Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/dtor/input
[deliverable/linux.git] / include / asm-x86 / bitops.h
1 #ifndef _ASM_X86_BITOPS_H
2 #define _ASM_X86_BITOPS_H
3
4 /*
5 * Copyright 1992, Linus Torvalds.
6 */
7
8 #ifndef _LINUX_BITOPS_H
9 #error only <linux/bitops.h> can be included directly
10 #endif
11
12 #include <linux/compiler.h>
13 #include <asm/alternative.h>
14
15 /*
16 * These have to be done with inline assembly: that way the bit-setting
17 * is guaranteed to be atomic. All bit operations return 0 if the bit
18 * was cleared before the operation and != 0 if it was not.
19 *
20 * bit 0 is the LSB of addr; bit 32 is the LSB of (addr+1).
21 */
22
23 #if __GNUC__ < 4 || (__GNUC__ == 4 && __GNUC_MINOR__ < 1)
24 /* Technically wrong, but this avoids compilation errors on some gcc
25 versions. */
26 #define ADDR "=m" (*(volatile long *)addr)
27 #define BIT_ADDR "=m" (((volatile int *)addr)[nr >> 5])
28 #else
29 #define ADDR "+m" (*(volatile long *) addr)
30 #define BIT_ADDR "+m" (((volatile int *)addr)[nr >> 5])
31 #endif
32 #define BASE_ADDR "m" (*(volatile int *)addr)
33
34 /**
35 * set_bit - Atomically set a bit in memory
36 * @nr: the bit to set
37 * @addr: the address to start counting from
38 *
39 * This function is atomic and may not be reordered. See __set_bit()
40 * if you do not require the atomic guarantees.
41 *
42 * Note: there are no guarantees that this function will not be reordered
43 * on non x86 architectures, so if you are writing portable code,
44 * make sure not to rely on its reordering guarantees.
45 *
46 * Note that @nr may be almost arbitrarily large; this function is not
47 * restricted to acting on a single-word quantity.
48 */
49 static inline void set_bit(int nr, volatile void *addr)
50 {
51 asm volatile(LOCK_PREFIX "bts %1,%0" : ADDR : "Ir" (nr) : "memory");
52 }
53
54 /**
55 * __set_bit - Set a bit in memory
56 * @nr: the bit to set
57 * @addr: the address to start counting from
58 *
59 * Unlike set_bit(), this function is non-atomic and may be reordered.
60 * If it's called on the same region of memory simultaneously, the effect
61 * may be that only one operation succeeds.
62 */
63 static inline void __set_bit(int nr, volatile void *addr)
64 {
65 asm volatile("bts %1,%0" : ADDR : "Ir" (nr) : "memory");
66 }
67
68 /**
69 * clear_bit - Clears a bit in memory
70 * @nr: Bit to clear
71 * @addr: Address to start counting from
72 *
73 * clear_bit() is atomic and may not be reordered. However, it does
74 * not contain a memory barrier, so if it is used for locking purposes,
75 * you should call smp_mb__before_clear_bit() and/or smp_mb__after_clear_bit()
76 * in order to ensure changes are visible on other processors.
77 */
78 static inline void clear_bit(int nr, volatile void *addr)
79 {
80 asm volatile(LOCK_PREFIX "btr %1,%2" : BIT_ADDR : "Ir" (nr), BASE_ADDR);
81 }
82
83 /*
84 * clear_bit_unlock - Clears a bit in memory
85 * @nr: Bit to clear
86 * @addr: Address to start counting from
87 *
88 * clear_bit() is atomic and implies release semantics before the memory
89 * operation. It can be used for an unlock.
90 */
91 static inline void clear_bit_unlock(unsigned nr, volatile void *addr)
92 {
93 barrier();
94 clear_bit(nr, addr);
95 }
96
97 static inline void __clear_bit(int nr, volatile void *addr)
98 {
99 asm volatile("btr %1,%2" : BIT_ADDR : "Ir" (nr), BASE_ADDR);
100 }
101
102 /*
103 * __clear_bit_unlock - Clears a bit in memory
104 * @nr: Bit to clear
105 * @addr: Address to start counting from
106 *
107 * __clear_bit() is non-atomic and implies release semantics before the memory
108 * operation. It can be used for an unlock if no other CPUs can concurrently
109 * modify other bits in the word.
110 *
111 * No memory barrier is required here, because x86 cannot reorder stores past
112 * older loads. Same principle as spin_unlock.
113 */
114 static inline void __clear_bit_unlock(unsigned nr, volatile void *addr)
115 {
116 barrier();
117 __clear_bit(nr, addr);
118 }
119
120 #define smp_mb__before_clear_bit() barrier()
121 #define smp_mb__after_clear_bit() barrier()
122
123 /**
124 * __change_bit - Toggle a bit in memory
125 * @nr: the bit to change
126 * @addr: the address to start counting from
127 *
128 * Unlike change_bit(), this function is non-atomic and may be reordered.
129 * If it's called on the same region of memory simultaneously, the effect
130 * may be that only one operation succeeds.
131 */
132 static inline void __change_bit(int nr, volatile void *addr)
133 {
134 asm volatile("btc %1,%2" : BIT_ADDR : "Ir" (nr), BASE_ADDR);
135 }
136
137 /**
138 * change_bit - Toggle a bit in memory
139 * @nr: Bit to change
140 * @addr: Address to start counting from
141 *
142 * change_bit() is atomic and may not be reordered.
143 * Note that @nr may be almost arbitrarily large; this function is not
144 * restricted to acting on a single-word quantity.
145 */
146 static inline void change_bit(int nr, volatile void *addr)
147 {
148 asm volatile(LOCK_PREFIX "btc %1,%2" : BIT_ADDR : "Ir" (nr), BASE_ADDR);
149 }
150
151 /**
152 * test_and_set_bit - Set a bit and return its old value
153 * @nr: Bit to set
154 * @addr: Address to count from
155 *
156 * This operation is atomic and cannot be reordered.
157 * It also implies a memory barrier.
158 */
159 static inline int test_and_set_bit(int nr, volatile void *addr)
160 {
161 int oldbit;
162
163 asm volatile(LOCK_PREFIX "bts %2,%1\n\t"
164 "sbb %0,%0" : "=r" (oldbit), ADDR : "Ir" (nr) : "memory");
165
166 return oldbit;
167 }
168
169 /**
170 * test_and_set_bit_lock - Set a bit and return its old value for lock
171 * @nr: Bit to set
172 * @addr: Address to count from
173 *
174 * This is the same as test_and_set_bit on x86.
175 */
176 static inline int test_and_set_bit_lock(int nr, volatile void *addr)
177 {
178 return test_and_set_bit(nr, addr);
179 }
180
181 /**
182 * __test_and_set_bit - Set a bit and return its old value
183 * @nr: Bit to set
184 * @addr: Address to count from
185 *
186 * This operation is non-atomic and can be reordered.
187 * If two examples of this operation race, one can appear to succeed
188 * but actually fail. You must protect multiple accesses with a lock.
189 */
190 static inline int __test_and_set_bit(int nr, volatile void *addr)
191 {
192 int oldbit;
193
194 asm volatile("bts %2,%3\n\t"
195 "sbb %0,%0"
196 : "=r" (oldbit), BIT_ADDR : "Ir" (nr), BASE_ADDR);
197 return oldbit;
198 }
199
200 /**
201 * test_and_clear_bit - Clear a bit and return its old value
202 * @nr: Bit to clear
203 * @addr: Address to count from
204 *
205 * This operation is atomic and cannot be reordered.
206 * It also implies a memory barrier.
207 */
208 static inline int test_and_clear_bit(int nr, volatile void *addr)
209 {
210 int oldbit;
211
212 asm volatile(LOCK_PREFIX "btr %2,%1\n\t"
213 "sbb %0,%0"
214 : "=r" (oldbit), ADDR : "Ir" (nr) : "memory");
215
216 return oldbit;
217 }
218
219 /**
220 * __test_and_clear_bit - Clear a bit and return its old value
221 * @nr: Bit to clear
222 * @addr: Address to count from
223 *
224 * This operation is non-atomic and can be reordered.
225 * If two examples of this operation race, one can appear to succeed
226 * but actually fail. You must protect multiple accesses with a lock.
227 */
228 static inline int __test_and_clear_bit(int nr, volatile void *addr)
229 {
230 int oldbit;
231
232 asm volatile("btr %2,%3\n\t"
233 "sbb %0,%0"
234 : "=r" (oldbit), BIT_ADDR : "Ir" (nr), BASE_ADDR);
235 return oldbit;
236 }
237
238 /* WARNING: non atomic and it can be reordered! */
239 static inline int __test_and_change_bit(int nr, volatile void *addr)
240 {
241 int oldbit;
242
243 asm volatile("btc %2,%3\n\t"
244 "sbb %0,%0"
245 : "=r" (oldbit), BIT_ADDR : "Ir" (nr), BASE_ADDR);
246
247 return oldbit;
248 }
249
250 /**
251 * test_and_change_bit - Change a bit and return its old value
252 * @nr: Bit to change
253 * @addr: Address to count from
254 *
255 * This operation is atomic and cannot be reordered.
256 * It also implies a memory barrier.
257 */
258 static inline int test_and_change_bit(int nr, volatile void *addr)
259 {
260 int oldbit;
261
262 asm volatile(LOCK_PREFIX "btc %2,%1\n\t"
263 "sbb %0,%0"
264 : "=r" (oldbit), ADDR : "Ir" (nr) : "memory");
265
266 return oldbit;
267 }
268
269 static inline int constant_test_bit(int nr, const volatile void *addr)
270 {
271 return ((1UL << (nr % BITS_PER_LONG)) &
272 (((unsigned long *)addr)[nr / BITS_PER_LONG])) != 0;
273 }
274
275 static inline int variable_test_bit(int nr, volatile const void *addr)
276 {
277 int oldbit;
278
279 asm volatile("bt %2,%3\n\t"
280 "sbb %0,%0"
281 : "=r" (oldbit)
282 : "m" (((volatile const int *)addr)[nr >> 5]),
283 "Ir" (nr), BASE_ADDR);
284
285 return oldbit;
286 }
287
288 #if 0 /* Fool kernel-doc since it doesn't do macros yet */
289 /**
290 * test_bit - Determine whether a bit is set
291 * @nr: bit number to test
292 * @addr: Address to start counting from
293 */
294 static int test_bit(int nr, const volatile unsigned long *addr);
295 #endif
296
297 #define test_bit(nr, addr) \
298 (__builtin_constant_p((nr)) \
299 ? constant_test_bit((nr), (addr)) \
300 : variable_test_bit((nr), (addr)))
301
302 /**
303 * __ffs - find first set bit in word
304 * @word: The word to search
305 *
306 * Undefined if no bit exists, so code should check against 0 first.
307 */
308 static inline unsigned long __ffs(unsigned long word)
309 {
310 asm("bsf %1,%0"
311 : "=r" (word)
312 : "rm" (word));
313 return word;
314 }
315
316 /**
317 * ffz - find first zero bit in word
318 * @word: The word to search
319 *
320 * Undefined if no zero exists, so code should check against ~0UL first.
321 */
322 static inline unsigned long ffz(unsigned long word)
323 {
324 asm("bsf %1,%0"
325 : "=r" (word)
326 : "r" (~word));
327 return word;
328 }
329
330 /*
331 * __fls: find last set bit in word
332 * @word: The word to search
333 *
334 * Undefined if no zero exists, so code should check against ~0UL first.
335 */
336 static inline unsigned long __fls(unsigned long word)
337 {
338 asm("bsr %1,%0"
339 : "=r" (word)
340 : "rm" (word));
341 return word;
342 }
343
344 #ifdef __KERNEL__
345 /**
346 * ffs - find first set bit in word
347 * @x: the word to search
348 *
349 * This is defined the same way as the libc and compiler builtin ffs
350 * routines, therefore differs in spirit from the other bitops.
351 *
352 * ffs(value) returns 0 if value is 0 or the position of the first
353 * set bit if value is nonzero. The first (least significant) bit
354 * is at position 1.
355 */
356 static inline int ffs(int x)
357 {
358 int r;
359 #ifdef CONFIG_X86_CMOV
360 asm("bsfl %1,%0\n\t"
361 "cmovzl %2,%0"
362 : "=r" (r) : "rm" (x), "r" (-1));
363 #else
364 asm("bsfl %1,%0\n\t"
365 "jnz 1f\n\t"
366 "movl $-1,%0\n"
367 "1:" : "=r" (r) : "rm" (x));
368 #endif
369 return r + 1;
370 }
371
372 /**
373 * fls - find last set bit in word
374 * @x: the word to search
375 *
376 * This is defined in a similar way as the libc and compiler builtin
377 * ffs, but returns the position of the most significant set bit.
378 *
379 * fls(value) returns 0 if value is 0 or the position of the last
380 * set bit if value is nonzero. The last (most significant) bit is
381 * at position 32.
382 */
383 static inline int fls(int x)
384 {
385 int r;
386 #ifdef CONFIG_X86_CMOV
387 asm("bsrl %1,%0\n\t"
388 "cmovzl %2,%0"
389 : "=&r" (r) : "rm" (x), "rm" (-1));
390 #else
391 asm("bsrl %1,%0\n\t"
392 "jnz 1f\n\t"
393 "movl $-1,%0\n"
394 "1:" : "=r" (r) : "rm" (x));
395 #endif
396 return r + 1;
397 }
398 #endif /* __KERNEL__ */
399
400 #undef BASE_ADDR
401 #undef BIT_ADDR
402 #undef ADDR
403
404 static inline void set_bit_string(unsigned long *bitmap,
405 unsigned long i, int len)
406 {
407 unsigned long end = i + len;
408 while (i < end) {
409 __set_bit(i, bitmap);
410 i++;
411 }
412 }
413
414 #ifdef __KERNEL__
415
416 #include <asm-generic/bitops/sched.h>
417
418 #define ARCH_HAS_FAST_MULTIPLIER 1
419
420 #include <asm-generic/bitops/hweight.h>
421
422 #endif /* __KERNEL__ */
423
424 #include <asm-generic/bitops/fls64.h>
425
426 #ifdef __KERNEL__
427
428 #include <asm-generic/bitops/ext2-non-atomic.h>
429
430 #define ext2_set_bit_atomic(lock, nr, addr) \
431 test_and_set_bit((nr), (unsigned long *)(addr))
432 #define ext2_clear_bit_atomic(lock, nr, addr) \
433 test_and_clear_bit((nr), (unsigned long *)(addr))
434
435 #include <asm-generic/bitops/minix.h>
436
437 #endif /* __KERNEL__ */
438 #endif /* _ASM_X86_BITOPS_H */
This page took 0.041013 seconds and 6 git commands to generate.