d42685747e7d3f66d42bbd45d2d95ed718bfb1f9
[deliverable/linux.git] / include / asm-mips / io.h
1 /*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * Copyright (C) 1994, 1995 Waldorf GmbH
7 * Copyright (C) 1994 - 2000 Ralf Baechle
8 * Copyright (C) 1999, 2000 Silicon Graphics, Inc.
9 * Copyright (C) 2004, 2005 MIPS Technologies, Inc. All rights reserved.
10 * Author: Maciej W. Rozycki <macro@mips.com>
11 */
12 #ifndef _ASM_IO_H
13 #define _ASM_IO_H
14
15 #include <linux/config.h>
16 #include <linux/compiler.h>
17 #include <linux/kernel.h>
18 #include <linux/types.h>
19
20 #include <asm/addrspace.h>
21 #include <asm/bug.h>
22 #include <asm/byteorder.h>
23 #include <asm/cpu.h>
24 #include <asm/cpu-features.h>
25 #include <asm/page.h>
26 #include <asm/pgtable-bits.h>
27 #include <asm/processor.h>
28 #include <asm/string.h>
29
30 #include <ioremap.h>
31 #include <mangle-port.h>
32
33 /*
34 * Slowdown I/O port space accesses for antique hardware.
35 */
36 #undef CONF_SLOWDOWN_IO
37
38 /*
39 * Raw operations are never swapped in software. OTOH values that raw
40 * operations are working on may or may not have been swapped by the bus
41 * hardware. An example use would be for flash memory that's used for
42 * execute in place.
43 */
44 # define __raw_ioswabb(x) (x)
45 # define __raw_ioswabw(x) (x)
46 # define __raw_ioswabl(x) (x)
47 # define __raw_ioswabq(x) (x)
48 # define ____raw_ioswabq(x) (x)
49
50 /*
51 * Sane hardware offers swapping of PCI/ISA I/O space accesses in hardware;
52 * less sane hardware forces software to fiddle with this...
53 *
54 * Regardless, if the host bus endianness mismatches that of PCI/ISA, then
55 * you can't have the numerical value of data and byte addresses within
56 * multibyte quantities both preserved at the same time. Hence two
57 * variations of functions: non-prefixed ones that preserve the value
58 * and prefixed ones that preserve byte addresses. The latters are
59 * typically used for moving raw data between a peripheral and memory (cf.
60 * string I/O functions), hence the "mem_" prefix.
61 */
62 #if defined(CONFIG_SWAP_IO_SPACE)
63
64 # define ioswabb(x) (x)
65 # define mem_ioswabb(x) (x)
66 # ifdef CONFIG_SGI_IP22
67 /*
68 * IP22 seems braindead enough to swap 16bits values in hardware, but
69 * not 32bits. Go figure... Can't tell without documentation.
70 */
71 # define ioswabw(x) (x)
72 # define mem_ioswabw(x) le16_to_cpu(x)
73 # else
74 # define ioswabw(x) le16_to_cpu(x)
75 # define mem_ioswabw(x) (x)
76 # endif
77 # define ioswabl(x) le32_to_cpu(x)
78 # define mem_ioswabl(x) (x)
79 # define ioswabq(x) le64_to_cpu(x)
80 # define mem_ioswabq(x) (x)
81
82 #else
83
84 # define ioswabb(x) (x)
85 # define mem_ioswabb(x) (x)
86 # define ioswabw(x) (x)
87 # define mem_ioswabw(x) cpu_to_le16(x)
88 # define ioswabl(x) (x)
89 # define mem_ioswabl(x) cpu_to_le32(x)
90 # define ioswabq(x) (x)
91 # define mem_ioswabq(x) cpu_to_le32(x)
92
93 #endif
94
95 #define IO_SPACE_LIMIT 0xffff
96
97 /*
98 * On MIPS I/O ports are memory mapped, so we access them using normal
99 * load/store instructions. mips_io_port_base is the virtual address to
100 * which all ports are being mapped. For sake of efficiency some code
101 * assumes that this is an address that can be loaded with a single lui
102 * instruction, so the lower 16 bits must be zero. Should be true on
103 * on any sane architecture; generic code does not use this assumption.
104 */
105 extern const unsigned long mips_io_port_base;
106
107 #define set_io_port_base(base) \
108 do { * (unsigned long *) &mips_io_port_base = (base); } while (0)
109
110 /*
111 * Thanks to James van Artsdalen for a better timing-fix than
112 * the two short jumps: using outb's to a nonexistent port seems
113 * to guarantee better timings even on fast machines.
114 *
115 * On the other hand, I'd like to be sure of a non-existent port:
116 * I feel a bit unsafe about using 0x80 (should be safe, though)
117 *
118 * Linus
119 *
120 */
121
122 #define __SLOW_DOWN_IO \
123 __asm__ __volatile__( \
124 "sb\t$0,0x80(%0)" \
125 : : "r" (mips_io_port_base));
126
127 #ifdef CONF_SLOWDOWN_IO
128 #ifdef REALLY_SLOW_IO
129 #define SLOW_DOWN_IO { __SLOW_DOWN_IO; __SLOW_DOWN_IO; __SLOW_DOWN_IO; __SLOW_DOWN_IO; }
130 #else
131 #define SLOW_DOWN_IO __SLOW_DOWN_IO
132 #endif
133 #else
134 #define SLOW_DOWN_IO
135 #endif
136
137 /*
138 * virt_to_phys - map virtual addresses to physical
139 * @address: address to remap
140 *
141 * The returned physical address is the physical (CPU) mapping for
142 * the memory address given. It is only valid to use this function on
143 * addresses directly mapped or allocated via kmalloc.
144 *
145 * This function does not give bus mappings for DMA transfers. In
146 * almost all conceivable cases a device driver should not be using
147 * this function
148 */
149 static inline unsigned long virt_to_phys(volatile void * address)
150 {
151 return (unsigned long)address - PAGE_OFFSET;
152 }
153
154 /*
155 * phys_to_virt - map physical address to virtual
156 * @address: address to remap
157 *
158 * The returned virtual address is a current CPU mapping for
159 * the memory address given. It is only valid to use this function on
160 * addresses that have a kernel mapping
161 *
162 * This function does not handle bus mappings for DMA transfers. In
163 * almost all conceivable cases a device driver should not be using
164 * this function
165 */
166 static inline void * phys_to_virt(unsigned long address)
167 {
168 return (void *)(address + PAGE_OFFSET);
169 }
170
171 /*
172 * ISA I/O bus memory addresses are 1:1 with the physical address.
173 */
174 static inline unsigned long isa_virt_to_bus(volatile void * address)
175 {
176 return (unsigned long)address - PAGE_OFFSET;
177 }
178
179 static inline void * isa_bus_to_virt(unsigned long address)
180 {
181 return (void *)(address + PAGE_OFFSET);
182 }
183
184 #define isa_page_to_bus page_to_phys
185
186 /*
187 * However PCI ones are not necessarily 1:1 and therefore these interfaces
188 * are forbidden in portable PCI drivers.
189 *
190 * Allow them for x86 for legacy drivers, though.
191 */
192 #define virt_to_bus virt_to_phys
193 #define bus_to_virt phys_to_virt
194
195 /*
196 * isa_slot_offset is the address where E(ISA) busaddress 0 is mapped
197 * for the processor. This implies the assumption that there is only
198 * one of these busses.
199 */
200 extern unsigned long isa_slot_offset;
201
202 /*
203 * Change "struct page" to physical address.
204 */
205 #define page_to_phys(page) ((dma_addr_t)page_to_pfn(page) << PAGE_SHIFT)
206
207 extern void __iomem * __ioremap(phys_t offset, phys_t size, unsigned long flags);
208 extern void __iounmap(volatile void __iomem *addr);
209
210 static inline void __iomem * __ioremap_mode(phys_t offset, unsigned long size,
211 unsigned long flags)
212 {
213 #define __IS_LOW512(addr) (!((phys_t)(addr) & (phys_t) ~0x1fffffffULL))
214
215 if (cpu_has_64bit_addresses) {
216 u64 base = UNCAC_BASE;
217
218 /*
219 * R10000 supports a 2 bit uncached attribute therefore
220 * UNCAC_BASE may not equal IO_BASE.
221 */
222 if (flags == _CACHE_UNCACHED)
223 base = (u64) IO_BASE;
224 return (void __iomem *) (unsigned long) (base + offset);
225 } else if (__builtin_constant_p(offset) &&
226 __builtin_constant_p(size) && __builtin_constant_p(flags)) {
227 phys_t phys_addr, last_addr;
228
229 phys_addr = fixup_bigphys_addr(offset, size);
230
231 /* Don't allow wraparound or zero size. */
232 last_addr = phys_addr + size - 1;
233 if (!size || last_addr < phys_addr)
234 return NULL;
235
236 /*
237 * Map uncached objects in the low 512MB of address
238 * space using KSEG1.
239 */
240 if (__IS_LOW512(phys_addr) && __IS_LOW512(last_addr) &&
241 flags == _CACHE_UNCACHED)
242 return (void __iomem *)CKSEG1ADDR(phys_addr);
243 }
244
245 return __ioremap(offset, size, flags);
246
247 #undef __IS_LOW512
248 }
249
250 /*
251 * ioremap - map bus memory into CPU space
252 * @offset: bus address of the memory
253 * @size: size of the resource to map
254 *
255 * ioremap performs a platform specific sequence of operations to
256 * make bus memory CPU accessible via the readb/readw/readl/writeb/
257 * writew/writel functions and the other mmio helpers. The returned
258 * address is not guaranteed to be usable directly as a virtual
259 * address.
260 */
261 #define ioremap(offset, size) \
262 __ioremap_mode((offset), (size), _CACHE_UNCACHED)
263
264 /*
265 * ioremap_nocache - map bus memory into CPU space
266 * @offset: bus address of the memory
267 * @size: size of the resource to map
268 *
269 * ioremap_nocache performs a platform specific sequence of operations to
270 * make bus memory CPU accessible via the readb/readw/readl/writeb/
271 * writew/writel functions and the other mmio helpers. The returned
272 * address is not guaranteed to be usable directly as a virtual
273 * address.
274 *
275 * This version of ioremap ensures that the memory is marked uncachable
276 * on the CPU as well as honouring existing caching rules from things like
277 * the PCI bus. Note that there are other caches and buffers on many
278 * busses. In paticular driver authors should read up on PCI writes
279 *
280 * It's useful if some control registers are in such an area and
281 * write combining or read caching is not desirable:
282 */
283 #define ioremap_nocache(offset, size) \
284 __ioremap_mode((offset), (size), _CACHE_UNCACHED)
285
286 /*
287 * These two are MIPS specific ioremap variant. ioremap_cacheable_cow
288 * requests a cachable mapping, ioremap_uncached_accelerated requests a
289 * mapping using the uncached accelerated mode which isn't supported on
290 * all processors.
291 */
292 #define ioremap_cacheable_cow(offset, size) \
293 __ioremap_mode((offset), (size), _CACHE_CACHABLE_COW)
294 #define ioremap_uncached_accelerated(offset, size) \
295 __ioremap_mode((offset), (size), _CACHE_UNCACHED_ACCELERATED)
296
297 static inline void iounmap(volatile void __iomem *addr)
298 {
299 #define __IS_KSEG1(addr) (((unsigned long)(addr) & ~0x1fffffffUL) == CKSEG1)
300
301 if (cpu_has_64bit_addresses ||
302 (__builtin_constant_p(addr) && __IS_KSEG1(addr)))
303 return;
304
305 __iounmap(addr);
306
307 #undef __IS_KSEG1
308 }
309
310 #define __BUILD_MEMORY_SINGLE(pfx, bwlq, type, irq) \
311 \
312 static inline void pfx##write##bwlq(type val, \
313 volatile void __iomem *mem) \
314 { \
315 volatile type *__mem; \
316 type __val; \
317 \
318 __mem = (void *)__swizzle_addr_##bwlq((unsigned long)(mem)); \
319 \
320 __val = pfx##ioswab##bwlq(val); \
321 \
322 if (sizeof(type) != sizeof(u64) || sizeof(u64) == sizeof(long)) \
323 *__mem = __val; \
324 else if (cpu_has_64bits) { \
325 unsigned long __flags; \
326 type __tmp; \
327 \
328 if (irq) \
329 local_irq_save(__flags); \
330 __asm__ __volatile__( \
331 ".set mips3" "\t\t# __writeq""\n\t" \
332 "dsll32 %L0, %L0, 0" "\n\t" \
333 "dsrl32 %L0, %L0, 0" "\n\t" \
334 "dsll32 %M0, %M0, 0" "\n\t" \
335 "or %L0, %L0, %M0" "\n\t" \
336 "sd %L0, %2" "\n\t" \
337 ".set mips0" "\n" \
338 : "=r" (__tmp) \
339 : "0" (__val), "m" (*__mem)); \
340 if (irq) \
341 local_irq_restore(__flags); \
342 } else \
343 BUG(); \
344 } \
345 \
346 static inline type pfx##read##bwlq(volatile void __iomem *mem) \
347 { \
348 volatile type *__mem; \
349 type __val; \
350 \
351 __mem = (void *)__swizzle_addr_##bwlq((unsigned long)(mem)); \
352 \
353 if (sizeof(type) != sizeof(u64) || sizeof(u64) == sizeof(long)) \
354 __val = *__mem; \
355 else if (cpu_has_64bits) { \
356 unsigned long __flags; \
357 \
358 if (irq) \
359 local_irq_save(__flags); \
360 __asm__ __volatile__( \
361 ".set mips3" "\t\t# __readq" "\n\t" \
362 "ld %L0, %1" "\n\t" \
363 "dsra32 %M0, %L0, 0" "\n\t" \
364 "sll %L0, %L0, 0" "\n\t" \
365 ".set mips0" "\n" \
366 : "=r" (__val) \
367 : "m" (*__mem)); \
368 if (irq) \
369 local_irq_restore(__flags); \
370 } else { \
371 __val = 0; \
372 BUG(); \
373 } \
374 \
375 return pfx##ioswab##bwlq(__val); \
376 }
377
378 #define __BUILD_IOPORT_SINGLE(pfx, bwlq, type, p, slow) \
379 \
380 static inline void pfx##out##bwlq##p(type val, unsigned long port) \
381 { \
382 volatile type *__addr; \
383 type __val; \
384 \
385 port = __swizzle_addr_##bwlq(port); \
386 __addr = (void *)(mips_io_port_base + port); \
387 \
388 __val = pfx##ioswab##bwlq(val); \
389 \
390 /* Really, we want this to be atomic */ \
391 BUILD_BUG_ON(sizeof(type) > sizeof(unsigned long)); \
392 \
393 *__addr = __val; \
394 slow; \
395 } \
396 \
397 static inline type pfx##in##bwlq##p(unsigned long port) \
398 { \
399 volatile type *__addr; \
400 type __val; \
401 \
402 port = __swizzle_addr_##bwlq(port); \
403 __addr = (void *)(mips_io_port_base + port); \
404 \
405 BUILD_BUG_ON(sizeof(type) > sizeof(unsigned long)); \
406 \
407 __val = *__addr; \
408 slow; \
409 \
410 return pfx##ioswab##bwlq(__val); \
411 }
412
413 #define __BUILD_MEMORY_PFX(bus, bwlq, type) \
414 \
415 __BUILD_MEMORY_SINGLE(bus, bwlq, type, 1)
416
417 #define BUILDIO_MEM(bwlq, type) \
418 \
419 __BUILD_MEMORY_PFX(__raw_, bwlq, type) \
420 __BUILD_MEMORY_PFX(, bwlq, type) \
421 __BUILD_MEMORY_PFX(mem_, bwlq, type) \
422
423 BUILDIO_MEM(b, u8)
424 BUILDIO_MEM(w, u16)
425 BUILDIO_MEM(l, u32)
426 BUILDIO_MEM(q, u64)
427
428 #define __BUILD_IOPORT_PFX(bus, bwlq, type) \
429 __BUILD_IOPORT_SINGLE(bus, bwlq, type, ,) \
430 __BUILD_IOPORT_SINGLE(bus, bwlq, type, _p, SLOW_DOWN_IO)
431
432 #define BUILDIO_IOPORT(bwlq, type) \
433 __BUILD_IOPORT_PFX(, bwlq, type) \
434 __BUILD_IOPORT_PFX(mem_, bwlq, type)
435
436 BUILDIO_IOPORT(b, u8)
437 BUILDIO_IOPORT(w, u16)
438 BUILDIO_IOPORT(l, u32)
439 #ifdef CONFIG_64BIT
440 BUILDIO_IOPORT(q, u64)
441 #endif
442
443 #define __BUILDIO(bwlq, type) \
444 \
445 __BUILD_MEMORY_SINGLE(____raw_, bwlq, type, 0)
446
447 __BUILDIO(q, u64)
448
449 #define readb_relaxed readb
450 #define readw_relaxed readw
451 #define readl_relaxed readl
452 #define readq_relaxed readq
453
454 /*
455 * Some code tests for these symbols
456 */
457 #define readq readq
458 #define writeq writeq
459
460 #define __BUILD_MEMORY_STRING(bwlq, type) \
461 \
462 static inline void writes##bwlq(volatile void __iomem *mem, \
463 const void *addr, unsigned int count) \
464 { \
465 const volatile type *__addr = addr; \
466 \
467 while (count--) { \
468 mem_write##bwlq(*__addr, mem); \
469 __addr++; \
470 } \
471 } \
472 \
473 static inline void reads##bwlq(volatile void __iomem *mem, void *addr, \
474 unsigned int count) \
475 { \
476 volatile type *__addr = addr; \
477 \
478 while (count--) { \
479 *__addr = mem_read##bwlq(mem); \
480 __addr++; \
481 } \
482 }
483
484 #define __BUILD_IOPORT_STRING(bwlq, type) \
485 \
486 static inline void outs##bwlq(unsigned long port, const void *addr, \
487 unsigned int count) \
488 { \
489 const volatile type *__addr = addr; \
490 \
491 while (count--) { \
492 mem_out##bwlq(*__addr, port); \
493 __addr++; \
494 } \
495 } \
496 \
497 static inline void ins##bwlq(unsigned long port, void *addr, \
498 unsigned int count) \
499 { \
500 volatile type *__addr = addr; \
501 \
502 while (count--) { \
503 *__addr = mem_in##bwlq(port); \
504 __addr++; \
505 } \
506 }
507
508 #define BUILDSTRING(bwlq, type) \
509 \
510 __BUILD_MEMORY_STRING(bwlq, type) \
511 __BUILD_IOPORT_STRING(bwlq, type)
512
513 BUILDSTRING(b, u8)
514 BUILDSTRING(w, u16)
515 BUILDSTRING(l, u32)
516 #ifdef CONFIG_64BIT
517 BUILDSTRING(q, u64)
518 #endif
519
520
521 /* Depends on MIPS II instruction set */
522 #define mmiowb() asm volatile ("sync" ::: "memory")
523
524 static inline void memset_io(volatile void __iomem *addr, unsigned char val, int count)
525 {
526 memset((void __force *) addr, val, count);
527 }
528 static inline void memcpy_fromio(void *dst, const volatile void __iomem *src, int count)
529 {
530 memcpy(dst, (void __force *) src, count);
531 }
532 static inline void memcpy_toio(volatile void __iomem *dst, const void *src, int count)
533 {
534 memcpy((void __force *) dst, src, count);
535 }
536
537 /*
538 * Memory Mapped I/O
539 */
540 #define ioread8(addr) readb(addr)
541 #define ioread16(addr) readw(addr)
542 #define ioread32(addr) readl(addr)
543
544 #define iowrite8(b,addr) writeb(b,addr)
545 #define iowrite16(w,addr) writew(w,addr)
546 #define iowrite32(l,addr) writel(l,addr)
547
548 #define ioread8_rep(a,b,c) readsb(a,b,c)
549 #define ioread16_rep(a,b,c) readsw(a,b,c)
550 #define ioread32_rep(a,b,c) readsl(a,b,c)
551
552 #define iowrite8_rep(a,b,c) writesb(a,b,c)
553 #define iowrite16_rep(a,b,c) writesw(a,b,c)
554 #define iowrite32_rep(a,b,c) writesl(a,b,c)
555
556 /* Create a virtual mapping cookie for an IO port range */
557 extern void __iomem *ioport_map(unsigned long port, unsigned int nr);
558 extern void ioport_unmap(void __iomem *);
559
560 /* Create a virtual mapping cookie for a PCI BAR (memory or IO) */
561 struct pci_dev;
562 extern void __iomem *pci_iomap(struct pci_dev *dev, int bar, unsigned long max);
563 extern void pci_iounmap(struct pci_dev *dev, void __iomem *);
564
565 /*
566 * ISA space is 'always mapped' on currently supported MIPS systems, no need
567 * to explicitly ioremap() it. The fact that the ISA IO space is mapped
568 * to PAGE_OFFSET is pure coincidence - it does not mean ISA values
569 * are physical addresses. The following constant pointer can be
570 * used as the IO-area pointer (it can be iounmapped as well, so the
571 * analogy with PCI is quite large):
572 */
573 #define __ISA_IO_base ((char *)(isa_slot_offset))
574
575 #define isa_readb(a) readb(__ISA_IO_base + (a))
576 #define isa_readw(a) readw(__ISA_IO_base + (a))
577 #define isa_readl(a) readl(__ISA_IO_base + (a))
578 #define isa_readq(a) readq(__ISA_IO_base + (a))
579 #define isa_writeb(b,a) writeb(b,__ISA_IO_base + (a))
580 #define isa_writew(w,a) writew(w,__ISA_IO_base + (a))
581 #define isa_writel(l,a) writel(l,__ISA_IO_base + (a))
582 #define isa_writeq(q,a) writeq(q,__ISA_IO_base + (a))
583 #define isa_memset_io(a,b,c) memset_io(__ISA_IO_base + (a),(b),(c))
584 #define isa_memcpy_fromio(a,b,c) memcpy_fromio((a),__ISA_IO_base + (b),(c))
585 #define isa_memcpy_toio(a,b,c) memcpy_toio(__ISA_IO_base + (a),(b),(c))
586
587 /*
588 * We don't have csum_partial_copy_fromio() yet, so we cheat here and
589 * just copy it. The net code will then do the checksum later.
590 */
591 #define eth_io_copy_and_sum(skb,src,len,unused) memcpy_fromio((skb)->data,(src),(len))
592 #define isa_eth_io_copy_and_sum(a,b,c,d) eth_copy_and_sum((a),(b),(c),(d))
593
594 /*
595 * check_signature - find BIOS signatures
596 * @io_addr: mmio address to check
597 * @signature: signature block
598 * @length: length of signature
599 *
600 * Perform a signature comparison with the mmio address io_addr. This
601 * address should have been obtained by ioremap.
602 * Returns 1 on a match.
603 */
604 static inline int check_signature(char __iomem *io_addr,
605 const unsigned char *signature, int length)
606 {
607 int retval = 0;
608 do {
609 if (readb(io_addr) != *signature)
610 goto out;
611 io_addr++;
612 signature++;
613 length--;
614 } while (length);
615 retval = 1;
616 out:
617 return retval;
618 }
619
620 /*
621 * The caches on some architectures aren't dma-coherent and have need to
622 * handle this in software. There are three types of operations that
623 * can be applied to dma buffers.
624 *
625 * - dma_cache_wback_inv(start, size) makes caches and coherent by
626 * writing the content of the caches back to memory, if necessary.
627 * The function also invalidates the affected part of the caches as
628 * necessary before DMA transfers from outside to memory.
629 * - dma_cache_wback(start, size) makes caches and coherent by
630 * writing the content of the caches back to memory, if necessary.
631 * The function also invalidates the affected part of the caches as
632 * necessary before DMA transfers from outside to memory.
633 * - dma_cache_inv(start, size) invalidates the affected parts of the
634 * caches. Dirty lines of the caches may be written back or simply
635 * be discarded. This operation is necessary before dma operations
636 * to the memory.
637 */
638 #ifdef CONFIG_DMA_NONCOHERENT
639
640 extern void (*_dma_cache_wback_inv)(unsigned long start, unsigned long size);
641 extern void (*_dma_cache_wback)(unsigned long start, unsigned long size);
642 extern void (*_dma_cache_inv)(unsigned long start, unsigned long size);
643
644 #define dma_cache_wback_inv(start, size) _dma_cache_wback_inv(start,size)
645 #define dma_cache_wback(start, size) _dma_cache_wback(start,size)
646 #define dma_cache_inv(start, size) _dma_cache_inv(start,size)
647
648 #else /* Sane hardware */
649
650 #define dma_cache_wback_inv(start,size) \
651 do { (void) (start); (void) (size); } while (0)
652 #define dma_cache_wback(start,size) \
653 do { (void) (start); (void) (size); } while (0)
654 #define dma_cache_inv(start,size) \
655 do { (void) (start); (void) (size); } while (0)
656
657 #endif /* CONFIG_DMA_NONCOHERENT */
658
659 /*
660 * Read a 32-bit register that requires a 64-bit read cycle on the bus.
661 * Avoid interrupt mucking, just adjust the address for 4-byte access.
662 * Assume the addresses are 8-byte aligned.
663 */
664 #ifdef __MIPSEB__
665 #define __CSR_32_ADJUST 4
666 #else
667 #define __CSR_32_ADJUST 0
668 #endif
669
670 #define csr_out32(v,a) (*(volatile u32 *)((unsigned long)(a) + __CSR_32_ADJUST) = (v))
671 #define csr_in32(a) (*(volatile u32 *)((unsigned long)(a) + __CSR_32_ADJUST))
672
673 /*
674 * Convert a physical pointer to a virtual kernel pointer for /dev/mem
675 * access
676 */
677 #define xlate_dev_mem_ptr(p) __va(p)
678
679 /*
680 * Convert a virtual cached pointer to an uncached pointer
681 */
682 #define xlate_dev_kmem_ptr(p) p
683
684 #endif /* _ASM_IO_H */
This page took 0.043461 seconds and 4 git commands to generate.