x86: finalize bitops unification
[deliverable/linux.git] / include / asm-x86 / bitops.h
1 #ifndef _ASM_X86_BITOPS_H
2 #define _ASM_X86_BITOPS_H
3
4 /*
5 * Copyright 1992, Linus Torvalds.
6 */
7
8 #ifndef _LINUX_BITOPS_H
9 #error only <linux/bitops.h> can be included directly
10 #endif
11
12 #include <linux/compiler.h>
13 #include <asm/alternative.h>
14
15 /*
16 * These have to be done with inline assembly: that way the bit-setting
17 * is guaranteed to be atomic. All bit operations return 0 if the bit
18 * was cleared before the operation and != 0 if it was not.
19 *
20 * bit 0 is the LSB of addr; bit 32 is the LSB of (addr+1).
21 */
22
23 #if __GNUC__ < 4 || (__GNUC__ == 4 && __GNUC_MINOR__ < 1)
24 /* Technically wrong, but this avoids compilation errors on some gcc
25 versions. */
26 #define ADDR "=m" (*(volatile long *)addr)
27 #define BIT_ADDR "=m" (((volatile int *)addr)[nr >> 5])
28 #else
29 #define ADDR "+m" (*(volatile long *) addr)
30 #define BIT_ADDR "+m" (((volatile int *)addr)[nr >> 5])
31 #endif
32 #define BASE_ADDR "m" (*(volatile int *)addr)
33
34 /**
35 * set_bit - Atomically set a bit in memory
36 * @nr: the bit to set
37 * @addr: the address to start counting from
38 *
39 * This function is atomic and may not be reordered. See __set_bit()
40 * if you do not require the atomic guarantees.
41 *
42 * Note: there are no guarantees that this function will not be reordered
43 * on non x86 architectures, so if you are writing portable code,
44 * make sure not to rely on its reordering guarantees.
45 *
46 * Note that @nr may be almost arbitrarily large; this function is not
47 * restricted to acting on a single-word quantity.
48 */
49 static inline void set_bit(int nr, volatile void *addr)
50 {
51 asm volatile(LOCK_PREFIX "bts %1,%0" : ADDR : "Ir" (nr) : "memory");
52 }
53
54 /**
55 * __set_bit - Set a bit in memory
56 * @nr: the bit to set
57 * @addr: the address to start counting from
58 *
59 * Unlike set_bit(), this function is non-atomic and may be reordered.
60 * If it's called on the same region of memory simultaneously, the effect
61 * may be that only one operation succeeds.
62 */
63 static inline void __set_bit(int nr, volatile void *addr)
64 {
65 asm volatile("bts %1,%0"
66 : ADDR
67 : "Ir" (nr) : "memory");
68 }
69
70 /**
71 * clear_bit - Clears a bit in memory
72 * @nr: Bit to clear
73 * @addr: Address to start counting from
74 *
75 * clear_bit() is atomic and may not be reordered. However, it does
76 * not contain a memory barrier, so if it is used for locking purposes,
77 * you should call smp_mb__before_clear_bit() and/or smp_mb__after_clear_bit()
78 * in order to ensure changes are visible on other processors.
79 */
80 static inline void clear_bit(int nr, volatile void *addr)
81 {
82 asm volatile(LOCK_PREFIX "btr %1,%2" : BIT_ADDR : "Ir" (nr), BASE_ADDR);
83 }
84
85 /*
86 * clear_bit_unlock - Clears a bit in memory
87 * @nr: Bit to clear
88 * @addr: Address to start counting from
89 *
90 * clear_bit() is atomic and implies release semantics before the memory
91 * operation. It can be used for an unlock.
92 */
93 static inline void clear_bit_unlock(unsigned nr, volatile void *addr)
94 {
95 barrier();
96 clear_bit(nr, addr);
97 }
98
99 static inline void __clear_bit(int nr, volatile void *addr)
100 {
101 asm volatile("btr %1,%2" : BIT_ADDR : "Ir" (nr), BASE_ADDR);
102 }
103
104 /*
105 * __clear_bit_unlock - Clears a bit in memory
106 * @nr: Bit to clear
107 * @addr: Address to start counting from
108 *
109 * __clear_bit() is non-atomic and implies release semantics before the memory
110 * operation. It can be used for an unlock if no other CPUs can concurrently
111 * modify other bits in the word.
112 *
113 * No memory barrier is required here, because x86 cannot reorder stores past
114 * older loads. Same principle as spin_unlock.
115 */
116 static inline void __clear_bit_unlock(unsigned nr, volatile void *addr)
117 {
118 barrier();
119 __clear_bit(nr, addr);
120 }
121
122 #define smp_mb__before_clear_bit() barrier()
123 #define smp_mb__after_clear_bit() barrier()
124
125 /**
126 * __change_bit - Toggle a bit in memory
127 * @nr: the bit to change
128 * @addr: the address to start counting from
129 *
130 * Unlike change_bit(), this function is non-atomic and may be reordered.
131 * If it's called on the same region of memory simultaneously, the effect
132 * may be that only one operation succeeds.
133 */
134 static inline void __change_bit(int nr, volatile void *addr)
135 {
136 asm volatile("btc %1,%2" : BIT_ADDR : "Ir" (nr), BASE_ADDR);
137 }
138
139 /**
140 * change_bit - Toggle a bit in memory
141 * @nr: Bit to change
142 * @addr: Address to start counting from
143 *
144 * change_bit() is atomic and may not be reordered.
145 * Note that @nr may be almost arbitrarily large; this function is not
146 * restricted to acting on a single-word quantity.
147 */
148 static inline void change_bit(int nr, volatile void *addr)
149 {
150 asm volatile(LOCK_PREFIX "btc %1,%2" : BIT_ADDR : "Ir" (nr), BASE_ADDR);
151 }
152
153 /**
154 * test_and_set_bit - Set a bit and return its old value
155 * @nr: Bit to set
156 * @addr: Address to count from
157 *
158 * This operation is atomic and cannot be reordered.
159 * It also implies a memory barrier.
160 */
161 static inline int test_and_set_bit(int nr, volatile void *addr)
162 {
163 int oldbit;
164
165 asm volatile(LOCK_PREFIX "bts %2,%1\n\t"
166 "sbb %0,%0" : "=r" (oldbit), ADDR : "Ir" (nr) : "memory");
167
168 return oldbit;
169 }
170
171 /**
172 * test_and_set_bit_lock - Set a bit and return its old value for lock
173 * @nr: Bit to set
174 * @addr: Address to count from
175 *
176 * This is the same as test_and_set_bit on x86.
177 */
178 static inline int test_and_set_bit_lock(int nr, volatile void *addr)
179 {
180 return test_and_set_bit(nr, addr);
181 }
182
183 /**
184 * __test_and_set_bit - Set a bit and return its old value
185 * @nr: Bit to set
186 * @addr: Address to count from
187 *
188 * This operation is non-atomic and can be reordered.
189 * If two examples of this operation race, one can appear to succeed
190 * but actually fail. You must protect multiple accesses with a lock.
191 */
192 static inline int __test_and_set_bit(int nr, volatile void *addr)
193 {
194 int oldbit;
195
196 asm volatile("bts %2,%3\n\t"
197 "sbb %0,%0"
198 : "=r" (oldbit), BIT_ADDR : "Ir" (nr), BASE_ADDR);
199 return oldbit;
200 }
201
202 /**
203 * test_and_clear_bit - Clear a bit and return its old value
204 * @nr: Bit to clear
205 * @addr: Address to count from
206 *
207 * This operation is atomic and cannot be reordered.
208 * It also implies a memory barrier.
209 */
210 static inline int test_and_clear_bit(int nr, volatile void *addr)
211 {
212 int oldbit;
213
214 asm volatile(LOCK_PREFIX "btr %2,%1\n\t"
215 "sbb %0,%0"
216 : "=r" (oldbit), ADDR : "Ir" (nr) : "memory");
217
218 return oldbit;
219 }
220
221 /**
222 * __test_and_clear_bit - Clear a bit and return its old value
223 * @nr: Bit to clear
224 * @addr: Address to count from
225 *
226 * This operation is non-atomic and can be reordered.
227 * If two examples of this operation race, one can appear to succeed
228 * but actually fail. You must protect multiple accesses with a lock.
229 */
230 static inline int __test_and_clear_bit(int nr, volatile void *addr)
231 {
232 int oldbit;
233
234 asm volatile("btr %2,%3\n\t"
235 "sbb %0,%0"
236 : "=r" (oldbit), BIT_ADDR : "Ir" (nr), BASE_ADDR);
237 return oldbit;
238 }
239
240 /* WARNING: non atomic and it can be reordered! */
241 static inline int __test_and_change_bit(int nr, volatile void *addr)
242 {
243 int oldbit;
244
245 asm volatile("btc %2,%3\n\t"
246 "sbb %0,%0"
247 : "=r" (oldbit), BIT_ADDR : "Ir" (nr), BASE_ADDR);
248
249 return oldbit;
250 }
251
252 /**
253 * test_and_change_bit - Change a bit and return its old value
254 * @nr: Bit to change
255 * @addr: Address to count from
256 *
257 * This operation is atomic and cannot be reordered.
258 * It also implies a memory barrier.
259 */
260 static inline int test_and_change_bit(int nr, volatile void *addr)
261 {
262 int oldbit;
263
264 asm volatile(LOCK_PREFIX "btc %2,%1\n\t"
265 "sbb %0,%0"
266 : "=r" (oldbit), ADDR : "Ir" (nr) : "memory");
267
268 return oldbit;
269 }
270
271 static inline int constant_test_bit(int nr, const volatile void *addr)
272 {
273 return ((1UL << (nr % BITS_PER_LONG)) &
274 (((unsigned long *)addr)[nr / BITS_PER_LONG])) != 0;
275 }
276
277 static inline int variable_test_bit(int nr, volatile const void *addr)
278 {
279 int oldbit;
280
281 asm volatile("bt %2,%3\n\t"
282 "sbb %0,%0"
283 : "=r" (oldbit)
284 : "m" (((volatile const int *)addr)[nr >> 5]),
285 "Ir" (nr), BASE_ADDR);
286
287 return oldbit;
288 }
289
290 #if 0 /* Fool kernel-doc since it doesn't do macros yet */
291 /**
292 * test_bit - Determine whether a bit is set
293 * @nr: bit number to test
294 * @addr: Address to start counting from
295 */
296 static int test_bit(int nr, const volatile unsigned long *addr);
297 #endif
298
299 #define test_bit(nr,addr) \
300 (__builtin_constant_p(nr) ? \
301 constant_test_bit((nr),(addr)) : \
302 variable_test_bit((nr),(addr)))
303
304 #undef BASE_ADDR
305 #undef BIT_ADDR
306 /**
307 * __ffs - find first set bit in word
308 * @word: The word to search
309 *
310 * Undefined if no bit exists, so code should check against 0 first.
311 */
312 static inline unsigned long __ffs(unsigned long word)
313 {
314 __asm__("bsf %1,%0"
315 :"=r" (word)
316 :"rm" (word));
317 return word;
318 }
319
320 /**
321 * ffz - find first zero bit in word
322 * @word: The word to search
323 *
324 * Undefined if no zero exists, so code should check against ~0UL first.
325 */
326 static inline unsigned long ffz(unsigned long word)
327 {
328 __asm__("bsf %1,%0"
329 :"=r" (word)
330 :"r" (~word));
331 return word;
332 }
333
334 /*
335 * __fls: find last set bit in word
336 * @word: The word to search
337 *
338 * Undefined if no zero exists, so code should check against ~0UL first.
339 */
340 static inline unsigned long __fls(unsigned long word)
341 {
342 __asm__("bsr %1,%0"
343 :"=r" (word)
344 :"rm" (word));
345 return word;
346 }
347
348 #ifdef __KERNEL__
349 /**
350 * ffs - find first set bit in word
351 * @x: the word to search
352 *
353 * This is defined the same way as the libc and compiler builtin ffs
354 * routines, therefore differs in spirit from the other bitops.
355 *
356 * ffs(value) returns 0 if value is 0 or the position of the first
357 * set bit if value is nonzero. The first (least significant) bit
358 * is at position 1.
359 */
360 static inline int ffs(int x)
361 {
362 int r;
363 #ifdef CONFIG_X86_CMOV
364 __asm__("bsfl %1,%0\n\t"
365 "cmovzl %2,%0"
366 : "=r" (r) : "rm" (x), "r" (-1));
367 #else
368 __asm__("bsfl %1,%0\n\t"
369 "jnz 1f\n\t"
370 "movl $-1,%0\n"
371 "1:" : "=r" (r) : "rm" (x));
372 #endif
373 return r + 1;
374 }
375
376 /**
377 * fls - find last set bit in word
378 * @x: the word to search
379 *
380 * This is defined in a similar way as the libc and compiler builtin
381 * ffs, but returns the position of the most significant set bit.
382 *
383 * fls(value) returns 0 if value is 0 or the position of the last
384 * set bit if value is nonzero. The last (most significant) bit is
385 * at position 32.
386 */
387 static inline int fls(int x)
388 {
389 int r;
390 #ifdef CONFIG_X86_CMOV
391 __asm__("bsrl %1,%0\n\t"
392 "cmovzl %2,%0"
393 : "=&r" (r) : "rm" (x), "rm" (-1));
394 #else
395 __asm__("bsrl %1,%0\n\t"
396 "jnz 1f\n\t"
397 "movl $-1,%0\n"
398 "1:" : "=r" (r) : "rm" (x));
399 #endif
400 return r + 1;
401 }
402 #endif /* __KERNEL__ */
403
404 #undef ADDR
405
406 static inline void set_bit_string(unsigned long *bitmap,
407 unsigned long i, int len)
408 {
409 unsigned long end = i + len;
410 while (i < end) {
411 __set_bit(i, bitmap);
412 i++;
413 }
414 }
415
416 #ifdef __KERNEL__
417
418 #include <asm-generic/bitops/sched.h>
419
420 #define ARCH_HAS_FAST_MULTIPLIER 1
421
422 #include <asm-generic/bitops/hweight.h>
423
424 #endif /* __KERNEL__ */
425
426 #include <asm-generic/bitops/fls64.h>
427
428 #ifdef __KERNEL__
429
430 #include <asm-generic/bitops/ext2-non-atomic.h>
431
432 #define ext2_set_bit_atomic(lock, nr, addr) \
433 test_and_set_bit((nr), (unsigned long *)(addr))
434 #define ext2_clear_bit_atomic(lock, nr, addr) \
435 test_and_clear_bit((nr), (unsigned long *)(addr))
436
437 #include <asm-generic/bitops/minix.h>
438
439 #endif /* __KERNEL__ */
440 #endif /* _ASM_X86_BITOPS_H */
This page took 0.045421 seconds and 6 git commands to generate.