Merge branch 'upstream'
[deliverable/linux.git] / include / asm-ia64 / sn / xpc.h
1 /*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * Copyright (c) 2004-2006 Silicon Graphics, Inc. All Rights Reserved.
7 */
8
9
10 /*
11 * Cross Partition Communication (XPC) structures and macros.
12 */
13
14 #ifndef _ASM_IA64_SN_XPC_H
15 #define _ASM_IA64_SN_XPC_H
16
17
18 #include <linux/config.h>
19 #include <linux/interrupt.h>
20 #include <linux/sysctl.h>
21 #include <linux/device.h>
22 #include <linux/mutex.h>
23 #include <linux/completion.h>
24 #include <asm/pgtable.h>
25 #include <asm/processor.h>
26 #include <asm/sn/bte.h>
27 #include <asm/sn/clksupport.h>
28 #include <asm/sn/addrs.h>
29 #include <asm/sn/mspec.h>
30 #include <asm/sn/shub_mmr.h>
31 #include <asm/sn/xp.h>
32
33
34 /*
35 * XPC Version numbers consist of a major and minor number. XPC can always
36 * talk to versions with same major #, and never talk to versions with a
37 * different major #.
38 */
39 #define _XPC_VERSION(_maj, _min) (((_maj) << 4) | ((_min) & 0xf))
40 #define XPC_VERSION_MAJOR(_v) ((_v) >> 4)
41 #define XPC_VERSION_MINOR(_v) ((_v) & 0xf)
42
43
44 /*
45 * The next macros define word or bit representations for given
46 * C-brick nasid in either the SAL provided bit array representing
47 * nasids in the partition/machine or the AMO_t array used for
48 * inter-partition initiation communications.
49 *
50 * For SN2 machines, C-Bricks are alway even numbered NASIDs. As
51 * such, some space will be saved by insisting that nasid information
52 * passed from SAL always be packed for C-Bricks and the
53 * cross-partition interrupts use the same packing scheme.
54 */
55 #define XPC_NASID_W_INDEX(_n) (((_n) / 64) / 2)
56 #define XPC_NASID_B_INDEX(_n) (((_n) / 2) & (64 - 1))
57 #define XPC_NASID_IN_ARRAY(_n, _p) ((_p)[XPC_NASID_W_INDEX(_n)] & \
58 (1UL << XPC_NASID_B_INDEX(_n)))
59 #define XPC_NASID_FROM_W_B(_w, _b) (((_w) * 64 + (_b)) * 2)
60
61 #define XPC_HB_DEFAULT_INTERVAL 5 /* incr HB every x secs */
62 #define XPC_HB_CHECK_DEFAULT_INTERVAL 20 /* check HB every x secs */
63
64 /* define the process name of HB checker and the CPU it is pinned to */
65 #define XPC_HB_CHECK_THREAD_NAME "xpc_hb"
66 #define XPC_HB_CHECK_CPU 0
67
68 /* define the process name of the discovery thread */
69 #define XPC_DISCOVERY_THREAD_NAME "xpc_discovery"
70
71
72 /*
73 * the reserved page
74 *
75 * SAL reserves one page of memory per partition for XPC. Though a full page
76 * in length (16384 bytes), its starting address is not page aligned, but it
77 * is cacheline aligned. The reserved page consists of the following:
78 *
79 * reserved page header
80 *
81 * The first cacheline of the reserved page contains the header
82 * (struct xpc_rsvd_page). Before SAL initialization has completed,
83 * SAL has set up the following fields of the reserved page header:
84 * SAL_signature, SAL_version, partid, and nasids_size. The other
85 * fields are set up by XPC. (xpc_rsvd_page points to the local
86 * partition's reserved page.)
87 *
88 * part_nasids mask
89 * mach_nasids mask
90 *
91 * SAL also sets up two bitmaps (or masks), one that reflects the actual
92 * nasids in this partition (part_nasids), and the other that reflects
93 * the actual nasids in the entire machine (mach_nasids). We're only
94 * interested in the even numbered nasids (which contain the processors
95 * and/or memory), so we only need half as many bits to represent the
96 * nasids. The part_nasids mask is located starting at the first cacheline
97 * following the reserved page header. The mach_nasids mask follows right
98 * after the part_nasids mask. The size in bytes of each mask is reflected
99 * by the reserved page header field 'nasids_size'. (Local partition's
100 * mask pointers are xpc_part_nasids and xpc_mach_nasids.)
101 *
102 * vars
103 * vars part
104 *
105 * Immediately following the mach_nasids mask are the XPC variables
106 * required by other partitions. First are those that are generic to all
107 * partitions (vars), followed on the next available cacheline by those
108 * which are partition specific (vars part). These are setup by XPC.
109 * (Local partition's vars pointers are xpc_vars and xpc_vars_part.)
110 *
111 * Note: Until vars_pa is set, the partition XPC code has not been initialized.
112 */
113 struct xpc_rsvd_page {
114 u64 SAL_signature; /* SAL: unique signature */
115 u64 SAL_version; /* SAL: version */
116 u8 partid; /* SAL: partition ID */
117 u8 version;
118 u8 pad1[6]; /* align to next u64 in cacheline */
119 volatile u64 vars_pa;
120 struct timespec stamp; /* time when reserved page was setup by XPC */
121 u64 pad2[9]; /* align to last u64 in cacheline */
122 u64 nasids_size; /* SAL: size of each nasid mask in bytes */
123 };
124
125 #define XPC_RP_VERSION _XPC_VERSION(1,1) /* version 1.1 of the reserved page */
126
127 #define XPC_SUPPORTS_RP_STAMP(_version) \
128 (_version >= _XPC_VERSION(1,1))
129
130 /*
131 * compare stamps - the return value is:
132 *
133 * < 0, if stamp1 < stamp2
134 * = 0, if stamp1 == stamp2
135 * > 0, if stamp1 > stamp2
136 */
137 static inline int
138 xpc_compare_stamps(struct timespec *stamp1, struct timespec *stamp2)
139 {
140 int ret;
141
142
143 if ((ret = stamp1->tv_sec - stamp2->tv_sec) == 0) {
144 ret = stamp1->tv_nsec - stamp2->tv_nsec;
145 }
146 return ret;
147 }
148
149
150 /*
151 * Define the structures by which XPC variables can be exported to other
152 * partitions. (There are two: struct xpc_vars and struct xpc_vars_part)
153 */
154
155 /*
156 * The following structure describes the partition generic variables
157 * needed by other partitions in order to properly initialize.
158 *
159 * struct xpc_vars version number also applies to struct xpc_vars_part.
160 * Changes to either structure and/or related functionality should be
161 * reflected by incrementing either the major or minor version numbers
162 * of struct xpc_vars.
163 */
164 struct xpc_vars {
165 u8 version;
166 u64 heartbeat;
167 u64 heartbeating_to_mask;
168 u64 heartbeat_offline; /* if 0, heartbeat should be changing */
169 int act_nasid;
170 int act_phys_cpuid;
171 u64 vars_part_pa;
172 u64 amos_page_pa; /* paddr of page of AMOs from MSPEC driver */
173 AMO_t *amos_page; /* vaddr of page of AMOs from MSPEC driver */
174 };
175
176 #define XPC_V_VERSION _XPC_VERSION(3,1) /* version 3.1 of the cross vars */
177
178 #define XPC_SUPPORTS_DISENGAGE_REQUEST(_version) \
179 (_version >= _XPC_VERSION(3,1))
180
181
182 static inline int
183 xpc_hb_allowed(partid_t partid, struct xpc_vars *vars)
184 {
185 return ((vars->heartbeating_to_mask & (1UL << partid)) != 0);
186 }
187
188 static inline void
189 xpc_allow_hb(partid_t partid, struct xpc_vars *vars)
190 {
191 u64 old_mask, new_mask;
192
193 do {
194 old_mask = vars->heartbeating_to_mask;
195 new_mask = (old_mask | (1UL << partid));
196 } while (cmpxchg(&vars->heartbeating_to_mask, old_mask, new_mask) !=
197 old_mask);
198 }
199
200 static inline void
201 xpc_disallow_hb(partid_t partid, struct xpc_vars *vars)
202 {
203 u64 old_mask, new_mask;
204
205 do {
206 old_mask = vars->heartbeating_to_mask;
207 new_mask = (old_mask & ~(1UL << partid));
208 } while (cmpxchg(&vars->heartbeating_to_mask, old_mask, new_mask) !=
209 old_mask);
210 }
211
212
213 /*
214 * The AMOs page consists of a number of AMO variables which are divided into
215 * four groups, The first two groups are used to identify an IRQ's sender.
216 * These two groups consist of 64 and 128 AMO variables respectively. The last
217 * two groups, consisting of just one AMO variable each, are used to identify
218 * the remote partitions that are currently engaged (from the viewpoint of
219 * the XPC running on the remote partition).
220 */
221 #define XPC_NOTIFY_IRQ_AMOS 0
222 #define XPC_ACTIVATE_IRQ_AMOS (XPC_NOTIFY_IRQ_AMOS + XP_MAX_PARTITIONS)
223 #define XPC_ENGAGED_PARTITIONS_AMO (XPC_ACTIVATE_IRQ_AMOS + XP_NASID_MASK_WORDS)
224 #define XPC_DISENGAGE_REQUEST_AMO (XPC_ENGAGED_PARTITIONS_AMO + 1)
225
226
227 /*
228 * The following structure describes the per partition specific variables.
229 *
230 * An array of these structures, one per partition, will be defined. As a
231 * partition becomes active XPC will copy the array entry corresponding to
232 * itself from that partition. It is desirable that the size of this
233 * structure evenly divide into a cacheline, such that none of the entries
234 * in this array crosses a cacheline boundary. As it is now, each entry
235 * occupies half a cacheline.
236 */
237 struct xpc_vars_part {
238 volatile u64 magic;
239
240 u64 openclose_args_pa; /* physical address of open and close args */
241 u64 GPs_pa; /* physical address of Get/Put values */
242
243 u64 IPI_amo_pa; /* physical address of IPI AMO_t structure */
244 int IPI_nasid; /* nasid of where to send IPIs */
245 int IPI_phys_cpuid; /* physical CPU ID of where to send IPIs */
246
247 u8 nchannels; /* #of defined channels supported */
248
249 u8 reserved[23]; /* pad to a full 64 bytes */
250 };
251
252 /*
253 * The vars_part MAGIC numbers play a part in the first contact protocol.
254 *
255 * MAGIC1 indicates that the per partition specific variables for a remote
256 * partition have been initialized by this partition.
257 *
258 * MAGIC2 indicates that this partition has pulled the remote partititions
259 * per partition variables that pertain to this partition.
260 */
261 #define XPC_VP_MAGIC1 0x0053524156435058L /* 'XPCVARS\0'L (little endian) */
262 #define XPC_VP_MAGIC2 0x0073726176435058L /* 'XPCvars\0'L (little endian) */
263
264
265 /* the reserved page sizes and offsets */
266
267 #define XPC_RP_HEADER_SIZE L1_CACHE_ALIGN(sizeof(struct xpc_rsvd_page))
268 #define XPC_RP_VARS_SIZE L1_CACHE_ALIGN(sizeof(struct xpc_vars))
269
270 #define XPC_RP_PART_NASIDS(_rp) (u64 *) ((u8 *) _rp + XPC_RP_HEADER_SIZE)
271 #define XPC_RP_MACH_NASIDS(_rp) (XPC_RP_PART_NASIDS(_rp) + xp_nasid_mask_words)
272 #define XPC_RP_VARS(_rp) ((struct xpc_vars *) XPC_RP_MACH_NASIDS(_rp) + xp_nasid_mask_words)
273 #define XPC_RP_VARS_PART(_rp) (struct xpc_vars_part *) ((u8 *) XPC_RP_VARS(rp) + XPC_RP_VARS_SIZE)
274
275
276 /*
277 * Functions registered by add_timer() or called by kernel_thread() only
278 * allow for a single 64-bit argument. The following macros can be used to
279 * pack and unpack two (32-bit, 16-bit or 8-bit) arguments into or out from
280 * the passed argument.
281 */
282 #define XPC_PACK_ARGS(_arg1, _arg2) \
283 ((((u64) _arg1) & 0xffffffff) | \
284 ((((u64) _arg2) & 0xffffffff) << 32))
285
286 #define XPC_UNPACK_ARG1(_args) (((u64) _args) & 0xffffffff)
287 #define XPC_UNPACK_ARG2(_args) ((((u64) _args) >> 32) & 0xffffffff)
288
289
290
291 /*
292 * Define a Get/Put value pair (pointers) used with a message queue.
293 */
294 struct xpc_gp {
295 volatile s64 get; /* Get value */
296 volatile s64 put; /* Put value */
297 };
298
299 #define XPC_GP_SIZE \
300 L1_CACHE_ALIGN(sizeof(struct xpc_gp) * XPC_NCHANNELS)
301
302
303
304 /*
305 * Define a structure that contains arguments associated with opening and
306 * closing a channel.
307 */
308 struct xpc_openclose_args {
309 u16 reason; /* reason why channel is closing */
310 u16 msg_size; /* sizeof each message entry */
311 u16 remote_nentries; /* #of message entries in remote msg queue */
312 u16 local_nentries; /* #of message entries in local msg queue */
313 u64 local_msgqueue_pa; /* physical address of local message queue */
314 };
315
316 #define XPC_OPENCLOSE_ARGS_SIZE \
317 L1_CACHE_ALIGN(sizeof(struct xpc_openclose_args) * XPC_NCHANNELS)
318
319
320
321 /* struct xpc_msg flags */
322
323 #define XPC_M_DONE 0x01 /* msg has been received/consumed */
324 #define XPC_M_READY 0x02 /* msg is ready to be sent */
325 #define XPC_M_INTERRUPT 0x04 /* send interrupt when msg consumed */
326
327
328 #define XPC_MSG_ADDRESS(_payload) \
329 ((struct xpc_msg *)((u8 *)(_payload) - XPC_MSG_PAYLOAD_OFFSET))
330
331
332
333 /*
334 * Defines notify entry.
335 *
336 * This is used to notify a message's sender that their message was received
337 * and consumed by the intended recipient.
338 */
339 struct xpc_notify {
340 volatile u8 type; /* type of notification */
341
342 /* the following two fields are only used if type == XPC_N_CALL */
343 xpc_notify_func func; /* user's notify function */
344 void *key; /* pointer to user's key */
345 };
346
347 /* struct xpc_notify type of notification */
348
349 #define XPC_N_CALL 0x01 /* notify function provided by user */
350
351
352
353 /*
354 * Define the structure that manages all the stuff required by a channel. In
355 * particular, they are used to manage the messages sent across the channel.
356 *
357 * This structure is private to a partition, and is NOT shared across the
358 * partition boundary.
359 *
360 * There is an array of these structures for each remote partition. It is
361 * allocated at the time a partition becomes active. The array contains one
362 * of these structures for each potential channel connection to that partition.
363 *
364 * Each of these structures manages two message queues (circular buffers).
365 * They are allocated at the time a channel connection is made. One of
366 * these message queues (local_msgqueue) holds the locally created messages
367 * that are destined for the remote partition. The other of these message
368 * queues (remote_msgqueue) is a locally cached copy of the remote partition's
369 * own local_msgqueue.
370 *
371 * The following is a description of the Get/Put pointers used to manage these
372 * two message queues. Consider the local_msgqueue to be on one partition
373 * and the remote_msgqueue to be its cached copy on another partition. A
374 * description of what each of the lettered areas contains is included.
375 *
376 *
377 * local_msgqueue remote_msgqueue
378 *
379 * |/////////| |/////////|
380 * w_remote_GP.get --> +---------+ |/////////|
381 * | F | |/////////|
382 * remote_GP.get --> +---------+ +---------+ <-- local_GP->get
383 * | | | |
384 * | | | E |
385 * | | | |
386 * | | +---------+ <-- w_local_GP.get
387 * | B | |/////////|
388 * | | |////D////|
389 * | | |/////////|
390 * | | +---------+ <-- w_remote_GP.put
391 * | | |////C////|
392 * local_GP->put --> +---------+ +---------+ <-- remote_GP.put
393 * | | |/////////|
394 * | A | |/////////|
395 * | | |/////////|
396 * w_local_GP.put --> +---------+ |/////////|
397 * |/////////| |/////////|
398 *
399 *
400 * ( remote_GP.[get|put] are cached copies of the remote
401 * partition's local_GP->[get|put], and thus their values can
402 * lag behind their counterparts on the remote partition. )
403 *
404 *
405 * A - Messages that have been allocated, but have not yet been sent to the
406 * remote partition.
407 *
408 * B - Messages that have been sent, but have not yet been acknowledged by the
409 * remote partition as having been received.
410 *
411 * C - Area that needs to be prepared for the copying of sent messages, by
412 * the clearing of the message flags of any previously received messages.
413 *
414 * D - Area into which sent messages are to be copied from the remote
415 * partition's local_msgqueue and then delivered to their intended
416 * recipients. [ To allow for a multi-message copy, another pointer
417 * (next_msg_to_pull) has been added to keep track of the next message
418 * number needing to be copied (pulled). It chases after w_remote_GP.put.
419 * Any messages lying between w_local_GP.get and next_msg_to_pull have
420 * been copied and are ready to be delivered. ]
421 *
422 * E - Messages that have been copied and delivered, but have not yet been
423 * acknowledged by the recipient as having been received.
424 *
425 * F - Messages that have been acknowledged, but XPC has not yet notified the
426 * sender that the message was received by its intended recipient.
427 * This is also an area that needs to be prepared for the allocating of
428 * new messages, by the clearing of the message flags of the acknowledged
429 * messages.
430 */
431 struct xpc_channel {
432 partid_t partid; /* ID of remote partition connected */
433 spinlock_t lock; /* lock for updating this structure */
434 u32 flags; /* general flags */
435
436 enum xpc_retval reason; /* reason why channel is disconnect'g */
437 int reason_line; /* line# disconnect initiated from */
438
439 u16 number; /* channel # */
440
441 u16 msg_size; /* sizeof each msg entry */
442 u16 local_nentries; /* #of msg entries in local msg queue */
443 u16 remote_nentries; /* #of msg entries in remote msg queue*/
444
445 void *local_msgqueue_base; /* base address of kmalloc'd space */
446 struct xpc_msg *local_msgqueue; /* local message queue */
447 void *remote_msgqueue_base; /* base address of kmalloc'd space */
448 struct xpc_msg *remote_msgqueue;/* cached copy of remote partition's */
449 /* local message queue */
450 u64 remote_msgqueue_pa; /* phys addr of remote partition's */
451 /* local message queue */
452
453 atomic_t references; /* #of external references to queues */
454
455 atomic_t n_on_msg_allocate_wq; /* #on msg allocation wait queue */
456 wait_queue_head_t msg_allocate_wq; /* msg allocation wait queue */
457
458 u8 delayed_IPI_flags; /* IPI flags received, but delayed */
459 /* action until channel disconnected */
460
461 /* queue of msg senders who want to be notified when msg received */
462
463 atomic_t n_to_notify; /* #of msg senders to notify */
464 struct xpc_notify *notify_queue;/* notify queue for messages sent */
465
466 xpc_channel_func func; /* user's channel function */
467 void *key; /* pointer to user's key */
468
469 struct mutex msg_to_pull_mutex; /* next msg to pull serialization */
470 struct completion wdisconnect_wait; /* wait for channel disconnect */
471
472 struct xpc_openclose_args *local_openclose_args; /* args passed on */
473 /* opening or closing of channel */
474
475 /* various flavors of local and remote Get/Put values */
476
477 struct xpc_gp *local_GP; /* local Get/Put values */
478 struct xpc_gp remote_GP; /* remote Get/Put values */
479 struct xpc_gp w_local_GP; /* working local Get/Put values */
480 struct xpc_gp w_remote_GP; /* working remote Get/Put values */
481 s64 next_msg_to_pull; /* Put value of next msg to pull */
482
483 /* kthread management related fields */
484
485 // >>> rethink having kthreads_assigned_limit and kthreads_idle_limit; perhaps
486 // >>> allow the assigned limit be unbounded and let the idle limit be dynamic
487 // >>> dependent on activity over the last interval of time
488 atomic_t kthreads_assigned; /* #of kthreads assigned to channel */
489 u32 kthreads_assigned_limit; /* limit on #of kthreads assigned */
490 atomic_t kthreads_idle; /* #of kthreads idle waiting for work */
491 u32 kthreads_idle_limit; /* limit on #of kthreads idle */
492 atomic_t kthreads_active; /* #of kthreads actively working */
493 // >>> following field is temporary
494 u32 kthreads_created; /* total #of kthreads created */
495
496 wait_queue_head_t idle_wq; /* idle kthread wait queue */
497
498 } ____cacheline_aligned;
499
500
501 /* struct xpc_channel flags */
502
503 #define XPC_C_WASCONNECTED 0x00000001 /* channel was connected */
504
505 #define XPC_C_ROPENREPLY 0x00000002 /* remote open channel reply */
506 #define XPC_C_OPENREPLY 0x00000004 /* local open channel reply */
507 #define XPC_C_ROPENREQUEST 0x00000008 /* remote open channel request */
508 #define XPC_C_OPENREQUEST 0x00000010 /* local open channel request */
509
510 #define XPC_C_SETUP 0x00000020 /* channel's msgqueues are alloc'd */
511 #define XPC_C_CONNECTEDCALLOUT 0x00000040 /* connected callout initiated */
512 #define XPC_C_CONNECTEDCALLOUT_MADE \
513 0x00000080 /* connected callout completed */
514 #define XPC_C_CONNECTED 0x00000100 /* local channel is connected */
515 #define XPC_C_CONNECTING 0x00000200 /* channel is being connected */
516
517 #define XPC_C_RCLOSEREPLY 0x00000400 /* remote close channel reply */
518 #define XPC_C_CLOSEREPLY 0x00000800 /* local close channel reply */
519 #define XPC_C_RCLOSEREQUEST 0x00001000 /* remote close channel request */
520 #define XPC_C_CLOSEREQUEST 0x00002000 /* local close channel request */
521
522 #define XPC_C_DISCONNECTED 0x00004000 /* channel is disconnected */
523 #define XPC_C_DISCONNECTING 0x00008000 /* channel is being disconnected */
524 #define XPC_C_DISCONNECTINGCALLOUT \
525 0x00010000 /* disconnecting callout initiated */
526 #define XPC_C_DISCONNECTINGCALLOUT_MADE \
527 0x00020000 /* disconnecting callout completed */
528 #define XPC_C_WDISCONNECT 0x00040000 /* waiting for channel disconnect */
529
530
531
532 /*
533 * Manages channels on a partition basis. There is one of these structures
534 * for each partition (a partition will never utilize the structure that
535 * represents itself).
536 */
537 struct xpc_partition {
538
539 /* XPC HB infrastructure */
540
541 u8 remote_rp_version; /* version# of partition's rsvd pg */
542 struct timespec remote_rp_stamp;/* time when rsvd pg was initialized */
543 u64 remote_rp_pa; /* phys addr of partition's rsvd pg */
544 u64 remote_vars_pa; /* phys addr of partition's vars */
545 u64 remote_vars_part_pa; /* phys addr of partition's vars part */
546 u64 last_heartbeat; /* HB at last read */
547 u64 remote_amos_page_pa; /* phys addr of partition's amos page */
548 int remote_act_nasid; /* active part's act/deact nasid */
549 int remote_act_phys_cpuid; /* active part's act/deact phys cpuid */
550 u32 act_IRQ_rcvd; /* IRQs since activation */
551 spinlock_t act_lock; /* protect updating of act_state */
552 u8 act_state; /* from XPC HB viewpoint */
553 u8 remote_vars_version; /* version# of partition's vars */
554 enum xpc_retval reason; /* reason partition is deactivating */
555 int reason_line; /* line# deactivation initiated from */
556 int reactivate_nasid; /* nasid in partition to reactivate */
557
558 unsigned long disengage_request_timeout; /* timeout in jiffies */
559 struct timer_list disengage_request_timer;
560
561
562 /* XPC infrastructure referencing and teardown control */
563
564 volatile u8 setup_state; /* infrastructure setup state */
565 wait_queue_head_t teardown_wq; /* kthread waiting to teardown infra */
566 atomic_t references; /* #of references to infrastructure */
567
568
569 /*
570 * NONE OF THE PRECEDING FIELDS OF THIS STRUCTURE WILL BE CLEARED WHEN
571 * XPC SETS UP THE NECESSARY INFRASTRUCTURE TO SUPPORT CROSS PARTITION
572 * COMMUNICATION. ALL OF THE FOLLOWING FIELDS WILL BE CLEARED. (THE
573 * 'nchannels' FIELD MUST BE THE FIRST OF THE FIELDS TO BE CLEARED.)
574 */
575
576
577 u8 nchannels; /* #of defined channels supported */
578 atomic_t nchannels_active; /* #of channels that are not DISCONNECTED */
579 atomic_t nchannels_engaged;/* #of channels engaged with remote part */
580 struct xpc_channel *channels;/* array of channel structures */
581
582 void *local_GPs_base; /* base address of kmalloc'd space */
583 struct xpc_gp *local_GPs; /* local Get/Put values */
584 void *remote_GPs_base; /* base address of kmalloc'd space */
585 struct xpc_gp *remote_GPs;/* copy of remote partition's local Get/Put */
586 /* values */
587 u64 remote_GPs_pa; /* phys address of remote partition's local */
588 /* Get/Put values */
589
590
591 /* fields used to pass args when opening or closing a channel */
592
593 void *local_openclose_args_base; /* base address of kmalloc'd space */
594 struct xpc_openclose_args *local_openclose_args; /* local's args */
595 void *remote_openclose_args_base; /* base address of kmalloc'd space */
596 struct xpc_openclose_args *remote_openclose_args; /* copy of remote's */
597 /* args */
598 u64 remote_openclose_args_pa; /* phys addr of remote's args */
599
600
601 /* IPI sending, receiving and handling related fields */
602
603 int remote_IPI_nasid; /* nasid of where to send IPIs */
604 int remote_IPI_phys_cpuid; /* phys CPU ID of where to send IPIs */
605 AMO_t *remote_IPI_amo_va; /* address of remote IPI AMO_t structure */
606
607 AMO_t *local_IPI_amo_va; /* address of IPI AMO_t structure */
608 u64 local_IPI_amo; /* IPI amo flags yet to be handled */
609 char IPI_owner[8]; /* IPI owner's name */
610 struct timer_list dropped_IPI_timer; /* dropped IPI timer */
611
612 spinlock_t IPI_lock; /* IPI handler lock */
613
614
615 /* channel manager related fields */
616
617 atomic_t channel_mgr_requests; /* #of requests to activate chan mgr */
618 wait_queue_head_t channel_mgr_wq; /* channel mgr's wait queue */
619
620 } ____cacheline_aligned;
621
622
623 /* struct xpc_partition act_state values (for XPC HB) */
624
625 #define XPC_P_INACTIVE 0x00 /* partition is not active */
626 #define XPC_P_ACTIVATION_REQ 0x01 /* created thread to activate */
627 #define XPC_P_ACTIVATING 0x02 /* activation thread started */
628 #define XPC_P_ACTIVE 0x03 /* xpc_partition_up() was called */
629 #define XPC_P_DEACTIVATING 0x04 /* partition deactivation initiated */
630
631
632 #define XPC_DEACTIVATE_PARTITION(_p, _reason) \
633 xpc_deactivate_partition(__LINE__, (_p), (_reason))
634
635
636 /* struct xpc_partition setup_state values */
637
638 #define XPC_P_UNSET 0x00 /* infrastructure was never setup */
639 #define XPC_P_SETUP 0x01 /* infrastructure is setup */
640 #define XPC_P_WTEARDOWN 0x02 /* waiting to teardown infrastructure */
641 #define XPC_P_TORNDOWN 0x03 /* infrastructure is torndown */
642
643
644
645 /*
646 * struct xpc_partition IPI_timer #of seconds to wait before checking for
647 * dropped IPIs. These occur whenever an IPI amo write doesn't complete until
648 * after the IPI was received.
649 */
650 #define XPC_P_DROPPED_IPI_WAIT (0.25 * HZ)
651
652
653 /* number of seconds to wait for other partitions to disengage */
654 #define XPC_DISENGAGE_REQUEST_DEFAULT_TIMELIMIT 90
655
656 /* interval in seconds to print 'waiting disengagement' messages */
657 #define XPC_DISENGAGE_PRINTMSG_INTERVAL 10
658
659
660 #define XPC_PARTID(_p) ((partid_t) ((_p) - &xpc_partitions[0]))
661
662
663
664 /* found in xp_main.c */
665 extern struct xpc_registration xpc_registrations[];
666
667
668 /* found in xpc_main.c */
669 extern struct device *xpc_part;
670 extern struct device *xpc_chan;
671 extern int xpc_disengage_request_timelimit;
672 extern int xpc_disengage_request_timedout;
673 extern irqreturn_t xpc_notify_IRQ_handler(int, void *, struct pt_regs *);
674 extern void xpc_dropped_IPI_check(struct xpc_partition *);
675 extern void xpc_activate_partition(struct xpc_partition *);
676 extern void xpc_activate_kthreads(struct xpc_channel *, int);
677 extern void xpc_create_kthreads(struct xpc_channel *, int);
678 extern void xpc_disconnect_wait(int);
679
680
681 /* found in xpc_partition.c */
682 extern int xpc_exiting;
683 extern struct xpc_vars *xpc_vars;
684 extern struct xpc_rsvd_page *xpc_rsvd_page;
685 extern struct xpc_vars_part *xpc_vars_part;
686 extern struct xpc_partition xpc_partitions[XP_MAX_PARTITIONS + 1];
687 extern char xpc_remote_copy_buffer[];
688 extern struct xpc_rsvd_page *xpc_rsvd_page_init(void);
689 extern void xpc_allow_IPI_ops(void);
690 extern void xpc_restrict_IPI_ops(void);
691 extern int xpc_identify_act_IRQ_sender(void);
692 extern int xpc_partition_disengaged(struct xpc_partition *);
693 extern enum xpc_retval xpc_mark_partition_active(struct xpc_partition *);
694 extern void xpc_mark_partition_inactive(struct xpc_partition *);
695 extern void xpc_discovery(void);
696 extern void xpc_check_remote_hb(void);
697 extern void xpc_deactivate_partition(const int, struct xpc_partition *,
698 enum xpc_retval);
699 extern enum xpc_retval xpc_initiate_partid_to_nasids(partid_t, void *);
700
701
702 /* found in xpc_channel.c */
703 extern void xpc_initiate_connect(int);
704 extern void xpc_initiate_disconnect(int);
705 extern enum xpc_retval xpc_initiate_allocate(partid_t, int, u32, void **);
706 extern enum xpc_retval xpc_initiate_send(partid_t, int, void *);
707 extern enum xpc_retval xpc_initiate_send_notify(partid_t, int, void *,
708 xpc_notify_func, void *);
709 extern void xpc_initiate_received(partid_t, int, void *);
710 extern enum xpc_retval xpc_setup_infrastructure(struct xpc_partition *);
711 extern enum xpc_retval xpc_pull_remote_vars_part(struct xpc_partition *);
712 extern void xpc_process_channel_activity(struct xpc_partition *);
713 extern void xpc_connected_callout(struct xpc_channel *);
714 extern void xpc_deliver_msg(struct xpc_channel *);
715 extern void xpc_disconnect_channel(const int, struct xpc_channel *,
716 enum xpc_retval, unsigned long *);
717 extern void xpc_disconnect_callout(struct xpc_channel *, enum xpc_retval);
718 extern void xpc_partition_going_down(struct xpc_partition *, enum xpc_retval);
719 extern void xpc_teardown_infrastructure(struct xpc_partition *);
720
721
722
723 static inline void
724 xpc_wakeup_channel_mgr(struct xpc_partition *part)
725 {
726 if (atomic_inc_return(&part->channel_mgr_requests) == 1) {
727 wake_up(&part->channel_mgr_wq);
728 }
729 }
730
731
732
733 /*
734 * These next two inlines are used to keep us from tearing down a channel's
735 * msg queues while a thread may be referencing them.
736 */
737 static inline void
738 xpc_msgqueue_ref(struct xpc_channel *ch)
739 {
740 atomic_inc(&ch->references);
741 }
742
743 static inline void
744 xpc_msgqueue_deref(struct xpc_channel *ch)
745 {
746 s32 refs = atomic_dec_return(&ch->references);
747
748 DBUG_ON(refs < 0);
749 if (refs == 0) {
750 xpc_wakeup_channel_mgr(&xpc_partitions[ch->partid]);
751 }
752 }
753
754
755
756 #define XPC_DISCONNECT_CHANNEL(_ch, _reason, _irqflgs) \
757 xpc_disconnect_channel(__LINE__, _ch, _reason, _irqflgs)
758
759
760 /*
761 * These two inlines are used to keep us from tearing down a partition's
762 * setup infrastructure while a thread may be referencing it.
763 */
764 static inline void
765 xpc_part_deref(struct xpc_partition *part)
766 {
767 s32 refs = atomic_dec_return(&part->references);
768
769
770 DBUG_ON(refs < 0);
771 if (refs == 0 && part->setup_state == XPC_P_WTEARDOWN) {
772 wake_up(&part->teardown_wq);
773 }
774 }
775
776 static inline int
777 xpc_part_ref(struct xpc_partition *part)
778 {
779 int setup;
780
781
782 atomic_inc(&part->references);
783 setup = (part->setup_state == XPC_P_SETUP);
784 if (!setup) {
785 xpc_part_deref(part);
786 }
787 return setup;
788 }
789
790
791
792 /*
793 * The following macro is to be used for the setting of the reason and
794 * reason_line fields in both the struct xpc_channel and struct xpc_partition
795 * structures.
796 */
797 #define XPC_SET_REASON(_p, _reason, _line) \
798 { \
799 (_p)->reason = _reason; \
800 (_p)->reason_line = _line; \
801 }
802
803
804
805 /*
806 * This next set of inlines are used to keep track of when a partition is
807 * potentially engaged in accessing memory belonging to another partition.
808 */
809
810 static inline void
811 xpc_mark_partition_engaged(struct xpc_partition *part)
812 {
813 unsigned long irq_flags;
814 AMO_t *amo = (AMO_t *) __va(part->remote_amos_page_pa +
815 (XPC_ENGAGED_PARTITIONS_AMO * sizeof(AMO_t)));
816
817
818 local_irq_save(irq_flags);
819
820 /* set bit corresponding to our partid in remote partition's AMO */
821 FETCHOP_STORE_OP(TO_AMO((u64) &amo->variable), FETCHOP_OR,
822 (1UL << sn_partition_id));
823 /*
824 * We must always use the nofault function regardless of whether we
825 * are on a Shub 1.1 system or a Shub 1.2 slice 0xc processor. If we
826 * didn't, we'd never know that the other partition is down and would
827 * keep sending IPIs and AMOs to it until the heartbeat times out.
828 */
829 (void) xp_nofault_PIOR((u64 *) GLOBAL_MMR_ADDR(NASID_GET(&amo->
830 variable), xp_nofault_PIOR_target));
831
832 local_irq_restore(irq_flags);
833 }
834
835 static inline void
836 xpc_mark_partition_disengaged(struct xpc_partition *part)
837 {
838 unsigned long irq_flags;
839 AMO_t *amo = (AMO_t *) __va(part->remote_amos_page_pa +
840 (XPC_ENGAGED_PARTITIONS_AMO * sizeof(AMO_t)));
841
842
843 local_irq_save(irq_flags);
844
845 /* clear bit corresponding to our partid in remote partition's AMO */
846 FETCHOP_STORE_OP(TO_AMO((u64) &amo->variable), FETCHOP_AND,
847 ~(1UL << sn_partition_id));
848 /*
849 * We must always use the nofault function regardless of whether we
850 * are on a Shub 1.1 system or a Shub 1.2 slice 0xc processor. If we
851 * didn't, we'd never know that the other partition is down and would
852 * keep sending IPIs and AMOs to it until the heartbeat times out.
853 */
854 (void) xp_nofault_PIOR((u64 *) GLOBAL_MMR_ADDR(NASID_GET(&amo->
855 variable), xp_nofault_PIOR_target));
856
857 local_irq_restore(irq_flags);
858 }
859
860 static inline void
861 xpc_request_partition_disengage(struct xpc_partition *part)
862 {
863 unsigned long irq_flags;
864 AMO_t *amo = (AMO_t *) __va(part->remote_amos_page_pa +
865 (XPC_DISENGAGE_REQUEST_AMO * sizeof(AMO_t)));
866
867
868 local_irq_save(irq_flags);
869
870 /* set bit corresponding to our partid in remote partition's AMO */
871 FETCHOP_STORE_OP(TO_AMO((u64) &amo->variable), FETCHOP_OR,
872 (1UL << sn_partition_id));
873 /*
874 * We must always use the nofault function regardless of whether we
875 * are on a Shub 1.1 system or a Shub 1.2 slice 0xc processor. If we
876 * didn't, we'd never know that the other partition is down and would
877 * keep sending IPIs and AMOs to it until the heartbeat times out.
878 */
879 (void) xp_nofault_PIOR((u64 *) GLOBAL_MMR_ADDR(NASID_GET(&amo->
880 variable), xp_nofault_PIOR_target));
881
882 local_irq_restore(irq_flags);
883 }
884
885 static inline void
886 xpc_cancel_partition_disengage_request(struct xpc_partition *part)
887 {
888 unsigned long irq_flags;
889 AMO_t *amo = (AMO_t *) __va(part->remote_amos_page_pa +
890 (XPC_DISENGAGE_REQUEST_AMO * sizeof(AMO_t)));
891
892
893 local_irq_save(irq_flags);
894
895 /* clear bit corresponding to our partid in remote partition's AMO */
896 FETCHOP_STORE_OP(TO_AMO((u64) &amo->variable), FETCHOP_AND,
897 ~(1UL << sn_partition_id));
898 /*
899 * We must always use the nofault function regardless of whether we
900 * are on a Shub 1.1 system or a Shub 1.2 slice 0xc processor. If we
901 * didn't, we'd never know that the other partition is down and would
902 * keep sending IPIs and AMOs to it until the heartbeat times out.
903 */
904 (void) xp_nofault_PIOR((u64 *) GLOBAL_MMR_ADDR(NASID_GET(&amo->
905 variable), xp_nofault_PIOR_target));
906
907 local_irq_restore(irq_flags);
908 }
909
910 static inline u64
911 xpc_partition_engaged(u64 partid_mask)
912 {
913 AMO_t *amo = xpc_vars->amos_page + XPC_ENGAGED_PARTITIONS_AMO;
914
915
916 /* return our partition's AMO variable ANDed with partid_mask */
917 return (FETCHOP_LOAD_OP(TO_AMO((u64) &amo->variable), FETCHOP_LOAD) &
918 partid_mask);
919 }
920
921 static inline u64
922 xpc_partition_disengage_requested(u64 partid_mask)
923 {
924 AMO_t *amo = xpc_vars->amos_page + XPC_DISENGAGE_REQUEST_AMO;
925
926
927 /* return our partition's AMO variable ANDed with partid_mask */
928 return (FETCHOP_LOAD_OP(TO_AMO((u64) &amo->variable), FETCHOP_LOAD) &
929 partid_mask);
930 }
931
932 static inline void
933 xpc_clear_partition_engaged(u64 partid_mask)
934 {
935 AMO_t *amo = xpc_vars->amos_page + XPC_ENGAGED_PARTITIONS_AMO;
936
937
938 /* clear bit(s) based on partid_mask in our partition's AMO */
939 FETCHOP_STORE_OP(TO_AMO((u64) &amo->variable), FETCHOP_AND,
940 ~partid_mask);
941 }
942
943 static inline void
944 xpc_clear_partition_disengage_request(u64 partid_mask)
945 {
946 AMO_t *amo = xpc_vars->amos_page + XPC_DISENGAGE_REQUEST_AMO;
947
948
949 /* clear bit(s) based on partid_mask in our partition's AMO */
950 FETCHOP_STORE_OP(TO_AMO((u64) &amo->variable), FETCHOP_AND,
951 ~partid_mask);
952 }
953
954
955
956 /*
957 * The following set of macros and inlines are used for the sending and
958 * receiving of IPIs (also known as IRQs). There are two flavors of IPIs,
959 * one that is associated with partition activity (SGI_XPC_ACTIVATE) and
960 * the other that is associated with channel activity (SGI_XPC_NOTIFY).
961 */
962
963 static inline u64
964 xpc_IPI_receive(AMO_t *amo)
965 {
966 return FETCHOP_LOAD_OP(TO_AMO((u64) &amo->variable), FETCHOP_CLEAR);
967 }
968
969
970 static inline enum xpc_retval
971 xpc_IPI_send(AMO_t *amo, u64 flag, int nasid, int phys_cpuid, int vector)
972 {
973 int ret = 0;
974 unsigned long irq_flags;
975
976
977 local_irq_save(irq_flags);
978
979 FETCHOP_STORE_OP(TO_AMO((u64) &amo->variable), FETCHOP_OR, flag);
980 sn_send_IPI_phys(nasid, phys_cpuid, vector, 0);
981
982 /*
983 * We must always use the nofault function regardless of whether we
984 * are on a Shub 1.1 system or a Shub 1.2 slice 0xc processor. If we
985 * didn't, we'd never know that the other partition is down and would
986 * keep sending IPIs and AMOs to it until the heartbeat times out.
987 */
988 ret = xp_nofault_PIOR((u64 *) GLOBAL_MMR_ADDR(NASID_GET(&amo->variable),
989 xp_nofault_PIOR_target));
990
991 local_irq_restore(irq_flags);
992
993 return ((ret == 0) ? xpcSuccess : xpcPioReadError);
994 }
995
996
997 /*
998 * IPIs associated with SGI_XPC_ACTIVATE IRQ.
999 */
1000
1001 /*
1002 * Flag the appropriate AMO variable and send an IPI to the specified node.
1003 */
1004 static inline void
1005 xpc_activate_IRQ_send(u64 amos_page_pa, int from_nasid, int to_nasid,
1006 int to_phys_cpuid)
1007 {
1008 int w_index = XPC_NASID_W_INDEX(from_nasid);
1009 int b_index = XPC_NASID_B_INDEX(from_nasid);
1010 AMO_t *amos = (AMO_t *) __va(amos_page_pa +
1011 (XPC_ACTIVATE_IRQ_AMOS * sizeof(AMO_t)));
1012
1013
1014 (void) xpc_IPI_send(&amos[w_index], (1UL << b_index), to_nasid,
1015 to_phys_cpuid, SGI_XPC_ACTIVATE);
1016 }
1017
1018 static inline void
1019 xpc_IPI_send_activate(struct xpc_vars *vars)
1020 {
1021 xpc_activate_IRQ_send(vars->amos_page_pa, cnodeid_to_nasid(0),
1022 vars->act_nasid, vars->act_phys_cpuid);
1023 }
1024
1025 static inline void
1026 xpc_IPI_send_activated(struct xpc_partition *part)
1027 {
1028 xpc_activate_IRQ_send(part->remote_amos_page_pa, cnodeid_to_nasid(0),
1029 part->remote_act_nasid, part->remote_act_phys_cpuid);
1030 }
1031
1032 static inline void
1033 xpc_IPI_send_reactivate(struct xpc_partition *part)
1034 {
1035 xpc_activate_IRQ_send(xpc_vars->amos_page_pa, part->reactivate_nasid,
1036 xpc_vars->act_nasid, xpc_vars->act_phys_cpuid);
1037 }
1038
1039 static inline void
1040 xpc_IPI_send_disengage(struct xpc_partition *part)
1041 {
1042 xpc_activate_IRQ_send(part->remote_amos_page_pa, cnodeid_to_nasid(0),
1043 part->remote_act_nasid, part->remote_act_phys_cpuid);
1044 }
1045
1046
1047 /*
1048 * IPIs associated with SGI_XPC_NOTIFY IRQ.
1049 */
1050
1051 /*
1052 * Send an IPI to the remote partition that is associated with the
1053 * specified channel.
1054 */
1055 #define XPC_NOTIFY_IRQ_SEND(_ch, _ipi_f, _irq_f) \
1056 xpc_notify_IRQ_send(_ch, _ipi_f, #_ipi_f, _irq_f)
1057
1058 static inline void
1059 xpc_notify_IRQ_send(struct xpc_channel *ch, u8 ipi_flag, char *ipi_flag_string,
1060 unsigned long *irq_flags)
1061 {
1062 struct xpc_partition *part = &xpc_partitions[ch->partid];
1063 enum xpc_retval ret;
1064
1065
1066 if (likely(part->act_state != XPC_P_DEACTIVATING)) {
1067 ret = xpc_IPI_send(part->remote_IPI_amo_va,
1068 (u64) ipi_flag << (ch->number * 8),
1069 part->remote_IPI_nasid,
1070 part->remote_IPI_phys_cpuid,
1071 SGI_XPC_NOTIFY);
1072 dev_dbg(xpc_chan, "%s sent to partid=%d, channel=%d, ret=%d\n",
1073 ipi_flag_string, ch->partid, ch->number, ret);
1074 if (unlikely(ret != xpcSuccess)) {
1075 if (irq_flags != NULL) {
1076 spin_unlock_irqrestore(&ch->lock, *irq_flags);
1077 }
1078 XPC_DEACTIVATE_PARTITION(part, ret);
1079 if (irq_flags != NULL) {
1080 spin_lock_irqsave(&ch->lock, *irq_flags);
1081 }
1082 }
1083 }
1084 }
1085
1086
1087 /*
1088 * Make it look like the remote partition, which is associated with the
1089 * specified channel, sent us an IPI. This faked IPI will be handled
1090 * by xpc_dropped_IPI_check().
1091 */
1092 #define XPC_NOTIFY_IRQ_SEND_LOCAL(_ch, _ipi_f) \
1093 xpc_notify_IRQ_send_local(_ch, _ipi_f, #_ipi_f)
1094
1095 static inline void
1096 xpc_notify_IRQ_send_local(struct xpc_channel *ch, u8 ipi_flag,
1097 char *ipi_flag_string)
1098 {
1099 struct xpc_partition *part = &xpc_partitions[ch->partid];
1100
1101
1102 FETCHOP_STORE_OP(TO_AMO((u64) &part->local_IPI_amo_va->variable),
1103 FETCHOP_OR, ((u64) ipi_flag << (ch->number * 8)));
1104 dev_dbg(xpc_chan, "%s sent local from partid=%d, channel=%d\n",
1105 ipi_flag_string, ch->partid, ch->number);
1106 }
1107
1108
1109 /*
1110 * The sending and receiving of IPIs includes the setting of an AMO variable
1111 * to indicate the reason the IPI was sent. The 64-bit variable is divided
1112 * up into eight bytes, ordered from right to left. Byte zero pertains to
1113 * channel 0, byte one to channel 1, and so on. Each byte is described by
1114 * the following IPI flags.
1115 */
1116
1117 #define XPC_IPI_CLOSEREQUEST 0x01
1118 #define XPC_IPI_CLOSEREPLY 0x02
1119 #define XPC_IPI_OPENREQUEST 0x04
1120 #define XPC_IPI_OPENREPLY 0x08
1121 #define XPC_IPI_MSGREQUEST 0x10
1122
1123
1124 /* given an AMO variable and a channel#, get its associated IPI flags */
1125 #define XPC_GET_IPI_FLAGS(_amo, _c) ((u8) (((_amo) >> ((_c) * 8)) & 0xff))
1126 #define XPC_SET_IPI_FLAGS(_amo, _c, _f) (_amo) |= ((u64) (_f) << ((_c) * 8))
1127
1128 #define XPC_ANY_OPENCLOSE_IPI_FLAGS_SET(_amo) ((_amo) & 0x0f0f0f0f0f0f0f0f)
1129 #define XPC_ANY_MSG_IPI_FLAGS_SET(_amo) ((_amo) & 0x1010101010101010)
1130
1131
1132 static inline void
1133 xpc_IPI_send_closerequest(struct xpc_channel *ch, unsigned long *irq_flags)
1134 {
1135 struct xpc_openclose_args *args = ch->local_openclose_args;
1136
1137
1138 args->reason = ch->reason;
1139
1140 XPC_NOTIFY_IRQ_SEND(ch, XPC_IPI_CLOSEREQUEST, irq_flags);
1141 }
1142
1143 static inline void
1144 xpc_IPI_send_closereply(struct xpc_channel *ch, unsigned long *irq_flags)
1145 {
1146 XPC_NOTIFY_IRQ_SEND(ch, XPC_IPI_CLOSEREPLY, irq_flags);
1147 }
1148
1149 static inline void
1150 xpc_IPI_send_openrequest(struct xpc_channel *ch, unsigned long *irq_flags)
1151 {
1152 struct xpc_openclose_args *args = ch->local_openclose_args;
1153
1154
1155 args->msg_size = ch->msg_size;
1156 args->local_nentries = ch->local_nentries;
1157
1158 XPC_NOTIFY_IRQ_SEND(ch, XPC_IPI_OPENREQUEST, irq_flags);
1159 }
1160
1161 static inline void
1162 xpc_IPI_send_openreply(struct xpc_channel *ch, unsigned long *irq_flags)
1163 {
1164 struct xpc_openclose_args *args = ch->local_openclose_args;
1165
1166
1167 args->remote_nentries = ch->remote_nentries;
1168 args->local_nentries = ch->local_nentries;
1169 args->local_msgqueue_pa = __pa(ch->local_msgqueue);
1170
1171 XPC_NOTIFY_IRQ_SEND(ch, XPC_IPI_OPENREPLY, irq_flags);
1172 }
1173
1174 static inline void
1175 xpc_IPI_send_msgrequest(struct xpc_channel *ch)
1176 {
1177 XPC_NOTIFY_IRQ_SEND(ch, XPC_IPI_MSGREQUEST, NULL);
1178 }
1179
1180 static inline void
1181 xpc_IPI_send_local_msgrequest(struct xpc_channel *ch)
1182 {
1183 XPC_NOTIFY_IRQ_SEND_LOCAL(ch, XPC_IPI_MSGREQUEST);
1184 }
1185
1186
1187 /*
1188 * Memory for XPC's AMO variables is allocated by the MSPEC driver. These
1189 * pages are located in the lowest granule. The lowest granule uses 4k pages
1190 * for cached references and an alternate TLB handler to never provide a
1191 * cacheable mapping for the entire region. This will prevent speculative
1192 * reading of cached copies of our lines from being issued which will cause
1193 * a PI FSB Protocol error to be generated by the SHUB. For XPC, we need 64
1194 * AMO variables (based on XP_MAX_PARTITIONS) for message notification and an
1195 * additional 128 AMO variables (based on XP_NASID_MASK_WORDS) for partition
1196 * activation and 2 AMO variables for partition deactivation.
1197 */
1198 static inline AMO_t *
1199 xpc_IPI_init(int index)
1200 {
1201 AMO_t *amo = xpc_vars->amos_page + index;
1202
1203
1204 (void) xpc_IPI_receive(amo); /* clear AMO variable */
1205 return amo;
1206 }
1207
1208
1209
1210 static inline enum xpc_retval
1211 xpc_map_bte_errors(bte_result_t error)
1212 {
1213 switch (error) {
1214 case BTE_SUCCESS: return xpcSuccess;
1215 case BTEFAIL_DIR: return xpcBteDirectoryError;
1216 case BTEFAIL_POISON: return xpcBtePoisonError;
1217 case BTEFAIL_WERR: return xpcBteWriteError;
1218 case BTEFAIL_ACCESS: return xpcBteAccessError;
1219 case BTEFAIL_PWERR: return xpcBtePWriteError;
1220 case BTEFAIL_PRERR: return xpcBtePReadError;
1221 case BTEFAIL_TOUT: return xpcBteTimeOutError;
1222 case BTEFAIL_XTERR: return xpcBteXtalkError;
1223 case BTEFAIL_NOTAVAIL: return xpcBteNotAvailable;
1224 default: return xpcBteUnmappedError;
1225 }
1226 }
1227
1228
1229
1230 static inline void *
1231 xpc_kmalloc_cacheline_aligned(size_t size, gfp_t flags, void **base)
1232 {
1233 /* see if kmalloc will give us cachline aligned memory by default */
1234 *base = kmalloc(size, flags);
1235 if (*base == NULL) {
1236 return NULL;
1237 }
1238 if ((u64) *base == L1_CACHE_ALIGN((u64) *base)) {
1239 return *base;
1240 }
1241 kfree(*base);
1242
1243 /* nope, we'll have to do it ourselves */
1244 *base = kmalloc(size + L1_CACHE_BYTES, flags);
1245 if (*base == NULL) {
1246 return NULL;
1247 }
1248 return (void *) L1_CACHE_ALIGN((u64) *base);
1249 }
1250
1251
1252 /*
1253 * Check to see if there is any channel activity to/from the specified
1254 * partition.
1255 */
1256 static inline void
1257 xpc_check_for_channel_activity(struct xpc_partition *part)
1258 {
1259 u64 IPI_amo;
1260 unsigned long irq_flags;
1261
1262
1263 IPI_amo = xpc_IPI_receive(part->local_IPI_amo_va);
1264 if (IPI_amo == 0) {
1265 return;
1266 }
1267
1268 spin_lock_irqsave(&part->IPI_lock, irq_flags);
1269 part->local_IPI_amo |= IPI_amo;
1270 spin_unlock_irqrestore(&part->IPI_lock, irq_flags);
1271
1272 dev_dbg(xpc_chan, "received IPI from partid=%d, IPI_amo=0x%lx\n",
1273 XPC_PARTID(part), IPI_amo);
1274
1275 xpc_wakeup_channel_mgr(part);
1276 }
1277
1278
1279 #endif /* _ASM_IA64_SN_XPC_H */
1280
This page took 0.085776 seconds and 5 git commands to generate.