Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/x86/linux...
[deliverable/linux.git] / include / asm-x86 / bitops.h
1 #ifndef _ASM_X86_BITOPS_H
2 #define _ASM_X86_BITOPS_H
3
4 /*
5 * Copyright 1992, Linus Torvalds.
6 */
7
8 #ifndef _LINUX_BITOPS_H
9 #error only <linux/bitops.h> can be included directly
10 #endif
11
12 #include <linux/compiler.h>
13 #include <asm/alternative.h>
14
15 /*
16 * These have to be done with inline assembly: that way the bit-setting
17 * is guaranteed to be atomic. All bit operations return 0 if the bit
18 * was cleared before the operation and != 0 if it was not.
19 *
20 * bit 0 is the LSB of addr; bit 32 is the LSB of (addr+1).
21 */
22
23 #if __GNUC__ < 4 || (__GNUC__ == 4 && __GNUC_MINOR__ < 1)
24 /* Technically wrong, but this avoids compilation errors on some gcc
25 versions. */
26 #define ADDR "=m" (*(volatile long *) addr)
27 #else
28 #define ADDR "+m" (*(volatile long *) addr)
29 #endif
30
31 /**
32 * set_bit - Atomically set a bit in memory
33 * @nr: the bit to set
34 * @addr: the address to start counting from
35 *
36 * This function is atomic and may not be reordered. See __set_bit()
37 * if you do not require the atomic guarantees.
38 *
39 * Note: there are no guarantees that this function will not be reordered
40 * on non x86 architectures, so if you are writing portable code,
41 * make sure not to rely on its reordering guarantees.
42 *
43 * Note that @nr may be almost arbitrarily large; this function is not
44 * restricted to acting on a single-word quantity.
45 */
46 static inline void set_bit(int nr, volatile void *addr)
47 {
48 asm volatile(LOCK_PREFIX "bts %1,%0" : ADDR : "Ir" (nr) : "memory");
49 }
50
51 /**
52 * __set_bit - Set a bit in memory
53 * @nr: the bit to set
54 * @addr: the address to start counting from
55 *
56 * Unlike set_bit(), this function is non-atomic and may be reordered.
57 * If it's called on the same region of memory simultaneously, the effect
58 * may be that only one operation succeeds.
59 */
60 static inline void __set_bit(int nr, volatile void *addr)
61 {
62 asm volatile("bts %1,%0" : ADDR : "Ir" (nr) : "memory");
63 }
64
65 /**
66 * clear_bit - Clears a bit in memory
67 * @nr: Bit to clear
68 * @addr: Address to start counting from
69 *
70 * clear_bit() is atomic and may not be reordered. However, it does
71 * not contain a memory barrier, so if it is used for locking purposes,
72 * you should call smp_mb__before_clear_bit() and/or smp_mb__after_clear_bit()
73 * in order to ensure changes are visible on other processors.
74 */
75 static inline void clear_bit(int nr, volatile void *addr)
76 {
77 asm volatile(LOCK_PREFIX "btr %1,%0" : ADDR : "Ir" (nr));
78 }
79
80 /*
81 * clear_bit_unlock - Clears a bit in memory
82 * @nr: Bit to clear
83 * @addr: Address to start counting from
84 *
85 * clear_bit() is atomic and implies release semantics before the memory
86 * operation. It can be used for an unlock.
87 */
88 static inline void clear_bit_unlock(unsigned nr, volatile void *addr)
89 {
90 barrier();
91 clear_bit(nr, addr);
92 }
93
94 static inline void __clear_bit(int nr, volatile void *addr)
95 {
96 asm volatile("btr %1,%0" : ADDR : "Ir" (nr));
97 }
98
99 /*
100 * __clear_bit_unlock - Clears a bit in memory
101 * @nr: Bit to clear
102 * @addr: Address to start counting from
103 *
104 * __clear_bit() is non-atomic and implies release semantics before the memory
105 * operation. It can be used for an unlock if no other CPUs can concurrently
106 * modify other bits in the word.
107 *
108 * No memory barrier is required here, because x86 cannot reorder stores past
109 * older loads. Same principle as spin_unlock.
110 */
111 static inline void __clear_bit_unlock(unsigned nr, volatile void *addr)
112 {
113 barrier();
114 __clear_bit(nr, addr);
115 }
116
117 #define smp_mb__before_clear_bit() barrier()
118 #define smp_mb__after_clear_bit() barrier()
119
120 /**
121 * __change_bit - Toggle a bit in memory
122 * @nr: the bit to change
123 * @addr: the address to start counting from
124 *
125 * Unlike change_bit(), this function is non-atomic and may be reordered.
126 * If it's called on the same region of memory simultaneously, the effect
127 * may be that only one operation succeeds.
128 */
129 static inline void __change_bit(int nr, volatile void *addr)
130 {
131 asm volatile("btc %1,%0" : ADDR : "Ir" (nr));
132 }
133
134 /**
135 * change_bit - Toggle a bit in memory
136 * @nr: Bit to change
137 * @addr: Address to start counting from
138 *
139 * change_bit() is atomic and may not be reordered.
140 * Note that @nr may be almost arbitrarily large; this function is not
141 * restricted to acting on a single-word quantity.
142 */
143 static inline void change_bit(int nr, volatile void *addr)
144 {
145 asm volatile(LOCK_PREFIX "btc %1,%0" : ADDR : "Ir" (nr));
146 }
147
148 /**
149 * test_and_set_bit - Set a bit and return its old value
150 * @nr: Bit to set
151 * @addr: Address to count from
152 *
153 * This operation is atomic and cannot be reordered.
154 * It also implies a memory barrier.
155 */
156 static inline int test_and_set_bit(int nr, volatile void *addr)
157 {
158 int oldbit;
159
160 asm volatile(LOCK_PREFIX "bts %2,%1\n\t"
161 "sbb %0,%0" : "=r" (oldbit), ADDR : "Ir" (nr) : "memory");
162
163 return oldbit;
164 }
165
166 /**
167 * test_and_set_bit_lock - Set a bit and return its old value for lock
168 * @nr: Bit to set
169 * @addr: Address to count from
170 *
171 * This is the same as test_and_set_bit on x86.
172 */
173 static inline int test_and_set_bit_lock(int nr, volatile void *addr)
174 {
175 return test_and_set_bit(nr, addr);
176 }
177
178 /**
179 * __test_and_set_bit - Set a bit and return its old value
180 * @nr: Bit to set
181 * @addr: Address to count from
182 *
183 * This operation is non-atomic and can be reordered.
184 * If two examples of this operation race, one can appear to succeed
185 * but actually fail. You must protect multiple accesses with a lock.
186 */
187 static inline int __test_and_set_bit(int nr, volatile void *addr)
188 {
189 int oldbit;
190
191 asm("bts %2,%1\n\t"
192 "sbb %0,%0"
193 : "=r" (oldbit), ADDR
194 : "Ir" (nr));
195 return oldbit;
196 }
197
198 /**
199 * test_and_clear_bit - Clear a bit and return its old value
200 * @nr: Bit to clear
201 * @addr: Address to count from
202 *
203 * This operation is atomic and cannot be reordered.
204 * It also implies a memory barrier.
205 */
206 static inline int test_and_clear_bit(int nr, volatile void *addr)
207 {
208 int oldbit;
209
210 asm volatile(LOCK_PREFIX "btr %2,%1\n\t"
211 "sbb %0,%0"
212 : "=r" (oldbit), ADDR : "Ir" (nr) : "memory");
213
214 return oldbit;
215 }
216
217 /**
218 * __test_and_clear_bit - Clear a bit and return its old value
219 * @nr: Bit to clear
220 * @addr: Address to count from
221 *
222 * This operation is non-atomic and can be reordered.
223 * If two examples of this operation race, one can appear to succeed
224 * but actually fail. You must protect multiple accesses with a lock.
225 */
226 static inline int __test_and_clear_bit(int nr, volatile void *addr)
227 {
228 int oldbit;
229
230 asm volatile("btr %2,%1\n\t"
231 "sbb %0,%0"
232 : "=r" (oldbit), ADDR
233 : "Ir" (nr));
234 return oldbit;
235 }
236
237 /* WARNING: non atomic and it can be reordered! */
238 static inline int __test_and_change_bit(int nr, volatile void *addr)
239 {
240 int oldbit;
241
242 asm volatile("btc %2,%1\n\t"
243 "sbb %0,%0"
244 : "=r" (oldbit), ADDR
245 : "Ir" (nr) : "memory");
246
247 return oldbit;
248 }
249
250 /**
251 * test_and_change_bit - Change a bit and return its old value
252 * @nr: Bit to change
253 * @addr: Address to count from
254 *
255 * This operation is atomic and cannot be reordered.
256 * It also implies a memory barrier.
257 */
258 static inline int test_and_change_bit(int nr, volatile void *addr)
259 {
260 int oldbit;
261
262 asm volatile(LOCK_PREFIX "btc %2,%1\n\t"
263 "sbb %0,%0"
264 : "=r" (oldbit), ADDR : "Ir" (nr) : "memory");
265
266 return oldbit;
267 }
268
269 static inline int constant_test_bit(int nr, const volatile void *addr)
270 {
271 return ((1UL << (nr % BITS_PER_LONG)) &
272 (((unsigned long *)addr)[nr / BITS_PER_LONG])) != 0;
273 }
274
275 static inline int variable_test_bit(int nr, volatile const void *addr)
276 {
277 int oldbit;
278
279 asm volatile("bt %2,%1\n\t"
280 "sbb %0,%0"
281 : "=r" (oldbit)
282 : "m" (*(unsigned long *)addr), "Ir" (nr));
283
284 return oldbit;
285 }
286
287 #if 0 /* Fool kernel-doc since it doesn't do macros yet */
288 /**
289 * test_bit - Determine whether a bit is set
290 * @nr: bit number to test
291 * @addr: Address to start counting from
292 */
293 static int test_bit(int nr, const volatile unsigned long *addr);
294 #endif
295
296 #define test_bit(nr, addr) \
297 (__builtin_constant_p((nr)) \
298 ? constant_test_bit((nr), (addr)) \
299 : variable_test_bit((nr), (addr)))
300
301 /**
302 * __ffs - find first set bit in word
303 * @word: The word to search
304 *
305 * Undefined if no bit exists, so code should check against 0 first.
306 */
307 static inline unsigned long __ffs(unsigned long word)
308 {
309 asm("bsf %1,%0"
310 : "=r" (word)
311 : "rm" (word));
312 return word;
313 }
314
315 /**
316 * ffz - find first zero bit in word
317 * @word: The word to search
318 *
319 * Undefined if no zero exists, so code should check against ~0UL first.
320 */
321 static inline unsigned long ffz(unsigned long word)
322 {
323 asm("bsf %1,%0"
324 : "=r" (word)
325 : "r" (~word));
326 return word;
327 }
328
329 /*
330 * __fls: find last set bit in word
331 * @word: The word to search
332 *
333 * Undefined if no zero exists, so code should check against ~0UL first.
334 */
335 static inline unsigned long __fls(unsigned long word)
336 {
337 asm("bsr %1,%0"
338 : "=r" (word)
339 : "rm" (word));
340 return word;
341 }
342
343 #ifdef __KERNEL__
344 /**
345 * ffs - find first set bit in word
346 * @x: the word to search
347 *
348 * This is defined the same way as the libc and compiler builtin ffs
349 * routines, therefore differs in spirit from the other bitops.
350 *
351 * ffs(value) returns 0 if value is 0 or the position of the first
352 * set bit if value is nonzero. The first (least significant) bit
353 * is at position 1.
354 */
355 static inline int ffs(int x)
356 {
357 int r;
358 #ifdef CONFIG_X86_CMOV
359 asm("bsfl %1,%0\n\t"
360 "cmovzl %2,%0"
361 : "=r" (r) : "rm" (x), "r" (-1));
362 #else
363 asm("bsfl %1,%0\n\t"
364 "jnz 1f\n\t"
365 "movl $-1,%0\n"
366 "1:" : "=r" (r) : "rm" (x));
367 #endif
368 return r + 1;
369 }
370
371 /**
372 * fls - find last set bit in word
373 * @x: the word to search
374 *
375 * This is defined in a similar way as the libc and compiler builtin
376 * ffs, but returns the position of the most significant set bit.
377 *
378 * fls(value) returns 0 if value is 0 or the position of the last
379 * set bit if value is nonzero. The last (most significant) bit is
380 * at position 32.
381 */
382 static inline int fls(int x)
383 {
384 int r;
385 #ifdef CONFIG_X86_CMOV
386 asm("bsrl %1,%0\n\t"
387 "cmovzl %2,%0"
388 : "=&r" (r) : "rm" (x), "rm" (-1));
389 #else
390 asm("bsrl %1,%0\n\t"
391 "jnz 1f\n\t"
392 "movl $-1,%0\n"
393 "1:" : "=r" (r) : "rm" (x));
394 #endif
395 return r + 1;
396 }
397 #endif /* __KERNEL__ */
398
399 #undef ADDR
400
401 static inline void set_bit_string(unsigned long *bitmap,
402 unsigned long i, int len)
403 {
404 unsigned long end = i + len;
405 while (i < end) {
406 __set_bit(i, bitmap);
407 i++;
408 }
409 }
410
411 #ifdef __KERNEL__
412
413 #include <asm-generic/bitops/sched.h>
414
415 #define ARCH_HAS_FAST_MULTIPLIER 1
416
417 #include <asm-generic/bitops/hweight.h>
418
419 #endif /* __KERNEL__ */
420
421 #include <asm-generic/bitops/fls64.h>
422
423 #ifdef __KERNEL__
424
425 #include <asm-generic/bitops/ext2-non-atomic.h>
426
427 #define ext2_set_bit_atomic(lock, nr, addr) \
428 test_and_set_bit((nr), (unsigned long *)(addr))
429 #define ext2_clear_bit_atomic(lock, nr, addr) \
430 test_and_clear_bit((nr), (unsigned long *)(addr))
431
432 #include <asm-generic/bitops/minix.h>
433
434 #endif /* __KERNEL__ */
435 #endif /* _ASM_X86_BITOPS_H */
This page took 0.057979 seconds and 5 git commands to generate.