Merge branch 'upstream-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mfashe...
[deliverable/linux.git] / include / asm-x86 / bitops.h
1 #ifndef _ASM_X86_BITOPS_H
2 #define _ASM_X86_BITOPS_H
3
4 /*
5 * Copyright 1992, Linus Torvalds.
6 */
7
8 #ifndef _LINUX_BITOPS_H
9 #error only <linux/bitops.h> can be included directly
10 #endif
11
12 #include <linux/compiler.h>
13 #include <asm/alternative.h>
14
15 /*
16 * These have to be done with inline assembly: that way the bit-setting
17 * is guaranteed to be atomic. All bit operations return 0 if the bit
18 * was cleared before the operation and != 0 if it was not.
19 *
20 * bit 0 is the LSB of addr; bit 32 is the LSB of (addr+1).
21 */
22
23 #if __GNUC__ < 4 || (__GNUC__ == 4 && __GNUC_MINOR__ < 1)
24 /* Technically wrong, but this avoids compilation errors on some gcc
25 versions. */
26 #define ADDR "=m" (*(volatile long *)addr)
27 #define BIT_ADDR "=m" (((volatile int *)addr)[nr >> 5])
28 #else
29 #define ADDR "+m" (*(volatile long *) addr)
30 #define BIT_ADDR "+m" (((volatile int *)addr)[nr >> 5])
31 #endif
32 #define BASE_ADDR "m" (*(volatile int *)addr)
33
34 /**
35 * set_bit - Atomically set a bit in memory
36 * @nr: the bit to set
37 * @addr: the address to start counting from
38 *
39 * This function is atomic and may not be reordered. See __set_bit()
40 * if you do not require the atomic guarantees.
41 *
42 * Note: there are no guarantees that this function will not be reordered
43 * on non x86 architectures, so if you are writing portable code,
44 * make sure not to rely on its reordering guarantees.
45 *
46 * Note that @nr may be almost arbitrarily large; this function is not
47 * restricted to acting on a single-word quantity.
48 */
49 static inline void set_bit(int nr, volatile void *addr)
50 {
51 asm volatile(LOCK_PREFIX "bts %1,%0" : ADDR : "Ir" (nr) : "memory");
52 }
53
54 /**
55 * __set_bit - Set a bit in memory
56 * @nr: the bit to set
57 * @addr: the address to start counting from
58 *
59 * Unlike set_bit(), this function is non-atomic and may be reordered.
60 * If it's called on the same region of memory simultaneously, the effect
61 * may be that only one operation succeeds.
62 */
63 static inline void __set_bit(int nr, volatile void *addr)
64 {
65 asm volatile("bts %1,%0"
66 : ADDR
67 : "Ir" (nr) : "memory");
68 }
69
70
71 /**
72 * clear_bit - Clears a bit in memory
73 * @nr: Bit to clear
74 * @addr: Address to start counting from
75 *
76 * clear_bit() is atomic and may not be reordered. However, it does
77 * not contain a memory barrier, so if it is used for locking purposes,
78 * you should call smp_mb__before_clear_bit() and/or smp_mb__after_clear_bit()
79 * in order to ensure changes are visible on other processors.
80 */
81 static inline void clear_bit(int nr, volatile void *addr)
82 {
83 asm volatile(LOCK_PREFIX "btr %1,%2" : BIT_ADDR : "Ir" (nr), BASE_ADDR);
84 }
85
86 /*
87 * clear_bit_unlock - Clears a bit in memory
88 * @nr: Bit to clear
89 * @addr: Address to start counting from
90 *
91 * clear_bit() is atomic and implies release semantics before the memory
92 * operation. It can be used for an unlock.
93 */
94 static inline void clear_bit_unlock(unsigned nr, volatile void *addr)
95 {
96 barrier();
97 clear_bit(nr, addr);
98 }
99
100 static inline void __clear_bit(int nr, volatile void *addr)
101 {
102 asm volatile("btr %1,%2" : BIT_ADDR : "Ir" (nr), BASE_ADDR);
103 }
104
105 /*
106 * __clear_bit_unlock - Clears a bit in memory
107 * @nr: Bit to clear
108 * @addr: Address to start counting from
109 *
110 * __clear_bit() is non-atomic and implies release semantics before the memory
111 * operation. It can be used for an unlock if no other CPUs can concurrently
112 * modify other bits in the word.
113 *
114 * No memory barrier is required here, because x86 cannot reorder stores past
115 * older loads. Same principle as spin_unlock.
116 */
117 static inline void __clear_bit_unlock(unsigned nr, volatile void *addr)
118 {
119 barrier();
120 __clear_bit(nr, addr);
121 }
122
123 #define smp_mb__before_clear_bit() barrier()
124 #define smp_mb__after_clear_bit() barrier()
125
126 /**
127 * __change_bit - Toggle a bit in memory
128 * @nr: the bit to change
129 * @addr: the address to start counting from
130 *
131 * Unlike change_bit(), this function is non-atomic and may be reordered.
132 * If it's called on the same region of memory simultaneously, the effect
133 * may be that only one operation succeeds.
134 */
135 static inline void __change_bit(int nr, volatile void *addr)
136 {
137 asm volatile("btc %1,%2" : BIT_ADDR : "Ir" (nr), BASE_ADDR);
138 }
139
140 /**
141 * change_bit - Toggle a bit in memory
142 * @nr: Bit to change
143 * @addr: Address to start counting from
144 *
145 * change_bit() is atomic and may not be reordered.
146 * Note that @nr may be almost arbitrarily large; this function is not
147 * restricted to acting on a single-word quantity.
148 */
149 static inline void change_bit(int nr, volatile void *addr)
150 {
151 asm volatile(LOCK_PREFIX "btc %1,%2" : BIT_ADDR : "Ir" (nr), BASE_ADDR);
152 }
153
154 /**
155 * test_and_set_bit - Set a bit and return its old value
156 * @nr: Bit to set
157 * @addr: Address to count from
158 *
159 * This operation is atomic and cannot be reordered.
160 * It also implies a memory barrier.
161 */
162 static inline int test_and_set_bit(int nr, volatile void *addr)
163 {
164 int oldbit;
165
166 asm volatile(LOCK_PREFIX "bts %2,%1\n\t"
167 "sbb %0,%0" : "=r" (oldbit), ADDR : "Ir" (nr) : "memory");
168
169 return oldbit;
170 }
171
172 /**
173 * test_and_set_bit_lock - Set a bit and return its old value for lock
174 * @nr: Bit to set
175 * @addr: Address to count from
176 *
177 * This is the same as test_and_set_bit on x86.
178 */
179 static inline int test_and_set_bit_lock(int nr, volatile void *addr)
180 {
181 return test_and_set_bit(nr, addr);
182 }
183
184 /**
185 * __test_and_set_bit - Set a bit and return its old value
186 * @nr: Bit to set
187 * @addr: Address to count from
188 *
189 * This operation is non-atomic and can be reordered.
190 * If two examples of this operation race, one can appear to succeed
191 * but actually fail. You must protect multiple accesses with a lock.
192 */
193 static inline int __test_and_set_bit(int nr, volatile void *addr)
194 {
195 int oldbit;
196
197 asm volatile("bts %2,%3\n\t"
198 "sbb %0,%0"
199 : "=r" (oldbit), BIT_ADDR : "Ir" (nr), BASE_ADDR);
200 return oldbit;
201 }
202
203 /**
204 * test_and_clear_bit - Clear a bit and return its old value
205 * @nr: Bit to clear
206 * @addr: Address to count from
207 *
208 * This operation is atomic and cannot be reordered.
209 * It also implies a memory barrier.
210 */
211 static inline int test_and_clear_bit(int nr, volatile void *addr)
212 {
213 int oldbit;
214
215 asm volatile(LOCK_PREFIX "btr %2,%1\n\t"
216 "sbb %0,%0"
217 : "=r" (oldbit), ADDR : "Ir" (nr) : "memory");
218
219 return oldbit;
220 }
221
222 /**
223 * __test_and_clear_bit - Clear a bit and return its old value
224 * @nr: Bit to clear
225 * @addr: Address to count from
226 *
227 * This operation is non-atomic and can be reordered.
228 * If two examples of this operation race, one can appear to succeed
229 * but actually fail. You must protect multiple accesses with a lock.
230 */
231 static inline int __test_and_clear_bit(int nr, volatile void *addr)
232 {
233 int oldbit;
234
235 asm volatile("btr %2,%3\n\t"
236 "sbb %0,%0"
237 : "=r" (oldbit), BIT_ADDR : "Ir" (nr), BASE_ADDR);
238 return oldbit;
239 }
240
241 /* WARNING: non atomic and it can be reordered! */
242 static inline int __test_and_change_bit(int nr, volatile void *addr)
243 {
244 int oldbit;
245
246 asm volatile("btc %2,%3\n\t"
247 "sbb %0,%0"
248 : "=r" (oldbit), BIT_ADDR : "Ir" (nr), BASE_ADDR);
249
250 return oldbit;
251 }
252
253 /**
254 * test_and_change_bit - Change a bit and return its old value
255 * @nr: Bit to change
256 * @addr: Address to count from
257 *
258 * This operation is atomic and cannot be reordered.
259 * It also implies a memory barrier.
260 */
261 static inline int test_and_change_bit(int nr, volatile void *addr)
262 {
263 int oldbit;
264
265 asm volatile(LOCK_PREFIX "btc %2,%1\n\t"
266 "sbb %0,%0"
267 : "=r" (oldbit), ADDR : "Ir" (nr) : "memory");
268
269 return oldbit;
270 }
271
272 static inline int constant_test_bit(int nr, const volatile void *addr)
273 {
274 return ((1UL << (nr % BITS_PER_LONG)) &
275 (((unsigned long *)addr)[nr / BITS_PER_LONG])) != 0;
276 }
277
278 static inline int variable_test_bit(int nr, volatile const void *addr)
279 {
280 int oldbit;
281
282 asm volatile("bt %2,%3\n\t"
283 "sbb %0,%0"
284 : "=r" (oldbit)
285 : "m" (((volatile const int *)addr)[nr >> 5]),
286 "Ir" (nr), BASE_ADDR);
287
288 return oldbit;
289 }
290
291 #if 0 /* Fool kernel-doc since it doesn't do macros yet */
292 /**
293 * test_bit - Determine whether a bit is set
294 * @nr: bit number to test
295 * @addr: Address to start counting from
296 */
297 static int test_bit(int nr, const volatile unsigned long *addr);
298 #endif
299
300 #define test_bit(nr,addr) \
301 (__builtin_constant_p(nr) ? \
302 constant_test_bit((nr),(addr)) : \
303 variable_test_bit((nr),(addr)))
304
305 #undef BASE_ADDR
306 #undef BIT_ADDR
307 #undef ADDR
308
309 #ifdef CONFIG_X86_32
310 # include "bitops_32.h"
311 #else
312 # include "bitops_64.h"
313 #endif
314
315 #endif /* _ASM_X86_BITOPS_H */
This page took 0.038252 seconds and 6 git commands to generate.