[POWERPC] Use SLB size from the device tree
[deliverable/linux.git] / include / asm-powerpc / mmu-hash64.h
1 #ifndef _ASM_POWERPC_MMU_HASH64_H_
2 #define _ASM_POWERPC_MMU_HASH64_H_
3 /*
4 * PowerPC64 memory management structures
5 *
6 * Dave Engebretsen & Mike Corrigan <{engebret|mikejc}@us.ibm.com>
7 * PPC64 rework.
8 *
9 * This program is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU General Public License
11 * as published by the Free Software Foundation; either version
12 * 2 of the License, or (at your option) any later version.
13 */
14
15 #include <asm/asm-compat.h>
16 #include <asm/page.h>
17
18 /*
19 * Segment table
20 */
21
22 #define STE_ESID_V 0x80
23 #define STE_ESID_KS 0x20
24 #define STE_ESID_KP 0x10
25 #define STE_ESID_N 0x08
26
27 #define STE_VSID_SHIFT 12
28
29 /* Location of cpu0's segment table */
30 #define STAB0_PAGE 0x6
31 #define STAB0_OFFSET (STAB0_PAGE << 12)
32 #define STAB0_PHYS_ADDR (STAB0_OFFSET + PHYSICAL_START)
33
34 #ifndef __ASSEMBLY__
35 extern char initial_stab[];
36 #endif /* ! __ASSEMBLY */
37
38 /*
39 * SLB
40 */
41
42 #define SLB_NUM_BOLTED 3
43 #define SLB_CACHE_ENTRIES 8
44
45 /* Bits in the SLB ESID word */
46 #define SLB_ESID_V ASM_CONST(0x0000000008000000) /* valid */
47
48 /* Bits in the SLB VSID word */
49 #define SLB_VSID_SHIFT 12
50 #define SLB_VSID_SHIFT_1T 24
51 #define SLB_VSID_SSIZE_SHIFT 62
52 #define SLB_VSID_B ASM_CONST(0xc000000000000000)
53 #define SLB_VSID_B_256M ASM_CONST(0x0000000000000000)
54 #define SLB_VSID_B_1T ASM_CONST(0x4000000000000000)
55 #define SLB_VSID_KS ASM_CONST(0x0000000000000800)
56 #define SLB_VSID_KP ASM_CONST(0x0000000000000400)
57 #define SLB_VSID_N ASM_CONST(0x0000000000000200) /* no-execute */
58 #define SLB_VSID_L ASM_CONST(0x0000000000000100)
59 #define SLB_VSID_C ASM_CONST(0x0000000000000080) /* class */
60 #define SLB_VSID_LP ASM_CONST(0x0000000000000030)
61 #define SLB_VSID_LP_00 ASM_CONST(0x0000000000000000)
62 #define SLB_VSID_LP_01 ASM_CONST(0x0000000000000010)
63 #define SLB_VSID_LP_10 ASM_CONST(0x0000000000000020)
64 #define SLB_VSID_LP_11 ASM_CONST(0x0000000000000030)
65 #define SLB_VSID_LLP (SLB_VSID_L|SLB_VSID_LP)
66
67 #define SLB_VSID_KERNEL (SLB_VSID_KP)
68 #define SLB_VSID_USER (SLB_VSID_KP|SLB_VSID_KS|SLB_VSID_C)
69
70 #define SLBIE_C (0x08000000)
71 #define SLBIE_SSIZE_SHIFT 25
72
73 /*
74 * Hash table
75 */
76
77 #define HPTES_PER_GROUP 8
78
79 #define HPTE_V_SSIZE_SHIFT 62
80 #define HPTE_V_AVPN_SHIFT 7
81 #define HPTE_V_AVPN ASM_CONST(0x3fffffffffffff80)
82 #define HPTE_V_AVPN_VAL(x) (((x) & HPTE_V_AVPN) >> HPTE_V_AVPN_SHIFT)
83 #define HPTE_V_COMPARE(x,y) (!(((x) ^ (y)) & 0xffffffffffffff80))
84 #define HPTE_V_BOLTED ASM_CONST(0x0000000000000010)
85 #define HPTE_V_LOCK ASM_CONST(0x0000000000000008)
86 #define HPTE_V_LARGE ASM_CONST(0x0000000000000004)
87 #define HPTE_V_SECONDARY ASM_CONST(0x0000000000000002)
88 #define HPTE_V_VALID ASM_CONST(0x0000000000000001)
89
90 #define HPTE_R_PP0 ASM_CONST(0x8000000000000000)
91 #define HPTE_R_TS ASM_CONST(0x4000000000000000)
92 #define HPTE_R_RPN_SHIFT 12
93 #define HPTE_R_RPN ASM_CONST(0x3ffffffffffff000)
94 #define HPTE_R_FLAGS ASM_CONST(0x00000000000003ff)
95 #define HPTE_R_PP ASM_CONST(0x0000000000000003)
96 #define HPTE_R_N ASM_CONST(0x0000000000000004)
97 #define HPTE_R_C ASM_CONST(0x0000000000000080)
98 #define HPTE_R_R ASM_CONST(0x0000000000000100)
99
100 #define HPTE_V_1TB_SEG ASM_CONST(0x4000000000000000)
101 #define HPTE_V_VRMA_MASK ASM_CONST(0x4001ffffff000000)
102
103 /* Values for PP (assumes Ks=0, Kp=1) */
104 /* pp0 will always be 0 for linux */
105 #define PP_RWXX 0 /* Supervisor read/write, User none */
106 #define PP_RWRX 1 /* Supervisor read/write, User read */
107 #define PP_RWRW 2 /* Supervisor read/write, User read/write */
108 #define PP_RXRX 3 /* Supervisor read, User read */
109
110 #ifndef __ASSEMBLY__
111
112 struct hash_pte {
113 unsigned long v;
114 unsigned long r;
115 };
116
117 extern struct hash_pte *htab_address;
118 extern unsigned long htab_size_bytes;
119 extern unsigned long htab_hash_mask;
120
121 /*
122 * Page size definition
123 *
124 * shift : is the "PAGE_SHIFT" value for that page size
125 * sllp : is a bit mask with the value of SLB L || LP to be or'ed
126 * directly to a slbmte "vsid" value
127 * penc : is the HPTE encoding mask for the "LP" field:
128 *
129 */
130 struct mmu_psize_def
131 {
132 unsigned int shift; /* number of bits */
133 unsigned int penc; /* HPTE encoding */
134 unsigned int tlbiel; /* tlbiel supported for that page size */
135 unsigned long avpnm; /* bits to mask out in AVPN in the HPTE */
136 unsigned long sllp; /* SLB L||LP (exact mask to use in slbmte) */
137 };
138
139 #endif /* __ASSEMBLY__ */
140
141 /*
142 * The kernel use the constants below to index in the page sizes array.
143 * The use of fixed constants for this purpose is better for performances
144 * of the low level hash refill handlers.
145 *
146 * A non supported page size has a "shift" field set to 0
147 *
148 * Any new page size being implemented can get a new entry in here. Whether
149 * the kernel will use it or not is a different matter though. The actual page
150 * size used by hugetlbfs is not defined here and may be made variable
151 */
152
153 #define MMU_PAGE_4K 0 /* 4K */
154 #define MMU_PAGE_64K 1 /* 64K */
155 #define MMU_PAGE_64K_AP 2 /* 64K Admixed (in a 4K segment) */
156 #define MMU_PAGE_1M 3 /* 1M */
157 #define MMU_PAGE_16M 4 /* 16M */
158 #define MMU_PAGE_16G 5 /* 16G */
159 #define MMU_PAGE_COUNT 6
160
161 /*
162 * Segment sizes.
163 * These are the values used by hardware in the B field of
164 * SLB entries and the first dword of MMU hashtable entries.
165 * The B field is 2 bits; the values 2 and 3 are unused and reserved.
166 */
167 #define MMU_SEGSIZE_256M 0
168 #define MMU_SEGSIZE_1T 1
169
170
171 #ifndef __ASSEMBLY__
172
173 /*
174 * The current system page and segment sizes
175 */
176 extern struct mmu_psize_def mmu_psize_defs[MMU_PAGE_COUNT];
177 extern int mmu_linear_psize;
178 extern int mmu_virtual_psize;
179 extern int mmu_vmalloc_psize;
180 extern int mmu_io_psize;
181 extern int mmu_kernel_ssize;
182 extern int mmu_highuser_ssize;
183 extern u16 mmu_slb_size;
184
185 /*
186 * If the processor supports 64k normal pages but not 64k cache
187 * inhibited pages, we have to be prepared to switch processes
188 * to use 4k pages when they create cache-inhibited mappings.
189 * If this is the case, mmu_ci_restrictions will be set to 1.
190 */
191 extern int mmu_ci_restrictions;
192
193 #ifdef CONFIG_HUGETLB_PAGE
194 /*
195 * The page size index of the huge pages for use by hugetlbfs
196 */
197 extern int mmu_huge_psize;
198
199 #endif /* CONFIG_HUGETLB_PAGE */
200
201 /*
202 * This function sets the AVPN and L fields of the HPTE appropriately
203 * for the page size
204 */
205 static inline unsigned long hpte_encode_v(unsigned long va, int psize,
206 int ssize)
207 {
208 unsigned long v;
209 v = (va >> 23) & ~(mmu_psize_defs[psize].avpnm);
210 v <<= HPTE_V_AVPN_SHIFT;
211 if (psize != MMU_PAGE_4K)
212 v |= HPTE_V_LARGE;
213 v |= ((unsigned long) ssize) << HPTE_V_SSIZE_SHIFT;
214 return v;
215 }
216
217 /*
218 * This function sets the ARPN, and LP fields of the HPTE appropriately
219 * for the page size. We assume the pa is already "clean" that is properly
220 * aligned for the requested page size
221 */
222 static inline unsigned long hpte_encode_r(unsigned long pa, int psize)
223 {
224 unsigned long r;
225
226 /* A 4K page needs no special encoding */
227 if (psize == MMU_PAGE_4K)
228 return pa & HPTE_R_RPN;
229 else {
230 unsigned int penc = mmu_psize_defs[psize].penc;
231 unsigned int shift = mmu_psize_defs[psize].shift;
232 return (pa & ~((1ul << shift) - 1)) | (penc << 12);
233 }
234 return r;
235 }
236
237 /*
238 * Build a VA given VSID, EA and segment size
239 */
240 static inline unsigned long hpt_va(unsigned long ea, unsigned long vsid,
241 int ssize)
242 {
243 if (ssize == MMU_SEGSIZE_256M)
244 return (vsid << 28) | (ea & 0xfffffffUL);
245 return (vsid << 40) | (ea & 0xffffffffffUL);
246 }
247
248 /*
249 * This hashes a virtual address
250 */
251
252 static inline unsigned long hpt_hash(unsigned long va, unsigned int shift,
253 int ssize)
254 {
255 unsigned long hash, vsid;
256
257 if (ssize == MMU_SEGSIZE_256M) {
258 hash = (va >> 28) ^ ((va & 0x0fffffffUL) >> shift);
259 } else {
260 vsid = va >> 40;
261 hash = vsid ^ (vsid << 25) ^ ((va & 0xffffffffffUL) >> shift);
262 }
263 return hash & 0x7fffffffffUL;
264 }
265
266 extern int __hash_page_4K(unsigned long ea, unsigned long access,
267 unsigned long vsid, pte_t *ptep, unsigned long trap,
268 unsigned int local, int ssize);
269 extern int __hash_page_64K(unsigned long ea, unsigned long access,
270 unsigned long vsid, pte_t *ptep, unsigned long trap,
271 unsigned int local, int ssize);
272 struct mm_struct;
273 extern int hash_page(unsigned long ea, unsigned long access, unsigned long trap);
274 extern int hash_huge_page(struct mm_struct *mm, unsigned long access,
275 unsigned long ea, unsigned long vsid, int local,
276 unsigned long trap);
277
278 extern int htab_bolt_mapping(unsigned long vstart, unsigned long vend,
279 unsigned long pstart, unsigned long mode,
280 int psize, int ssize);
281
282 extern void htab_initialize(void);
283 extern void htab_initialize_secondary(void);
284 extern void hpte_init_native(void);
285 extern void hpte_init_lpar(void);
286 extern void hpte_init_iSeries(void);
287 extern void hpte_init_beat(void);
288 extern void hpte_init_beat_v3(void);
289
290 extern void stabs_alloc(void);
291 extern void slb_initialize(void);
292 extern void slb_flush_and_rebolt(void);
293 extern void stab_initialize(unsigned long stab);
294
295 extern void slb_vmalloc_update(void);
296 #endif /* __ASSEMBLY__ */
297
298 /*
299 * VSID allocation
300 *
301 * We first generate a 36-bit "proto-VSID". For kernel addresses this
302 * is equal to the ESID, for user addresses it is:
303 * (context << 15) | (esid & 0x7fff)
304 *
305 * The two forms are distinguishable because the top bit is 0 for user
306 * addresses, whereas the top two bits are 1 for kernel addresses.
307 * Proto-VSIDs with the top two bits equal to 0b10 are reserved for
308 * now.
309 *
310 * The proto-VSIDs are then scrambled into real VSIDs with the
311 * multiplicative hash:
312 *
313 * VSID = (proto-VSID * VSID_MULTIPLIER) % VSID_MODULUS
314 * where VSID_MULTIPLIER = 268435399 = 0xFFFFFC7
315 * VSID_MODULUS = 2^36-1 = 0xFFFFFFFFF
316 *
317 * This scramble is only well defined for proto-VSIDs below
318 * 0xFFFFFFFFF, so both proto-VSID and actual VSID 0xFFFFFFFFF are
319 * reserved. VSID_MULTIPLIER is prime, so in particular it is
320 * co-prime to VSID_MODULUS, making this a 1:1 scrambling function.
321 * Because the modulus is 2^n-1 we can compute it efficiently without
322 * a divide or extra multiply (see below).
323 *
324 * This scheme has several advantages over older methods:
325 *
326 * - We have VSIDs allocated for every kernel address
327 * (i.e. everything above 0xC000000000000000), except the very top
328 * segment, which simplifies several things.
329 *
330 * - We allow for 15 significant bits of ESID and 20 bits of
331 * context for user addresses. i.e. 8T (43 bits) of address space for
332 * up to 1M contexts (although the page table structure and context
333 * allocation will need changes to take advantage of this).
334 *
335 * - The scramble function gives robust scattering in the hash
336 * table (at least based on some initial results). The previous
337 * method was more susceptible to pathological cases giving excessive
338 * hash collisions.
339 */
340 /*
341 * WARNING - If you change these you must make sure the asm
342 * implementations in slb_allocate (slb_low.S), do_stab_bolted
343 * (head.S) and ASM_VSID_SCRAMBLE (below) are changed accordingly.
344 *
345 * You'll also need to change the precomputed VSID values in head.S
346 * which are used by the iSeries firmware.
347 */
348
349 #define VSID_MULTIPLIER_256M ASM_CONST(200730139) /* 28-bit prime */
350 #define VSID_BITS_256M 36
351 #define VSID_MODULUS_256M ((1UL<<VSID_BITS_256M)-1)
352
353 #define VSID_MULTIPLIER_1T ASM_CONST(12538073) /* 24-bit prime */
354 #define VSID_BITS_1T 24
355 #define VSID_MODULUS_1T ((1UL<<VSID_BITS_1T)-1)
356
357 #define CONTEXT_BITS 19
358 #define USER_ESID_BITS 16
359 #define USER_ESID_BITS_1T 4
360
361 #define USER_VSID_RANGE (1UL << (USER_ESID_BITS + SID_SHIFT))
362
363 /*
364 * This macro generates asm code to compute the VSID scramble
365 * function. Used in slb_allocate() and do_stab_bolted. The function
366 * computed is: (protovsid*VSID_MULTIPLIER) % VSID_MODULUS
367 *
368 * rt = register continaing the proto-VSID and into which the
369 * VSID will be stored
370 * rx = scratch register (clobbered)
371 *
372 * - rt and rx must be different registers
373 * - The answer will end up in the low VSID_BITS bits of rt. The higher
374 * bits may contain other garbage, so you may need to mask the
375 * result.
376 */
377 #define ASM_VSID_SCRAMBLE(rt, rx, size) \
378 lis rx,VSID_MULTIPLIER_##size@h; \
379 ori rx,rx,VSID_MULTIPLIER_##size@l; \
380 mulld rt,rt,rx; /* rt = rt * MULTIPLIER */ \
381 \
382 srdi rx,rt,VSID_BITS_##size; \
383 clrldi rt,rt,(64-VSID_BITS_##size); \
384 add rt,rt,rx; /* add high and low bits */ \
385 /* Now, r3 == VSID (mod 2^36-1), and lies between 0 and \
386 * 2^36-1+2^28-1. That in particular means that if r3 >= \
387 * 2^36-1, then r3+1 has the 2^36 bit set. So, if r3+1 has \
388 * the bit clear, r3 already has the answer we want, if it \
389 * doesn't, the answer is the low 36 bits of r3+1. So in all \
390 * cases the answer is the low 36 bits of (r3 + ((r3+1) >> 36))*/\
391 addi rx,rt,1; \
392 srdi rx,rx,VSID_BITS_##size; /* extract 2^VSID_BITS bit */ \
393 add rt,rt,rx
394
395
396 #ifndef __ASSEMBLY__
397
398 typedef unsigned long mm_context_id_t;
399
400 typedef struct {
401 mm_context_id_t id;
402 u16 user_psize; /* page size index */
403
404 #ifdef CONFIG_PPC_MM_SLICES
405 u64 low_slices_psize; /* SLB page size encodings */
406 u64 high_slices_psize; /* 4 bits per slice for now */
407 #else
408 u16 sllp; /* SLB page size encoding */
409 #endif
410 unsigned long vdso_base;
411 } mm_context_t;
412
413
414 #if 0
415 /*
416 * The code below is equivalent to this function for arguments
417 * < 2^VSID_BITS, which is all this should ever be called
418 * with. However gcc is not clever enough to compute the
419 * modulus (2^n-1) without a second multiply.
420 */
421 #define vsid_scrample(protovsid, size) \
422 ((((protovsid) * VSID_MULTIPLIER_##size) % VSID_MODULUS_##size))
423
424 #else /* 1 */
425 #define vsid_scramble(protovsid, size) \
426 ({ \
427 unsigned long x; \
428 x = (protovsid) * VSID_MULTIPLIER_##size; \
429 x = (x >> VSID_BITS_##size) + (x & VSID_MODULUS_##size); \
430 (x + ((x+1) >> VSID_BITS_##size)) & VSID_MODULUS_##size; \
431 })
432 #endif /* 1 */
433
434 /* This is only valid for addresses >= KERNELBASE */
435 static inline unsigned long get_kernel_vsid(unsigned long ea, int ssize)
436 {
437 if (ssize == MMU_SEGSIZE_256M)
438 return vsid_scramble(ea >> SID_SHIFT, 256M);
439 return vsid_scramble(ea >> SID_SHIFT_1T, 1T);
440 }
441
442 /* Returns the segment size indicator for a user address */
443 static inline int user_segment_size(unsigned long addr)
444 {
445 /* Use 1T segments if possible for addresses >= 1T */
446 if (addr >= (1UL << SID_SHIFT_1T))
447 return mmu_highuser_ssize;
448 return MMU_SEGSIZE_256M;
449 }
450
451 /* This is only valid for user addresses (which are below 2^44) */
452 static inline unsigned long get_vsid(unsigned long context, unsigned long ea,
453 int ssize)
454 {
455 if (ssize == MMU_SEGSIZE_256M)
456 return vsid_scramble((context << USER_ESID_BITS)
457 | (ea >> SID_SHIFT), 256M);
458 return vsid_scramble((context << USER_ESID_BITS_1T)
459 | (ea >> SID_SHIFT_1T), 1T);
460 }
461
462 /*
463 * This is only used on legacy iSeries in lparmap.c,
464 * hence the 256MB segment assumption.
465 */
466 #define VSID_SCRAMBLE(pvsid) (((pvsid) * VSID_MULTIPLIER_256M) % \
467 VSID_MODULUS_256M)
468 #define KERNEL_VSID(ea) VSID_SCRAMBLE(GET_ESID(ea))
469
470 /* Physical address used by some IO functions */
471 typedef unsigned long phys_addr_t;
472
473 #endif /* __ASSEMBLY__ */
474
475 #endif /* _ASM_POWERPC_MMU_HASH64_H_ */
This page took 0.064824 seconds and 5 git commands to generate.