extern int pte_numa(pte_t pte);
691 extern int pmd_numa(pmd_t pmd);
692 extern pte_t pte_mknonnuma(pte_t pte);
693 extern pmd_t pmd_mknonnuma(pmd_t pmd);
694 extern pte_t pte_mknuma(pte_t pte);
695 extern pmd_t pmd_mknuma(pmd_t pmd);
696 #endif /* CONFIG_ARCH_USES_NUMA_PROT_NONE */
697 #else
698 static inline int pmd_numa(pmd_t pmd)
699 {
700 return 0;
701 }
702
703 static inline int pte_numa(pte_t pte)
704 {
705 return 0;
706 }
707
708 static inline pte_t pte_mknonnuma(pte_t pte)
709 {
710 return pte;
711 }
712
713 static inline pmd_t pmd_mknonnuma(pmd_t pmd)
714 {
715 return pmd;
716 }
717
718 static inline pte_t pte_mknuma(pte_t pte)
719 {
720 return pte;
721 }
722
723 static inline pmd_t pmd_mknuma(pmd_t pmd)
724 {
725 return pmd;
726 }
727 #endif /* CONFIG_NUMA_BALANCING */
728
729 #endif /* CONFIG_MMU */
730
731 #endif /* !__ASSEMBLY__ */
732
733 #ifndef io_remap_pfn_range
734 #define io_remap_pfn_range remap_pfn_range
735 #endif
736
737 #endif /* _ASM_GENERIC_PGTABLE_H */
This page took 0.04979 seconds and 5 git commands to generate.