[SPARC64]: Use in-kernel OBP device tree for PCI controller probing.
[deliverable/linux.git] / include / asm-sparc64 / pbm.h
1 /* $Id: pbm.h,v 1.27 2001/08/12 13:18:23 davem Exp $
2 * pbm.h: UltraSparc PCI controller software state.
3 *
4 * Copyright (C) 1997, 1998, 1999 David S. Miller (davem@redhat.com)
5 */
6
7 #ifndef __SPARC64_PBM_H
8 #define __SPARC64_PBM_H
9
10 #include <linux/types.h>
11 #include <linux/pci.h>
12 #include <linux/ioport.h>
13 #include <linux/spinlock.h>
14
15 #include <asm/io.h>
16 #include <asm/page.h>
17 #include <asm/oplib.h>
18 #include <asm/prom.h>
19 #include <asm/iommu.h>
20
21 /* The abstraction used here is that there are PCI controllers,
22 * each with one (Sabre) or two (PSYCHO/SCHIZO) PCI bus modules
23 * underneath. Each PCI bus module uses an IOMMU (shared by both
24 * PBMs of a controller, or per-PBM), and if a streaming buffer
25 * is present, each PCI bus module has it's own. (ie. the IOMMU
26 * might be shared between PBMs, the STC is never shared)
27 * Furthermore, each PCI bus module controls it's own autonomous
28 * PCI bus.
29 */
30
31 struct pci_controller_info;
32
33 /* This contains the software state necessary to drive a PCI
34 * controller's IOMMU.
35 */
36 struct pci_iommu_arena {
37 unsigned long *map;
38 unsigned int hint;
39 unsigned int limit;
40 };
41
42 struct pci_iommu {
43 /* This protects the controller's IOMMU and all
44 * streaming buffers underneath.
45 */
46 spinlock_t lock;
47
48 struct pci_iommu_arena arena;
49
50 /* IOMMU page table, a linear array of ioptes. */
51 iopte_t *page_table; /* The page table itself. */
52
53 /* Base PCI memory space address where IOMMU mappings
54 * begin.
55 */
56 u32 page_table_map_base;
57
58 /* IOMMU Controller Registers */
59 unsigned long iommu_control; /* IOMMU control register */
60 unsigned long iommu_tsbbase; /* IOMMU page table base register */
61 unsigned long iommu_flush; /* IOMMU page flush register */
62 unsigned long iommu_ctxflush; /* IOMMU context flush register */
63
64 /* This is a register in the PCI controller, which if
65 * read will have no side-effects but will guarantee
66 * completion of all previous writes into IOMMU/STC.
67 */
68 unsigned long write_complete_reg;
69
70 /* In order to deal with some buggy third-party PCI bridges that
71 * do wrong prefetching, we never mark valid mappings as invalid.
72 * Instead we point them at this dummy page.
73 */
74 unsigned long dummy_page;
75 unsigned long dummy_page_pa;
76
77 /* CTX allocation. */
78 unsigned long ctx_lowest_free;
79 unsigned long ctx_bitmap[IOMMU_NUM_CTXS / (sizeof(unsigned long) * 8)];
80
81 /* Here a PCI controller driver describes the areas of
82 * PCI memory space where DMA to/from physical memory
83 * are addressed. Drivers interrogate the PCI layer
84 * if their device has addressing limitations. They
85 * do so via pci_dma_supported, and pass in a mask of
86 * DMA address bits their device can actually drive.
87 *
88 * The test for being usable is:
89 * (device_mask & dma_addr_mask) == dma_addr_mask
90 */
91 u32 dma_addr_mask;
92 };
93
94 extern void pci_iommu_table_init(struct pci_iommu *iommu, int tsbsize, u32 dma_offset, u32 dma_addr_mask);
95
96 /* This describes a PCI bus module's streaming buffer. */
97 struct pci_strbuf {
98 int strbuf_enabled; /* Present and using it? */
99
100 /* Streaming Buffer Control Registers */
101 unsigned long strbuf_control; /* STC control register */
102 unsigned long strbuf_pflush; /* STC page flush register */
103 unsigned long strbuf_fsync; /* STC flush synchronization reg */
104 unsigned long strbuf_ctxflush; /* STC context flush register */
105 unsigned long strbuf_ctxmatch_base; /* STC context flush match reg */
106 unsigned long strbuf_flushflag_pa; /* Physical address of flush flag */
107 volatile unsigned long *strbuf_flushflag; /* The flush flag itself */
108
109 /* And this is the actual flush flag area.
110 * We allocate extra because the chips require
111 * a 64-byte aligned area.
112 */
113 volatile unsigned long __flushflag_buf[(64 + (64 - 1)) / sizeof(long)];
114 };
115
116 #define PCI_STC_FLUSHFLAG_INIT(STC) \
117 (*((STC)->strbuf_flushflag) = 0UL)
118 #define PCI_STC_FLUSHFLAG_SET(STC) \
119 (*((STC)->strbuf_flushflag) != 0UL)
120
121 /* There can be quite a few ranges and interrupt maps on a PCI
122 * segment. Thus...
123 */
124 #define PROM_PCIRNG_MAX 64
125 #define PROM_PCIIMAP_MAX 64
126
127 struct pci_pbm_info {
128 /* PCI controller we sit under. */
129 struct pci_controller_info *parent;
130
131 /* Physical address base of controller registers. */
132 unsigned long controller_regs;
133
134 /* Physical address base of PBM registers. */
135 unsigned long pbm_regs;
136
137 /* Physical address of DMA sync register, if any. */
138 unsigned long sync_reg;
139
140 /* Opaque 32-bit system bus Port ID. */
141 u32 portid;
142
143 /* Opaque 32-bit handle used for hypervisor calls. */
144 u32 devhandle;
145
146 /* Chipset version information. */
147 int chip_type;
148 #define PBM_CHIP_TYPE_SABRE 1
149 #define PBM_CHIP_TYPE_PSYCHO 2
150 #define PBM_CHIP_TYPE_SCHIZO 3
151 #define PBM_CHIP_TYPE_SCHIZO_PLUS 4
152 #define PBM_CHIP_TYPE_TOMATILLO 5
153 int chip_version;
154 int chip_revision;
155
156 /* Name used for top-level resources. */
157 char *name;
158
159 /* OBP specific information. */
160 struct device_node *prom_node;
161 struct linux_prom_pci_ranges *pbm_ranges;
162 int num_pbm_ranges;
163 struct linux_prom_pci_intmap *pbm_intmap;
164 int num_pbm_intmap;
165 struct linux_prom_pci_intmask *pbm_intmask;
166 u64 ino_bitmap;
167
168 /* PBM I/O and Memory space resources. */
169 struct resource io_space;
170 struct resource mem_space;
171
172 /* Base of PCI Config space, can be per-PBM or shared. */
173 unsigned long config_space;
174
175 /* State of 66MHz capabilities on this PBM. */
176 int is_66mhz_capable;
177 int all_devs_66mhz;
178
179 /* This PBM's streaming buffer. */
180 struct pci_strbuf stc;
181
182 /* IOMMU state, potentially shared by both PBM segments. */
183 struct pci_iommu *iommu;
184
185 /* PCI slot mapping. */
186 unsigned int pci_first_slot;
187
188 /* Now things for the actual PCI bus probes. */
189 unsigned int pci_first_busno;
190 unsigned int pci_last_busno;
191 struct pci_bus *pci_bus;
192 };
193
194 struct pci_controller_info {
195 /* List of all PCI controllers. */
196 struct pci_controller_info *next;
197
198 /* Each controller gets a unique index, used mostly for
199 * error logging purposes.
200 */
201 int index;
202
203 /* Do the PBMs both exist in the same PCI domain? */
204 int pbms_same_domain;
205
206 /* The PCI bus modules controlled by us. */
207 struct pci_pbm_info pbm_A;
208 struct pci_pbm_info pbm_B;
209
210 /* Operations which are controller specific. */
211 void (*scan_bus)(struct pci_controller_info *);
212 unsigned int (*irq_build)(struct pci_pbm_info *, struct pci_dev *, unsigned int);
213 void (*base_address_update)(struct pci_dev *, int);
214 void (*resource_adjust)(struct pci_dev *, struct resource *, struct resource *);
215
216 /* Now things for the actual PCI bus probes. */
217 struct pci_ops *pci_ops;
218 unsigned int pci_first_busno;
219 unsigned int pci_last_busno;
220
221 void *starfire_cookie;
222 };
223
224 /* PCI devices which are not bridges have this placed in their pci_dev
225 * sysdata member. This makes OBP aware PCI device drivers easier to
226 * code.
227 */
228 struct pcidev_cookie {
229 struct pci_pbm_info *pbm;
230 char prom_name[64];
231 int prom_node;
232 struct linux_prom_pci_registers prom_regs[PROMREG_MAX];
233 int num_prom_regs;
234 struct linux_prom_pci_registers prom_assignments[PROMREG_MAX];
235 int num_prom_assignments;
236 };
237
238 /* Currently these are the same across all PCI controllers
239 * we support. Someday they may not be...
240 */
241 #define PCI_IRQ_IGN 0x000007c0 /* Interrupt Group Number */
242 #define PCI_IRQ_INO 0x0000003f /* Interrupt Number */
243
244 #endif /* !(__SPARC64_PBM_H) */
This page took 0.037075 seconds and 5 git commands to generate.