fbdev: SuperH Mobile LCDC Driver
[deliverable/linux.git] / include / asm-sh / io.h
1 #ifndef __ASM_SH_IO_H
2 #define __ASM_SH_IO_H
3
4 /*
5 * Convention:
6 * read{b,w,l}/write{b,w,l} are for PCI,
7 * while in{b,w,l}/out{b,w,l} are for ISA
8 * These may (will) be platform specific function.
9 * In addition we have 'pausing' versions: in{b,w,l}_p/out{b,w,l}_p
10 * and 'string' versions: ins{b,w,l}/outs{b,w,l}
11 * For read{b,w,l} and write{b,w,l} there are also __raw versions, which
12 * do not have a memory barrier after them.
13 *
14 * In addition, we have
15 * ctrl_in{b,w,l}/ctrl_out{b,w,l} for SuperH specific I/O.
16 * which are processor specific.
17 */
18
19 /*
20 * We follow the Alpha convention here:
21 * __inb expands to an inline function call (which calls via the mv)
22 * _inb is a real function call (note ___raw fns are _ version of __raw)
23 * inb by default expands to _inb, but the machine specific code may
24 * define it to __inb if it chooses.
25 */
26 #include <asm/cache.h>
27 #include <asm/system.h>
28 #include <asm/addrspace.h>
29 #include <asm/machvec.h>
30 #include <asm/pgtable.h>
31 #include <asm-generic/iomap.h>
32
33 #ifdef __KERNEL__
34
35 /*
36 * Depending on which platform we are running on, we need different
37 * I/O functions.
38 */
39 #define __IO_PREFIX generic
40 #include <asm/io_generic.h>
41 #include <asm/io_trapped.h>
42
43 #define maybebadio(port) \
44 printk(KERN_ERR "bad PC-like io %s:%u for port 0x%lx at 0x%08x\n", \
45 __FUNCTION__, __LINE__, (port), (u32)__builtin_return_address(0))
46
47 /*
48 * Since boards are able to define their own set of I/O routines through
49 * their respective machine vector, we always wrap through the mv.
50 *
51 * Also, in the event that a board hasn't provided its own definition for
52 * a given routine, it will be wrapped to generic code at run-time.
53 */
54
55 #define __inb(p) sh_mv.mv_inb((p))
56 #define __inw(p) sh_mv.mv_inw((p))
57 #define __inl(p) sh_mv.mv_inl((p))
58 #define __outb(x,p) sh_mv.mv_outb((x),(p))
59 #define __outw(x,p) sh_mv.mv_outw((x),(p))
60 #define __outl(x,p) sh_mv.mv_outl((x),(p))
61
62 #define __inb_p(p) sh_mv.mv_inb_p((p))
63 #define __inw_p(p) sh_mv.mv_inw_p((p))
64 #define __inl_p(p) sh_mv.mv_inl_p((p))
65 #define __outb_p(x,p) sh_mv.mv_outb_p((x),(p))
66 #define __outw_p(x,p) sh_mv.mv_outw_p((x),(p))
67 #define __outl_p(x,p) sh_mv.mv_outl_p((x),(p))
68
69 #define __insb(p,b,c) sh_mv.mv_insb((p), (b), (c))
70 #define __insw(p,b,c) sh_mv.mv_insw((p), (b), (c))
71 #define __insl(p,b,c) sh_mv.mv_insl((p), (b), (c))
72 #define __outsb(p,b,c) sh_mv.mv_outsb((p), (b), (c))
73 #define __outsw(p,b,c) sh_mv.mv_outsw((p), (b), (c))
74 #define __outsl(p,b,c) sh_mv.mv_outsl((p), (b), (c))
75
76 #define __readb(a) sh_mv.mv_readb((a))
77 #define __readw(a) sh_mv.mv_readw((a))
78 #define __readl(a) sh_mv.mv_readl((a))
79 #define __writeb(v,a) sh_mv.mv_writeb((v),(a))
80 #define __writew(v,a) sh_mv.mv_writew((v),(a))
81 #define __writel(v,a) sh_mv.mv_writel((v),(a))
82
83 #define inb __inb
84 #define inw __inw
85 #define inl __inl
86 #define outb __outb
87 #define outw __outw
88 #define outl __outl
89
90 #define inb_p __inb_p
91 #define inw_p __inw_p
92 #define inl_p __inl_p
93 #define outb_p __outb_p
94 #define outw_p __outw_p
95 #define outl_p __outl_p
96
97 #define insb __insb
98 #define insw __insw
99 #define insl __insl
100 #define outsb __outsb
101 #define outsw __outsw
102 #define outsl __outsl
103
104 #define __raw_readb(a) __readb((void __iomem *)(a))
105 #define __raw_readw(a) __readw((void __iomem *)(a))
106 #define __raw_readl(a) __readl((void __iomem *)(a))
107 #define __raw_writeb(v, a) __writeb(v, (void __iomem *)(a))
108 #define __raw_writew(v, a) __writew(v, (void __iomem *)(a))
109 #define __raw_writel(v, a) __writel(v, (void __iomem *)(a))
110
111 void __raw_writesl(unsigned long addr, const void *data, int longlen);
112 void __raw_readsl(unsigned long addr, void *data, int longlen);
113
114 /*
115 * The platform header files may define some of these macros to use
116 * the inlined versions where appropriate. These macros may also be
117 * redefined by userlevel programs.
118 */
119 #ifdef __readb
120 # define readb(a) ({ unsigned int r_ = __raw_readb(a); mb(); r_; })
121 #endif
122 #ifdef __raw_readw
123 # define readw(a) ({ unsigned int r_ = __raw_readw(a); mb(); r_; })
124 #endif
125 #ifdef __raw_readl
126 # define readl(a) ({ unsigned int r_ = __raw_readl(a); mb(); r_; })
127 #endif
128
129 #ifdef __raw_writeb
130 # define writeb(v,a) ({ __raw_writeb((v),(a)); mb(); })
131 #endif
132 #ifdef __raw_writew
133 # define writew(v,a) ({ __raw_writew((v),(a)); mb(); })
134 #endif
135 #ifdef __raw_writel
136 # define writel(v,a) ({ __raw_writel((v),(a)); mb(); })
137 #endif
138
139 #define __BUILD_MEMORY_STRING(bwlq, type) \
140 \
141 static inline void writes##bwlq(volatile void __iomem *mem, \
142 const void *addr, unsigned int count) \
143 { \
144 const volatile type *__addr = addr; \
145 \
146 while (count--) { \
147 __raw_write##bwlq(*__addr, mem); \
148 __addr++; \
149 } \
150 } \
151 \
152 static inline void reads##bwlq(volatile void __iomem *mem, void *addr, \
153 unsigned int count) \
154 { \
155 volatile type *__addr = addr; \
156 \
157 while (count--) { \
158 *__addr = __raw_read##bwlq(mem); \
159 __addr++; \
160 } \
161 }
162
163 __BUILD_MEMORY_STRING(b, u8)
164 __BUILD_MEMORY_STRING(w, u16)
165 #define writesl __raw_writesl
166 #define readsl __raw_readsl
167
168 #define readb_relaxed(a) readb(a)
169 #define readw_relaxed(a) readw(a)
170 #define readl_relaxed(a) readl(a)
171
172 /* Simple MMIO */
173 #define ioread8(a) readb(a)
174 #define ioread16(a) readw(a)
175 #define ioread16be(a) be16_to_cpu(__raw_readw((a)))
176 #define ioread32(a) readl(a)
177 #define ioread32be(a) be32_to_cpu(__raw_readl((a)))
178
179 #define iowrite8(v,a) writeb((v),(a))
180 #define iowrite16(v,a) writew((v),(a))
181 #define iowrite16be(v,a) __raw_writew(cpu_to_be16((v)),(a))
182 #define iowrite32(v,a) writel((v),(a))
183 #define iowrite32be(v,a) __raw_writel(cpu_to_be32((v)),(a))
184
185 #define ioread8_rep(a, d, c) readsb((a), (d), (c))
186 #define ioread16_rep(a, d, c) readsw((a), (d), (c))
187 #define ioread32_rep(a, d, c) readsl((a), (d), (c))
188
189 #define iowrite8_rep(a, s, c) writesb((a), (s), (c))
190 #define iowrite16_rep(a, s, c) writesw((a), (s), (c))
191 #define iowrite32_rep(a, s, c) writesl((a), (s), (c))
192
193 #define mmiowb() wmb() /* synco on SH-4A, otherwise a nop */
194
195 #define IO_SPACE_LIMIT 0xffffffff
196
197 /*
198 * This function provides a method for the generic case where a board-specific
199 * ioport_map simply needs to return the port + some arbitrary port base.
200 *
201 * We use this at board setup time to implicitly set the port base, and
202 * as a result, we can use the generic ioport_map.
203 */
204 static inline void __set_io_port_base(unsigned long pbase)
205 {
206 extern unsigned long generic_io_base;
207
208 generic_io_base = pbase;
209 }
210
211 #define __ioport_map(p, n) sh_mv.mv_ioport_map((p), (n))
212
213 /* We really want to try and get these to memcpy etc */
214 extern void memcpy_fromio(void *, volatile void __iomem *, unsigned long);
215 extern void memcpy_toio(volatile void __iomem *, const void *, unsigned long);
216 extern void memset_io(volatile void __iomem *, int, unsigned long);
217
218 /* SuperH on-chip I/O functions */
219 static inline unsigned char ctrl_inb(unsigned long addr)
220 {
221 return *(volatile unsigned char*)addr;
222 }
223
224 static inline unsigned short ctrl_inw(unsigned long addr)
225 {
226 return *(volatile unsigned short*)addr;
227 }
228
229 static inline unsigned int ctrl_inl(unsigned long addr)
230 {
231 return *(volatile unsigned long*)addr;
232 }
233
234 static inline unsigned long long ctrl_inq(unsigned long addr)
235 {
236 return *(volatile unsigned long long*)addr;
237 }
238
239 static inline void ctrl_outb(unsigned char b, unsigned long addr)
240 {
241 *(volatile unsigned char*)addr = b;
242 }
243
244 static inline void ctrl_outw(unsigned short b, unsigned long addr)
245 {
246 *(volatile unsigned short*)addr = b;
247 }
248
249 static inline void ctrl_outl(unsigned int b, unsigned long addr)
250 {
251 *(volatile unsigned long*)addr = b;
252 }
253
254 static inline void ctrl_outq(unsigned long long b, unsigned long addr)
255 {
256 *(volatile unsigned long long*)addr = b;
257 }
258
259 static inline void ctrl_delay(void)
260 {
261 #ifdef P2SEG
262 ctrl_inw(P2SEG);
263 #endif
264 }
265
266 /* Quad-word real-mode I/O, don't ask.. */
267 unsigned long long peek_real_address_q(unsigned long long addr);
268 unsigned long long poke_real_address_q(unsigned long long addr,
269 unsigned long long val);
270
271 #if !defined(CONFIG_MMU)
272 #define virt_to_phys(address) ((unsigned long)(address))
273 #define phys_to_virt(address) ((void *)(address))
274 #else
275 #define virt_to_phys(address) (__pa(address))
276 #define phys_to_virt(address) (__va(address))
277 #endif
278
279 /*
280 * On 32-bit SH, we traditionally have the whole physical address space
281 * mapped at all times (as MIPS does), so "ioremap()" and "iounmap()" do
282 * not need to do anything but place the address in the proper segment.
283 * This is true for P1 and P2 addresses, as well as some P3 ones.
284 * However, most of the P3 addresses and newer cores using extended
285 * addressing need to map through page tables, so the ioremap()
286 * implementation becomes a bit more complicated.
287 *
288 * See arch/sh/mm/ioremap.c for additional notes on this.
289 *
290 * We cheat a bit and always return uncachable areas until we've fixed
291 * the drivers to handle caching properly.
292 *
293 * On the SH-5 the concept of segmentation in the 1:1 PXSEG sense simply
294 * doesn't exist, so everything must go through page tables.
295 */
296 #ifdef CONFIG_MMU
297 void __iomem *__ioremap(unsigned long offset, unsigned long size,
298 unsigned long flags);
299 void __iounmap(void __iomem *addr);
300
301 /* arch/sh/mm/ioremap_64.c */
302 unsigned long onchip_remap(unsigned long addr, unsigned long size,
303 const char *name);
304 extern void onchip_unmap(unsigned long vaddr);
305 #else
306 #define __ioremap(offset, size, flags) ((void __iomem *)(offset))
307 #define __iounmap(addr) do { } while (0)
308 #define onchip_remap(addr, size, name) (addr)
309 #define onchip_unmap(addr) do { } while (0)
310 #endif /* CONFIG_MMU */
311
312 static inline void __iomem *
313 __ioremap_mode(unsigned long offset, unsigned long size, unsigned long flags)
314 {
315 #ifdef CONFIG_SUPERH32
316 unsigned long last_addr = offset + size - 1;
317 #endif
318 void __iomem *ret;
319
320 ret = __ioremap_trapped(offset, size);
321 if (ret)
322 return ret;
323
324 #ifdef CONFIG_SUPERH32
325 /*
326 * For P1 and P2 space this is trivial, as everything is already
327 * mapped. Uncached access for P1 addresses are done through P2.
328 * In the P3 case or for addresses outside of the 29-bit space,
329 * mapping must be done by the PMB or by using page tables.
330 */
331 if (likely(PXSEG(offset) < P3SEG && PXSEG(last_addr) < P3SEG)) {
332 if (unlikely(flags & _PAGE_CACHABLE))
333 return (void __iomem *)P1SEGADDR(offset);
334
335 return (void __iomem *)P2SEGADDR(offset);
336 }
337 #endif
338
339 return __ioremap(offset, size, flags);
340 }
341
342 #define ioremap(offset, size) \
343 __ioremap_mode((offset), (size), 0)
344 #define ioremap_nocache(offset, size) \
345 __ioremap_mode((offset), (size), 0)
346 #define ioremap_cache(offset, size) \
347 __ioremap_mode((offset), (size), _PAGE_CACHABLE)
348 #define p3_ioremap(offset, size, flags) \
349 __ioremap((offset), (size), (flags))
350 #define iounmap(addr) \
351 __iounmap((addr))
352
353 /*
354 * Convert a physical pointer to a virtual kernel pointer for /dev/mem
355 * access
356 */
357 #define xlate_dev_mem_ptr(p) __va(p)
358
359 /*
360 * Convert a virtual cached pointer to an uncached pointer
361 */
362 #define xlate_dev_kmem_ptr(p) p
363
364 #endif /* __KERNEL__ */
365
366 #endif /* __ASM_SH_IO_H */
This page took 0.040197 seconds and 5 git commands to generate.