x86: partial unification of asm-x86/bitops.h
[deliverable/linux.git] / include / asm-x86 / bitops.h
1 #ifndef _ASM_X86_BITOPS_H
2 #define _ASM_X86_BITOPS_H
3
4 /*
5 * Copyright 1992, Linus Torvalds.
6 */
7
8 #ifndef _LINUX_BITOPS_H
9 #error only <linux/bitops.h> can be included directly
10 #endif
11
12 #include <linux/compiler.h>
13 #include <asm/alternative.h>
14
15 /*
16 * These have to be done with inline assembly: that way the bit-setting
17 * is guaranteed to be atomic. All bit operations return 0 if the bit
18 * was cleared before the operation and != 0 if it was not.
19 *
20 * bit 0 is the LSB of addr; bit 32 is the LSB of (addr+1).
21 */
22
23 #if __GNUC__ < 4 || (__GNUC__ == 4 && __GNUC_MINOR__ < 1)
24 /* Technically wrong, but this avoids compilation errors on some gcc
25 versions. */
26 #define ADDR "=m" (*(volatile long *) addr)
27 #else
28 #define ADDR "+m" (*(volatile long *) addr)
29 #endif
30
31 /**
32 * set_bit - Atomically set a bit in memory
33 * @nr: the bit to set
34 * @addr: the address to start counting from
35 *
36 * This function is atomic and may not be reordered. See __set_bit()
37 * if you do not require the atomic guarantees.
38 *
39 * Note: there are no guarantees that this function will not be reordered
40 * on non x86 architectures, so if you are writing portable code,
41 * make sure not to rely on its reordering guarantees.
42 *
43 * Note that @nr may be almost arbitrarily large; this function is not
44 * restricted to acting on a single-word quantity.
45 */
46 static inline void set_bit(int nr, volatile unsigned long *addr)
47 {
48 asm volatile(LOCK_PREFIX "bts %1,%0"
49 : ADDR
50 : "Ir" (nr) : "memory");
51 }
52
53 /**
54 * __set_bit - Set a bit in memory
55 * @nr: the bit to set
56 * @addr: the address to start counting from
57 *
58 * Unlike set_bit(), this function is non-atomic and may be reordered.
59 * If it's called on the same region of memory simultaneously, the effect
60 * may be that only one operation succeeds.
61 */
62 static inline void __set_bit(int nr, volatile unsigned long *addr)
63 {
64 asm volatile("bts %1,%0"
65 : ADDR
66 : "Ir" (nr) : "memory");
67 }
68
69
70 /**
71 * clear_bit - Clears a bit in memory
72 * @nr: Bit to clear
73 * @addr: Address to start counting from
74 *
75 * clear_bit() is atomic and may not be reordered. However, it does
76 * not contain a memory barrier, so if it is used for locking purposes,
77 * you should call smp_mb__before_clear_bit() and/or smp_mb__after_clear_bit()
78 * in order to ensure changes are visible on other processors.
79 */
80 static inline void clear_bit(int nr, volatile unsigned long *addr)
81 {
82 asm volatile(LOCK_PREFIX "btr %1,%0"
83 : ADDR
84 : "Ir" (nr));
85 }
86
87 /*
88 * clear_bit_unlock - Clears a bit in memory
89 * @nr: Bit to clear
90 * @addr: Address to start counting from
91 *
92 * clear_bit() is atomic and implies release semantics before the memory
93 * operation. It can be used for an unlock.
94 */
95 static inline void clear_bit_unlock(unsigned nr, volatile unsigned long *addr)
96 {
97 barrier();
98 clear_bit(nr, addr);
99 }
100
101 static inline void __clear_bit(int nr, volatile unsigned long *addr)
102 {
103 asm volatile("btr %1,%0" : ADDR : "Ir" (nr));
104 }
105
106 /*
107 * __clear_bit_unlock - Clears a bit in memory
108 * @nr: Bit to clear
109 * @addr: Address to start counting from
110 *
111 * __clear_bit() is non-atomic and implies release semantics before the memory
112 * operation. It can be used for an unlock if no other CPUs can concurrently
113 * modify other bits in the word.
114 *
115 * No memory barrier is required here, because x86 cannot reorder stores past
116 * older loads. Same principle as spin_unlock.
117 */
118 static inline void __clear_bit_unlock(unsigned nr, volatile unsigned long *addr)
119 {
120 barrier();
121 __clear_bit(nr, addr);
122 }
123
124 #define smp_mb__before_clear_bit() barrier()
125 #define smp_mb__after_clear_bit() barrier()
126
127 /**
128 * __change_bit - Toggle a bit in memory
129 * @nr: the bit to change
130 * @addr: the address to start counting from
131 *
132 * Unlike change_bit(), this function is non-atomic and may be reordered.
133 * If it's called on the same region of memory simultaneously, the effect
134 * may be that only one operation succeeds.
135 */
136 static inline void __change_bit(int nr, volatile unsigned long *addr)
137 {
138 asm volatile("btc %1,%0" : ADDR : "Ir" (nr));
139 }
140
141 /**
142 * change_bit - Toggle a bit in memory
143 * @nr: Bit to change
144 * @addr: Address to start counting from
145 *
146 * change_bit() is atomic and may not be reordered.
147 * Note that @nr may be almost arbitrarily large; this function is not
148 * restricted to acting on a single-word quantity.
149 */
150 static inline void change_bit(int nr, volatile unsigned long *addr)
151 {
152 asm volatile(LOCK_PREFIX "btc %1,%0"
153 : ADDR : "Ir" (nr));
154 }
155
156 /**
157 * test_and_set_bit - Set a bit and return its old value
158 * @nr: Bit to set
159 * @addr: Address to count from
160 *
161 * This operation is atomic and cannot be reordered.
162 * It also implies a memory barrier.
163 */
164 static inline int test_and_set_bit(int nr, volatile unsigned long *addr)
165 {
166 int oldbit;
167
168 asm volatile(LOCK_PREFIX "bts %2,%1\n\t"
169 "sbb %0,%0"
170 : "=r" (oldbit), ADDR
171 : "Ir" (nr) : "memory");
172
173 return oldbit;
174 }
175
176 /**
177 * test_and_set_bit_lock - Set a bit and return its old value for lock
178 * @nr: Bit to set
179 * @addr: Address to count from
180 *
181 * This is the same as test_and_set_bit on x86.
182 */
183 static inline int test_and_set_bit_lock(int nr, volatile unsigned long *addr)
184 {
185 return test_and_set_bit(nr, addr);
186 }
187
188 /**
189 * __test_and_set_bit - Set a bit and return its old value
190 * @nr: Bit to set
191 * @addr: Address to count from
192 *
193 * This operation is non-atomic and can be reordered.
194 * If two examples of this operation race, one can appear to succeed
195 * but actually fail. You must protect multiple accesses with a lock.
196 */
197 static inline int __test_and_set_bit(int nr, volatile unsigned long *addr)
198 {
199 int oldbit;
200
201 asm("bts %2,%1\n\t"
202 "sbb %0,%0"
203 : "=r" (oldbit), ADDR
204 : "Ir" (nr));
205 return oldbit;
206 }
207
208 /**
209 * test_and_clear_bit - Clear a bit and return its old value
210 * @nr: Bit to clear
211 * @addr: Address to count from
212 *
213 * This operation is atomic and cannot be reordered.
214 * It also implies a memory barrier.
215 */
216 static inline int test_and_clear_bit(int nr, volatile unsigned long *addr)
217 {
218 int oldbit;
219
220 asm volatile(LOCK_PREFIX "btr %2,%1\n\t"
221 "sbb %0,%0"
222 : "=r" (oldbit), ADDR
223 : "Ir" (nr) : "memory");
224
225 return oldbit;
226 }
227
228 /**
229 * __test_and_clear_bit - Clear a bit and return its old value
230 * @nr: Bit to clear
231 * @addr: Address to count from
232 *
233 * This operation is non-atomic and can be reordered.
234 * If two examples of this operation race, one can appear to succeed
235 * but actually fail. You must protect multiple accesses with a lock.
236 */
237 static inline int __test_and_clear_bit(int nr, volatile unsigned long *addr)
238 {
239 int oldbit;
240
241 asm volatile("btr %2,%1\n\t"
242 "sbb %0,%0"
243 : "=r" (oldbit), ADDR
244 : "Ir" (nr));
245 return oldbit;
246 }
247
248 /* WARNING: non atomic and it can be reordered! */
249 static inline int __test_and_change_bit(int nr, volatile unsigned long *addr)
250 {
251 int oldbit;
252
253 asm volatile("btc %2,%1\n\t"
254 "sbb %0,%0"
255 : "=r" (oldbit), ADDR
256 : "Ir" (nr) : "memory");
257
258 return oldbit;
259 }
260
261 /**
262 * test_and_change_bit - Change a bit and return its old value
263 * @nr: Bit to change
264 * @addr: Address to count from
265 *
266 * This operation is atomic and cannot be reordered.
267 * It also implies a memory barrier.
268 */
269 static inline int test_and_change_bit(int nr, volatile unsigned long *addr)
270 {
271 int oldbit;
272
273 asm volatile(LOCK_PREFIX "btc %2,%1\n\t"
274 "sbb %0,%0"
275 : "=r" (oldbit), ADDR
276 : "Ir" (nr) : "memory");
277
278 return oldbit;
279 }
280
281 static inline int constant_test_bit(int nr, const volatile unsigned long *addr)
282 {
283 return ((1UL << (nr % BITS_PER_LONG)) & (addr[nr / BITS_PER_LONG])) != 0;
284 }
285
286 static inline int variable_test_bit(int nr, volatile const unsigned long *addr)
287 {
288 int oldbit;
289
290 asm volatile("bt %2,%1\n\t"
291 "sbb %0,%0"
292 : "=r" (oldbit)
293 : "m" (*addr), "Ir" (nr));
294
295 return oldbit;
296 }
297
298 #if 0 /* Fool kernel-doc since it doesn't do macros yet */
299 /**
300 * test_bit - Determine whether a bit is set
301 * @nr: bit number to test
302 * @addr: Address to start counting from
303 */
304 static int test_bit(int nr, const volatile unsigned long *addr);
305 #endif
306
307 #define test_bit(nr,addr) \
308 (__builtin_constant_p(nr) ? \
309 constant_test_bit((nr),(addr)) : \
310 variable_test_bit((nr),(addr)))
311
312 #undef ADDR
313
314 #ifdef CONFIG_X86_32
315 # include "bitops_32.h"
316 #else
317 # include "bitops_64.h"
318 #endif
319
320 #endif /* _ASM_X86_BITOPS_H */
This page took 0.04134 seconds and 6 git commands to generate.