mfd: accept pure device as a parent, not only platform_device
[deliverable/linux.git] / include / asm-generic / pgtable.h
1 #ifndef _ASM_GENERIC_PGTABLE_H
2 #define _ASM_GENERIC_PGTABLE_H
3
4 #ifndef __ASSEMBLY__
5 #ifdef CONFIG_MMU
6
7 #ifndef __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
8 /*
9 * Largely same as above, but only sets the access flags (dirty,
10 * accessed, and writable). Furthermore, we know it always gets set
11 * to a "more permissive" setting, which allows most architectures
12 * to optimize this. We return whether the PTE actually changed, which
13 * in turn instructs the caller to do things like update__mmu_cache.
14 * This used to be done in the caller, but sparc needs minor faults to
15 * force that call on sun4c so we changed this macro slightly
16 */
17 #define ptep_set_access_flags(__vma, __address, __ptep, __entry, __dirty) \
18 ({ \
19 int __changed = !pte_same(*(__ptep), __entry); \
20 if (__changed) { \
21 set_pte_at((__vma)->vm_mm, (__address), __ptep, __entry); \
22 flush_tlb_page(__vma, __address); \
23 } \
24 __changed; \
25 })
26 #endif
27
28 #ifndef __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
29 #define ptep_test_and_clear_young(__vma, __address, __ptep) \
30 ({ \
31 pte_t __pte = *(__ptep); \
32 int r = 1; \
33 if (!pte_young(__pte)) \
34 r = 0; \
35 else \
36 set_pte_at((__vma)->vm_mm, (__address), \
37 (__ptep), pte_mkold(__pte)); \
38 r; \
39 })
40 #endif
41
42 #ifndef __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
43 #define ptep_clear_flush_young(__vma, __address, __ptep) \
44 ({ \
45 int __young; \
46 __young = ptep_test_and_clear_young(__vma, __address, __ptep); \
47 if (__young) \
48 flush_tlb_page(__vma, __address); \
49 __young; \
50 })
51 #endif
52
53 #ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR
54 #define ptep_get_and_clear(__mm, __address, __ptep) \
55 ({ \
56 pte_t __pte = *(__ptep); \
57 pte_clear((__mm), (__address), (__ptep)); \
58 __pte; \
59 })
60 #endif
61
62 #ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
63 #define ptep_get_and_clear_full(__mm, __address, __ptep, __full) \
64 ({ \
65 pte_t __pte; \
66 __pte = ptep_get_and_clear((__mm), (__address), (__ptep)); \
67 __pte; \
68 })
69 #endif
70
71 /*
72 * Some architectures may be able to avoid expensive synchronization
73 * primitives when modifications are made to PTE's which are already
74 * not present, or in the process of an address space destruction.
75 */
76 #ifndef __HAVE_ARCH_PTE_CLEAR_NOT_PRESENT_FULL
77 #define pte_clear_not_present_full(__mm, __address, __ptep, __full) \
78 do { \
79 pte_clear((__mm), (__address), (__ptep)); \
80 } while (0)
81 #endif
82
83 #ifndef __HAVE_ARCH_PTEP_CLEAR_FLUSH
84 #define ptep_clear_flush(__vma, __address, __ptep) \
85 ({ \
86 pte_t __pte; \
87 __pte = ptep_get_and_clear((__vma)->vm_mm, __address, __ptep); \
88 flush_tlb_page(__vma, __address); \
89 __pte; \
90 })
91 #endif
92
93 #ifndef __HAVE_ARCH_PTEP_SET_WRPROTECT
94 struct mm_struct;
95 static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long address, pte_t *ptep)
96 {
97 pte_t old_pte = *ptep;
98 set_pte_at(mm, address, ptep, pte_wrprotect(old_pte));
99 }
100 #endif
101
102 #ifndef __HAVE_ARCH_PTE_SAME
103 #define pte_same(A,B) (pte_val(A) == pte_val(B))
104 #endif
105
106 #ifndef __HAVE_ARCH_PAGE_TEST_DIRTY
107 #define page_test_dirty(page) (0)
108 #endif
109
110 #ifndef __HAVE_ARCH_PAGE_CLEAR_DIRTY
111 #define page_clear_dirty(page) do { } while (0)
112 #endif
113
114 #ifndef __HAVE_ARCH_PAGE_TEST_DIRTY
115 #define pte_maybe_dirty(pte) pte_dirty(pte)
116 #else
117 #define pte_maybe_dirty(pte) (1)
118 #endif
119
120 #ifndef __HAVE_ARCH_PAGE_TEST_AND_CLEAR_YOUNG
121 #define page_test_and_clear_young(page) (0)
122 #endif
123
124 #ifndef __HAVE_ARCH_PGD_OFFSET_GATE
125 #define pgd_offset_gate(mm, addr) pgd_offset(mm, addr)
126 #endif
127
128 #ifndef __HAVE_ARCH_MOVE_PTE
129 #define move_pte(pte, prot, old_addr, new_addr) (pte)
130 #endif
131
132 /*
133 * When walking page tables, get the address of the next boundary,
134 * or the end address of the range if that comes earlier. Although no
135 * vma end wraps to 0, rounded up __boundary may wrap to 0 throughout.
136 */
137
138 #define pgd_addr_end(addr, end) \
139 ({ unsigned long __boundary = ((addr) + PGDIR_SIZE) & PGDIR_MASK; \
140 (__boundary - 1 < (end) - 1)? __boundary: (end); \
141 })
142
143 #ifndef pud_addr_end
144 #define pud_addr_end(addr, end) \
145 ({ unsigned long __boundary = ((addr) + PUD_SIZE) & PUD_MASK; \
146 (__boundary - 1 < (end) - 1)? __boundary: (end); \
147 })
148 #endif
149
150 #ifndef pmd_addr_end
151 #define pmd_addr_end(addr, end) \
152 ({ unsigned long __boundary = ((addr) + PMD_SIZE) & PMD_MASK; \
153 (__boundary - 1 < (end) - 1)? __boundary: (end); \
154 })
155 #endif
156
157 /*
158 * When walking page tables, we usually want to skip any p?d_none entries;
159 * and any p?d_bad entries - reporting the error before resetting to none.
160 * Do the tests inline, but report and clear the bad entry in mm/memory.c.
161 */
162 void pgd_clear_bad(pgd_t *);
163 void pud_clear_bad(pud_t *);
164 void pmd_clear_bad(pmd_t *);
165
166 static inline int pgd_none_or_clear_bad(pgd_t *pgd)
167 {
168 if (pgd_none(*pgd))
169 return 1;
170 if (unlikely(pgd_bad(*pgd))) {
171 pgd_clear_bad(pgd);
172 return 1;
173 }
174 return 0;
175 }
176
177 static inline int pud_none_or_clear_bad(pud_t *pud)
178 {
179 if (pud_none(*pud))
180 return 1;
181 if (unlikely(pud_bad(*pud))) {
182 pud_clear_bad(pud);
183 return 1;
184 }
185 return 0;
186 }
187
188 static inline int pmd_none_or_clear_bad(pmd_t *pmd)
189 {
190 if (pmd_none(*pmd))
191 return 1;
192 if (unlikely(pmd_bad(*pmd))) {
193 pmd_clear_bad(pmd);
194 return 1;
195 }
196 return 0;
197 }
198
199 static inline pte_t __ptep_modify_prot_start(struct mm_struct *mm,
200 unsigned long addr,
201 pte_t *ptep)
202 {
203 /*
204 * Get the current pte state, but zero it out to make it
205 * non-present, preventing the hardware from asynchronously
206 * updating it.
207 */
208 return ptep_get_and_clear(mm, addr, ptep);
209 }
210
211 static inline void __ptep_modify_prot_commit(struct mm_struct *mm,
212 unsigned long addr,
213 pte_t *ptep, pte_t pte)
214 {
215 /*
216 * The pte is non-present, so there's no hardware state to
217 * preserve.
218 */
219 set_pte_at(mm, addr, ptep, pte);
220 }
221
222 #ifndef __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
223 /*
224 * Start a pte protection read-modify-write transaction, which
225 * protects against asynchronous hardware modifications to the pte.
226 * The intention is not to prevent the hardware from making pte
227 * updates, but to prevent any updates it may make from being lost.
228 *
229 * This does not protect against other software modifications of the
230 * pte; the appropriate pte lock must be held over the transation.
231 *
232 * Note that this interface is intended to be batchable, meaning that
233 * ptep_modify_prot_commit may not actually update the pte, but merely
234 * queue the update to be done at some later time. The update must be
235 * actually committed before the pte lock is released, however.
236 */
237 static inline pte_t ptep_modify_prot_start(struct mm_struct *mm,
238 unsigned long addr,
239 pte_t *ptep)
240 {
241 return __ptep_modify_prot_start(mm, addr, ptep);
242 }
243
244 /*
245 * Commit an update to a pte, leaving any hardware-controlled bits in
246 * the PTE unmodified.
247 */
248 static inline void ptep_modify_prot_commit(struct mm_struct *mm,
249 unsigned long addr,
250 pte_t *ptep, pte_t pte)
251 {
252 __ptep_modify_prot_commit(mm, addr, ptep, pte);
253 }
254 #endif /* __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION */
255 #endif /* CONFIG_MMU */
256
257 /*
258 * A facility to provide lazy MMU batching. This allows PTE updates and
259 * page invalidations to be delayed until a call to leave lazy MMU mode
260 * is issued. Some architectures may benefit from doing this, and it is
261 * beneficial for both shadow and direct mode hypervisors, which may batch
262 * the PTE updates which happen during this window. Note that using this
263 * interface requires that read hazards be removed from the code. A read
264 * hazard could result in the direct mode hypervisor case, since the actual
265 * write to the page tables may not yet have taken place, so reads though
266 * a raw PTE pointer after it has been modified are not guaranteed to be
267 * up to date. This mode can only be entered and left under the protection of
268 * the page table locks for all page tables which may be modified. In the UP
269 * case, this is required so that preemption is disabled, and in the SMP case,
270 * it must synchronize the delayed page table writes properly on other CPUs.
271 */
272 #ifndef __HAVE_ARCH_ENTER_LAZY_MMU_MODE
273 #define arch_enter_lazy_mmu_mode() do {} while (0)
274 #define arch_leave_lazy_mmu_mode() do {} while (0)
275 #define arch_flush_lazy_mmu_mode() do {} while (0)
276 #endif
277
278 /*
279 * A facility to provide batching of the reload of page tables with the
280 * actual context switch code for paravirtualized guests. By convention,
281 * only one of the lazy modes (CPU, MMU) should be active at any given
282 * time, entry should never be nested, and entry and exits should always
283 * be paired. This is for sanity of maintaining and reasoning about the
284 * kernel code.
285 */
286 #ifndef __HAVE_ARCH_ENTER_LAZY_CPU_MODE
287 #define arch_enter_lazy_cpu_mode() do {} while (0)
288 #define arch_leave_lazy_cpu_mode() do {} while (0)
289 #define arch_flush_lazy_cpu_mode() do {} while (0)
290 #endif
291
292 #endif /* !__ASSEMBLY__ */
293
294 #endif /* _ASM_GENERIC_PGTABLE_H */
This page took 0.041244 seconds and 5 git commands to generate.