Merge remote-tracking branch 'agust/next' into next
[deliverable/linux.git] / include / asm-generic / pgtable.h
1 #ifndef _ASM_GENERIC_PGTABLE_H
2 #define _ASM_GENERIC_PGTABLE_H
3
4 #ifndef __ASSEMBLY__
5 #ifdef CONFIG_MMU
6
7 #include <linux/mm_types.h>
8 #include <linux/bug.h>
9
10 /*
11 * On almost all architectures and configurations, 0 can be used as the
12 * upper ceiling to free_pgtables(): on many architectures it has the same
13 * effect as using TASK_SIZE. However, there is one configuration which
14 * must impose a more careful limit, to avoid freeing kernel pgtables.
15 */
16 #ifndef USER_PGTABLES_CEILING
17 #define USER_PGTABLES_CEILING 0UL
18 #endif
19
20 #ifndef __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
21 extern int ptep_set_access_flags(struct vm_area_struct *vma,
22 unsigned long address, pte_t *ptep,
23 pte_t entry, int dirty);
24 #endif
25
26 #ifndef __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
27 extern int pmdp_set_access_flags(struct vm_area_struct *vma,
28 unsigned long address, pmd_t *pmdp,
29 pmd_t entry, int dirty);
30 #endif
31
32 #ifndef __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
33 static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
34 unsigned long address,
35 pte_t *ptep)
36 {
37 pte_t pte = *ptep;
38 int r = 1;
39 if (!pte_young(pte))
40 r = 0;
41 else
42 set_pte_at(vma->vm_mm, address, ptep, pte_mkold(pte));
43 return r;
44 }
45 #endif
46
47 #ifndef __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
48 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
49 static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
50 unsigned long address,
51 pmd_t *pmdp)
52 {
53 pmd_t pmd = *pmdp;
54 int r = 1;
55 if (!pmd_young(pmd))
56 r = 0;
57 else
58 set_pmd_at(vma->vm_mm, address, pmdp, pmd_mkold(pmd));
59 return r;
60 }
61 #else /* CONFIG_TRANSPARENT_HUGEPAGE */
62 static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
63 unsigned long address,
64 pmd_t *pmdp)
65 {
66 BUG();
67 return 0;
68 }
69 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
70 #endif
71
72 #ifndef __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
73 int ptep_clear_flush_young(struct vm_area_struct *vma,
74 unsigned long address, pte_t *ptep);
75 #endif
76
77 #ifndef __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
78 int pmdp_clear_flush_young(struct vm_area_struct *vma,
79 unsigned long address, pmd_t *pmdp);
80 #endif
81
82 #ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR
83 static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
84 unsigned long address,
85 pte_t *ptep)
86 {
87 pte_t pte = *ptep;
88 pte_clear(mm, address, ptep);
89 return pte;
90 }
91 #endif
92
93 #ifndef __HAVE_ARCH_PMDP_GET_AND_CLEAR
94 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
95 static inline pmd_t pmdp_get_and_clear(struct mm_struct *mm,
96 unsigned long address,
97 pmd_t *pmdp)
98 {
99 pmd_t pmd = *pmdp;
100 pmd_clear(pmdp);
101 return pmd;
102 }
103 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
104 #endif
105
106 #ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
107 static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
108 unsigned long address, pte_t *ptep,
109 int full)
110 {
111 pte_t pte;
112 pte = ptep_get_and_clear(mm, address, ptep);
113 return pte;
114 }
115 #endif
116
117 /*
118 * Some architectures may be able to avoid expensive synchronization
119 * primitives when modifications are made to PTE's which are already
120 * not present, or in the process of an address space destruction.
121 */
122 #ifndef __HAVE_ARCH_PTE_CLEAR_NOT_PRESENT_FULL
123 static inline void pte_clear_not_present_full(struct mm_struct *mm,
124 unsigned long address,
125 pte_t *ptep,
126 int full)
127 {
128 pte_clear(mm, address, ptep);
129 }
130 #endif
131
132 #ifndef __HAVE_ARCH_PTEP_CLEAR_FLUSH
133 extern pte_t ptep_clear_flush(struct vm_area_struct *vma,
134 unsigned long address,
135 pte_t *ptep);
136 #endif
137
138 #ifndef __HAVE_ARCH_PMDP_CLEAR_FLUSH
139 extern pmd_t pmdp_clear_flush(struct vm_area_struct *vma,
140 unsigned long address,
141 pmd_t *pmdp);
142 #endif
143
144 #ifndef __HAVE_ARCH_PTEP_SET_WRPROTECT
145 struct mm_struct;
146 static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long address, pte_t *ptep)
147 {
148 pte_t old_pte = *ptep;
149 set_pte_at(mm, address, ptep, pte_wrprotect(old_pte));
150 }
151 #endif
152
153 #ifndef __HAVE_ARCH_PMDP_SET_WRPROTECT
154 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
155 static inline void pmdp_set_wrprotect(struct mm_struct *mm,
156 unsigned long address, pmd_t *pmdp)
157 {
158 pmd_t old_pmd = *pmdp;
159 set_pmd_at(mm, address, pmdp, pmd_wrprotect(old_pmd));
160 }
161 #else /* CONFIG_TRANSPARENT_HUGEPAGE */
162 static inline void pmdp_set_wrprotect(struct mm_struct *mm,
163 unsigned long address, pmd_t *pmdp)
164 {
165 BUG();
166 }
167 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
168 #endif
169
170 #ifndef __HAVE_ARCH_PMDP_SPLITTING_FLUSH
171 extern void pmdp_splitting_flush(struct vm_area_struct *vma,
172 unsigned long address, pmd_t *pmdp);
173 #endif
174
175 #ifndef __HAVE_ARCH_PGTABLE_DEPOSIT
176 extern void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
177 pgtable_t pgtable);
178 #endif
179
180 #ifndef __HAVE_ARCH_PGTABLE_WITHDRAW
181 extern pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp);
182 #endif
183
184 #ifndef __HAVE_ARCH_PMDP_INVALIDATE
185 extern void pmdp_invalidate(struct vm_area_struct *vma, unsigned long address,
186 pmd_t *pmdp);
187 #endif
188
189 #ifndef __HAVE_ARCH_PTE_SAME
190 static inline int pte_same(pte_t pte_a, pte_t pte_b)
191 {
192 return pte_val(pte_a) == pte_val(pte_b);
193 }
194 #endif
195
196 #ifndef __HAVE_ARCH_PMD_SAME
197 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
198 static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b)
199 {
200 return pmd_val(pmd_a) == pmd_val(pmd_b);
201 }
202 #else /* CONFIG_TRANSPARENT_HUGEPAGE */
203 static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b)
204 {
205 BUG();
206 return 0;
207 }
208 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
209 #endif
210
211 #ifndef __HAVE_ARCH_PAGE_TEST_AND_CLEAR_YOUNG
212 #define page_test_and_clear_young(pfn) (0)
213 #endif
214
215 #ifndef __HAVE_ARCH_PGD_OFFSET_GATE
216 #define pgd_offset_gate(mm, addr) pgd_offset(mm, addr)
217 #endif
218
219 #ifndef __HAVE_ARCH_MOVE_PTE
220 #define move_pte(pte, prot, old_addr, new_addr) (pte)
221 #endif
222
223 #ifndef pte_accessible
224 # define pte_accessible(pte) ((void)(pte),1)
225 #endif
226
227 #ifndef flush_tlb_fix_spurious_fault
228 #define flush_tlb_fix_spurious_fault(vma, address) flush_tlb_page(vma, address)
229 #endif
230
231 #ifndef pgprot_noncached
232 #define pgprot_noncached(prot) (prot)
233 #endif
234
235 #ifndef pgprot_writecombine
236 #define pgprot_writecombine pgprot_noncached
237 #endif
238
239 /*
240 * When walking page tables, get the address of the next boundary,
241 * or the end address of the range if that comes earlier. Although no
242 * vma end wraps to 0, rounded up __boundary may wrap to 0 throughout.
243 */
244
245 #define pgd_addr_end(addr, end) \
246 ({ unsigned long __boundary = ((addr) + PGDIR_SIZE) & PGDIR_MASK; \
247 (__boundary - 1 < (end) - 1)? __boundary: (end); \
248 })
249
250 #ifndef pud_addr_end
251 #define pud_addr_end(addr, end) \
252 ({ unsigned long __boundary = ((addr) + PUD_SIZE) & PUD_MASK; \
253 (__boundary - 1 < (end) - 1)? __boundary: (end); \
254 })
255 #endif
256
257 #ifndef pmd_addr_end
258 #define pmd_addr_end(addr, end) \
259 ({ unsigned long __boundary = ((addr) + PMD_SIZE) & PMD_MASK; \
260 (__boundary - 1 < (end) - 1)? __boundary: (end); \
261 })
262 #endif
263
264 /*
265 * When walking page tables, we usually want to skip any p?d_none entries;
266 * and any p?d_bad entries - reporting the error before resetting to none.
267 * Do the tests inline, but report and clear the bad entry in mm/memory.c.
268 */
269 void pgd_clear_bad(pgd_t *);
270 void pud_clear_bad(pud_t *);
271 void pmd_clear_bad(pmd_t *);
272
273 static inline int pgd_none_or_clear_bad(pgd_t *pgd)
274 {
275 if (pgd_none(*pgd))
276 return 1;
277 if (unlikely(pgd_bad(*pgd))) {
278 pgd_clear_bad(pgd);
279 return 1;
280 }
281 return 0;
282 }
283
284 static inline int pud_none_or_clear_bad(pud_t *pud)
285 {
286 if (pud_none(*pud))
287 return 1;
288 if (unlikely(pud_bad(*pud))) {
289 pud_clear_bad(pud);
290 return 1;
291 }
292 return 0;
293 }
294
295 static inline int pmd_none_or_clear_bad(pmd_t *pmd)
296 {
297 if (pmd_none(*pmd))
298 return 1;
299 if (unlikely(pmd_bad(*pmd))) {
300 pmd_clear_bad(pmd);
301 return 1;
302 }
303 return 0;
304 }
305
306 static inline pte_t __ptep_modify_prot_start(struct mm_struct *mm,
307 unsigned long addr,
308 pte_t *ptep)
309 {
310 /*
311 * Get the current pte state, but zero it out to make it
312 * non-present, preventing the hardware from asynchronously
313 * updating it.
314 */
315 return ptep_get_and_clear(mm, addr, ptep);
316 }
317
318 static inline void __ptep_modify_prot_commit(struct mm_struct *mm,
319 unsigned long addr,
320 pte_t *ptep, pte_t pte)
321 {
322 /*
323 * The pte is non-present, so there's no hardware state to
324 * preserve.
325 */
326 set_pte_at(mm, addr, ptep, pte);
327 }
328
329 #ifndef __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
330 /*
331 * Start a pte protection read-modify-write transaction, which
332 * protects against asynchronous hardware modifications to the pte.
333 * The intention is not to prevent the hardware from making pte
334 * updates, but to prevent any updates it may make from being lost.
335 *
336 * This does not protect against other software modifications of the
337 * pte; the appropriate pte lock must be held over the transation.
338 *
339 * Note that this interface is intended to be batchable, meaning that
340 * ptep_modify_prot_commit may not actually update the pte, but merely
341 * queue the update to be done at some later time. The update must be
342 * actually committed before the pte lock is released, however.
343 */
344 static inline pte_t ptep_modify_prot_start(struct mm_struct *mm,
345 unsigned long addr,
346 pte_t *ptep)
347 {
348 return __ptep_modify_prot_start(mm, addr, ptep);
349 }
350
351 /*
352 * Commit an update to a pte, leaving any hardware-controlled bits in
353 * the PTE unmodified.
354 */
355 static inline void ptep_modify_prot_commit(struct mm_struct *mm,
356 unsigned long addr,
357 pte_t *ptep, pte_t pte)
358 {
359 __ptep_modify_prot_commit(mm, addr, ptep, pte);
360 }
361 #endif /* __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION */
362 #endif /* CONFIG_MMU */
363
364 /*
365 * A facility to provide lazy MMU batching. This allows PTE updates and
366 * page invalidations to be delayed until a call to leave lazy MMU mode
367 * is issued. Some architectures may benefit from doing this, and it is
368 * beneficial for both shadow and direct mode hypervisors, which may batch
369 * the PTE updates which happen during this window. Note that using this
370 * interface requires that read hazards be removed from the code. A read
371 * hazard could result in the direct mode hypervisor case, since the actual
372 * write to the page tables may not yet have taken place, so reads though
373 * a raw PTE pointer after it has been modified are not guaranteed to be
374 * up to date. This mode can only be entered and left under the protection of
375 * the page table locks for all page tables which may be modified. In the UP
376 * case, this is required so that preemption is disabled, and in the SMP case,
377 * it must synchronize the delayed page table writes properly on other CPUs.
378 */
379 #ifndef __HAVE_ARCH_ENTER_LAZY_MMU_MODE
380 #define arch_enter_lazy_mmu_mode() do {} while (0)
381 #define arch_leave_lazy_mmu_mode() do {} while (0)
382 #define arch_flush_lazy_mmu_mode() do {} while (0)
383 #endif
384
385 /*
386 * A facility to provide batching of the reload of page tables and
387 * other process state with the actual context switch code for
388 * paravirtualized guests. By convention, only one of the batched
389 * update (lazy) modes (CPU, MMU) should be active at any given time,
390 * entry should never be nested, and entry and exits should always be
391 * paired. This is for sanity of maintaining and reasoning about the
392 * kernel code. In this case, the exit (end of the context switch) is
393 * in architecture-specific code, and so doesn't need a generic
394 * definition.
395 */
396 #ifndef __HAVE_ARCH_START_CONTEXT_SWITCH
397 #define arch_start_context_switch(prev) do {} while (0)
398 #endif
399
400 #ifndef __HAVE_PFNMAP_TRACKING
401 /*
402 * Interfaces that can be used by architecture code to keep track of
403 * memory type of pfn mappings specified by the remap_pfn_range,
404 * vm_insert_pfn.
405 */
406
407 /*
408 * track_pfn_remap is called when a _new_ pfn mapping is being established
409 * by remap_pfn_range() for physical range indicated by pfn and size.
410 */
411 static inline int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot,
412 unsigned long pfn, unsigned long addr,
413 unsigned long size)
414 {
415 return 0;
416 }
417
418 /*
419 * track_pfn_insert is called when a _new_ single pfn is established
420 * by vm_insert_pfn().
421 */
422 static inline int track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot,
423 unsigned long pfn)
424 {
425 return 0;
426 }
427
428 /*
429 * track_pfn_copy is called when vma that is covering the pfnmap gets
430 * copied through copy_page_range().
431 */
432 static inline int track_pfn_copy(struct vm_area_struct *vma)
433 {
434 return 0;
435 }
436
437 /*
438 * untrack_pfn_vma is called while unmapping a pfnmap for a region.
439 * untrack can be called for a specific region indicated by pfn and size or
440 * can be for the entire vma (in which case pfn, size are zero).
441 */
442 static inline void untrack_pfn(struct vm_area_struct *vma,
443 unsigned long pfn, unsigned long size)
444 {
445 }
446 #else
447 extern int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot,
448 unsigned long pfn, unsigned long addr,
449 unsigned long size);
450 extern int track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot,
451 unsigned long pfn);
452 extern int track_pfn_copy(struct vm_area_struct *vma);
453 extern void untrack_pfn(struct vm_area_struct *vma, unsigned long pfn,
454 unsigned long size);
455 #endif
456
457 #ifdef __HAVE_COLOR_ZERO_PAGE
458 static inline int is_zero_pfn(unsigned long pfn)
459 {
460 extern unsigned long zero_pfn;
461 unsigned long offset_from_zero_pfn = pfn - zero_pfn;
462 return offset_from_zero_pfn <= (zero_page_mask >> PAGE_SHIFT);
463 }
464
465 #define my_zero_pfn(addr) page_to_pfn(ZERO_PAGE(addr))
466
467 #else
468 static inline int is_zero_pfn(unsigned long pfn)
469 {
470 extern unsigned long zero_pfn;
471 return pfn == zero_pfn;
472 }
473
474 static inline unsigned long my_zero_pfn(unsigned long addr)
475 {
476 extern unsigned long zero_pfn;
477 return zero_pfn;
478 }
479 #endif
480
481 #ifdef CONFIG_MMU
482
483 #ifndef CONFIG_TRANSPARENT_HUGEPAGE
484 static inline int pmd_trans_huge(pmd_t pmd)
485 {
486 return 0;
487 }
488 static inline int pmd_trans_splitting(pmd_t pmd)
489 {
490 return 0;
491 }
492 #ifndef __HAVE_ARCH_PMD_WRITE
493 static inline int pmd_write(pmd_t pmd)
494 {
495 BUG();
496 return 0;
497 }
498 #endif /* __HAVE_ARCH_PMD_WRITE */
499 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
500
501 #ifndef pmd_read_atomic
502 static inline pmd_t pmd_read_atomic(pmd_t *pmdp)
503 {
504 /*
505 * Depend on compiler for an atomic pmd read. NOTE: this is
506 * only going to work, if the pmdval_t isn't larger than
507 * an unsigned long.
508 */
509 return *pmdp;
510 }
511 #endif
512
513 /*
514 * This function is meant to be used by sites walking pagetables with
515 * the mmap_sem hold in read mode to protect against MADV_DONTNEED and
516 * transhuge page faults. MADV_DONTNEED can convert a transhuge pmd
517 * into a null pmd and the transhuge page fault can convert a null pmd
518 * into an hugepmd or into a regular pmd (if the hugepage allocation
519 * fails). While holding the mmap_sem in read mode the pmd becomes
520 * stable and stops changing under us only if it's not null and not a
521 * transhuge pmd. When those races occurs and this function makes a
522 * difference vs the standard pmd_none_or_clear_bad, the result is
523 * undefined so behaving like if the pmd was none is safe (because it
524 * can return none anyway). The compiler level barrier() is critically
525 * important to compute the two checks atomically on the same pmdval.
526 *
527 * For 32bit kernels with a 64bit large pmd_t this automatically takes
528 * care of reading the pmd atomically to avoid SMP race conditions
529 * against pmd_populate() when the mmap_sem is hold for reading by the
530 * caller (a special atomic read not done by "gcc" as in the generic
531 * version above, is also needed when THP is disabled because the page
532 * fault can populate the pmd from under us).
533 */
534 static inline int pmd_none_or_trans_huge_or_clear_bad(pmd_t *pmd)
535 {
536 pmd_t pmdval = pmd_read_atomic(pmd);
537 /*
538 * The barrier will stabilize the pmdval in a register or on
539 * the stack so that it will stop changing under the code.
540 *
541 * When CONFIG_TRANSPARENT_HUGEPAGE=y on x86 32bit PAE,
542 * pmd_read_atomic is allowed to return a not atomic pmdval
543 * (for example pointing to an hugepage that has never been
544 * mapped in the pmd). The below checks will only care about
545 * the low part of the pmd with 32bit PAE x86 anyway, with the
546 * exception of pmd_none(). So the important thing is that if
547 * the low part of the pmd is found null, the high part will
548 * be also null or the pmd_none() check below would be
549 * confused.
550 */
551 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
552 barrier();
553 #endif
554 if (pmd_none(pmdval))
555 return 1;
556 if (unlikely(pmd_bad(pmdval))) {
557 if (!pmd_trans_huge(pmdval))
558 pmd_clear_bad(pmd);
559 return 1;
560 }
561 return 0;
562 }
563
564 /*
565 * This is a noop if Transparent Hugepage Support is not built into
566 * the kernel. Otherwise it is equivalent to
567 * pmd_none_or_trans_huge_or_clear_bad(), and shall only be called in
568 * places that already verified the pmd is not none and they want to
569 * walk ptes while holding the mmap sem in read mode (write mode don't
570 * need this). If THP is not enabled, the pmd can't go away under the
571 * code even if MADV_DONTNEED runs, but if THP is enabled we need to
572 * run a pmd_trans_unstable before walking the ptes after
573 * split_huge_page_pmd returns (because it may have run when the pmd
574 * become null, but then a page fault can map in a THP and not a
575 * regular page).
576 */
577 static inline int pmd_trans_unstable(pmd_t *pmd)
578 {
579 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
580 return pmd_none_or_trans_huge_or_clear_bad(pmd);
581 #else
582 return 0;
583 #endif
584 }
585
586 #ifdef CONFIG_NUMA_BALANCING
587 #ifdef CONFIG_ARCH_USES_NUMA_PROT_NONE
588 /*
589 * _PAGE_NUMA works identical to _PAGE_PROTNONE (it's actually the
590 * same bit too). It's set only when _PAGE_PRESET is not set and it's
591 * never set if _PAGE_PRESENT is set.
592 *
593 * pte/pmd_present() returns true if pte/pmd_numa returns true. Page
594 * fault triggers on those regions if pte/pmd_numa returns true
595 * (because _PAGE_PRESENT is not set).
596 */
597 #ifndef pte_numa
598 static inline int pte_numa(pte_t pte)
599 {
600 return (pte_flags(pte) &
601 (_PAGE_NUMA|_PAGE_PRESENT)) == _PAGE_NUMA;
602 }
603 #endif
604
605 #ifndef pmd_numa
606 static inline int pmd_numa(pmd_t pmd)
607 {
608 return (pmd_flags(pmd) &
609 (_PAGE_NUMA|_PAGE_PRESENT)) == _PAGE_NUMA;
610 }
611 #endif
612
613 /*
614 * pte/pmd_mknuma sets the _PAGE_ACCESSED bitflag automatically
615 * because they're called by the NUMA hinting minor page fault. If we
616 * wouldn't set the _PAGE_ACCESSED bitflag here, the TLB miss handler
617 * would be forced to set it later while filling the TLB after we
618 * return to userland. That would trigger a second write to memory
619 * that we optimize away by setting _PAGE_ACCESSED here.
620 */
621 #ifndef pte_mknonnuma
622 static inline pte_t pte_mknonnuma(pte_t pte)
623 {
624 pte = pte_clear_flags(pte, _PAGE_NUMA);
625 return pte_set_flags(pte, _PAGE_PRESENT|_PAGE_ACCESSED);
626 }
627 #endif
628
629 #ifndef pmd_mknonnuma
630 static inline pmd_t pmd_mknonnuma(pmd_t pmd)
631 {
632 pmd = pmd_clear_flags(pmd, _PAGE_NUMA);
633 return pmd_set_flags(pmd, _PAGE_PRESENT|_PAGE_ACCESSED);
634 }
635 #endif
636
637 #ifndef pte_mknuma
638 static inline pte_t pte_mknuma(pte_t pte)
639 {
640 pte = pte_set_flags(pte, _PAGE_NUMA);
641 return pte_clear_flags(pte, _PAGE_PRESENT);
642 }
643 #endif
644
645 #ifndef pmd_mknuma
646 static inline pmd_t pmd_mknuma(pmd_t pmd)
647 {
648 pmd = pmd_set_flags(pmd, _PAGE_NUMA);
649 return pmd_clear_flags(pmd, _PAGE_PRESENT);
650 }
651 #endif
652 #else
653 extern int pte_numa(pte_t pte);
654 extern int pmd_numa(pmd_t pmd);
655 extern pte_t pte_mknonnuma(pte_t pte);
656 extern pmd_t pmd_mknonnuma(pmd_t pmd);
657 extern pte_t pte_mknuma(pte_t pte);
658 extern pmd_t pmd_mknuma(pmd_t pmd);
659 #endif /* CONFIG_ARCH_USES_NUMA_PROT_NONE */
660 #else
661 static inline int pmd_numa(pmd_t pmd)
662 {
663 return 0;
664 }
665
666 static inline int pte_numa(pte_t pte)
667 {
668 return 0;
669 }
670
671 static inline pte_t pte_mknonnuma(pte_t pte)
672 {
673 return pte;
674 }
675
676 static inline pmd_t pmd_mknonnuma(pmd_t pmd)
677 {
678 return pmd;
679 }
680
681 static inline pte_t pte_mknuma(pte_t pte)
682 {
683 return pte;
684 }
685
686 static inline pmd_t pmd_mknuma(pmd_t pmd)
687 {
688 return pmd;
689 }
690 #endif /* CONFIG_NUMA_BALANCING */
691
692 #endif /* CONFIG_MMU */
693
694 #endif /* !__ASSEMBLY__ */
695
696 #endif /* _ASM_GENERIC_PGTABLE_H */
This page took 0.04548 seconds and 6 git commands to generate.