Merge branch 'upstream-linus' of master.kernel.org:/pub/scm/linux/kernel/git/jgarzik...
[deliverable/linux.git] / include / asm-x86 / bitops_64.h
1 #ifndef _X86_64_BITOPS_H
2 #define _X86_64_BITOPS_H
3
4 /*
5 * Copyright 1992, Linus Torvalds.
6 */
7
8 #ifndef _LINUX_BITOPS_H
9 #error only <linux/bitops.h> can be included directly
10 #endif
11
12 #include <asm/alternative.h>
13
14 #if __GNUC__ < 4 || (__GNUC__ == 4 && __GNUC_MINOR__ < 1)
15 /* Technically wrong, but this avoids compilation errors on some gcc
16 versions. */
17 #define ADDR "=m" (*(volatile long *) addr)
18 #else
19 #define ADDR "+m" (*(volatile long *) addr)
20 #endif
21
22 /**
23 * set_bit - Atomically set a bit in memory
24 * @nr: the bit to set
25 * @addr: the address to start counting from
26 *
27 * This function is atomic and may not be reordered. See __set_bit()
28 * if you do not require the atomic guarantees.
29 * Note that @nr may be almost arbitrarily large; this function is not
30 * restricted to acting on a single-word quantity.
31 */
32 static __inline__ void set_bit(int nr, volatile void * addr)
33 {
34 __asm__ __volatile__( LOCK_PREFIX
35 "btsl %1,%0"
36 :ADDR
37 :"dIr" (nr) : "memory");
38 }
39
40 /**
41 * __set_bit - Set a bit in memory
42 * @nr: the bit to set
43 * @addr: the address to start counting from
44 *
45 * Unlike set_bit(), this function is non-atomic and may be reordered.
46 * If it's called on the same region of memory simultaneously, the effect
47 * may be that only one operation succeeds.
48 */
49 static __inline__ void __set_bit(int nr, volatile void * addr)
50 {
51 __asm__ volatile(
52 "btsl %1,%0"
53 :ADDR
54 :"dIr" (nr) : "memory");
55 }
56
57 /**
58 * clear_bit - Clears a bit in memory
59 * @nr: Bit to clear
60 * @addr: Address to start counting from
61 *
62 * clear_bit() is atomic and may not be reordered. However, it does
63 * not contain a memory barrier, so if it is used for locking purposes,
64 * you should call smp_mb__before_clear_bit() and/or smp_mb__after_clear_bit()
65 * in order to ensure changes are visible on other processors.
66 */
67 static __inline__ void clear_bit(int nr, volatile void * addr)
68 {
69 __asm__ __volatile__( LOCK_PREFIX
70 "btrl %1,%0"
71 :ADDR
72 :"dIr" (nr));
73 }
74
75 /*
76 * clear_bit_unlock - Clears a bit in memory
77 * @nr: Bit to clear
78 * @addr: Address to start counting from
79 *
80 * clear_bit() is atomic and implies release semantics before the memory
81 * operation. It can be used for an unlock.
82 */
83 static inline void clear_bit_unlock(unsigned long nr, volatile unsigned long *addr)
84 {
85 barrier();
86 clear_bit(nr, addr);
87 }
88
89 static __inline__ void __clear_bit(int nr, volatile void * addr)
90 {
91 __asm__ __volatile__(
92 "btrl %1,%0"
93 :ADDR
94 :"dIr" (nr));
95 }
96
97 /*
98 * __clear_bit_unlock - Clears a bit in memory
99 * @nr: Bit to clear
100 * @addr: Address to start counting from
101 *
102 * __clear_bit() is non-atomic and implies release semantics before the memory
103 * operation. It can be used for an unlock if no other CPUs can concurrently
104 * modify other bits in the word.
105 *
106 * No memory barrier is required here, because x86 cannot reorder stores past
107 * older loads. Same principle as spin_unlock.
108 */
109 static inline void __clear_bit_unlock(unsigned long nr, volatile unsigned long *addr)
110 {
111 barrier();
112 __clear_bit(nr, addr);
113 }
114
115 #define smp_mb__before_clear_bit() barrier()
116 #define smp_mb__after_clear_bit() barrier()
117
118 /**
119 * __change_bit - Toggle a bit in memory
120 * @nr: the bit to change
121 * @addr: the address to start counting from
122 *
123 * Unlike change_bit(), this function is non-atomic and may be reordered.
124 * If it's called on the same region of memory simultaneously, the effect
125 * may be that only one operation succeeds.
126 */
127 static __inline__ void __change_bit(int nr, volatile void * addr)
128 {
129 __asm__ __volatile__(
130 "btcl %1,%0"
131 :ADDR
132 :"dIr" (nr));
133 }
134
135 /**
136 * change_bit - Toggle a bit in memory
137 * @nr: Bit to change
138 * @addr: Address to start counting from
139 *
140 * change_bit() is atomic and may not be reordered.
141 * Note that @nr may be almost arbitrarily large; this function is not
142 * restricted to acting on a single-word quantity.
143 */
144 static __inline__ void change_bit(int nr, volatile void * addr)
145 {
146 __asm__ __volatile__( LOCK_PREFIX
147 "btcl %1,%0"
148 :ADDR
149 :"dIr" (nr));
150 }
151
152 /**
153 * test_and_set_bit - Set a bit and return its old value
154 * @nr: Bit to set
155 * @addr: Address to count from
156 *
157 * This operation is atomic and cannot be reordered.
158 * It also implies a memory barrier.
159 */
160 static __inline__ int test_and_set_bit(int nr, volatile void * addr)
161 {
162 int oldbit;
163
164 __asm__ __volatile__( LOCK_PREFIX
165 "btsl %2,%1\n\tsbbl %0,%0"
166 :"=r" (oldbit),ADDR
167 :"dIr" (nr) : "memory");
168 return oldbit;
169 }
170
171 /**
172 * test_and_set_bit_lock - Set a bit and return its old value for lock
173 * @nr: Bit to set
174 * @addr: Address to count from
175 *
176 * This is the same as test_and_set_bit on x86
177 */
178 #define test_and_set_bit_lock test_and_set_bit
179
180 /**
181 * __test_and_set_bit - Set a bit and return its old value
182 * @nr: Bit to set
183 * @addr: Address to count from
184 *
185 * This operation is non-atomic and can be reordered.
186 * If two examples of this operation race, one can appear to succeed
187 * but actually fail. You must protect multiple accesses with a lock.
188 */
189 static __inline__ int __test_and_set_bit(int nr, volatile void * addr)
190 {
191 int oldbit;
192
193 __asm__(
194 "btsl %2,%1\n\tsbbl %0,%0"
195 :"=r" (oldbit),ADDR
196 :"dIr" (nr));
197 return oldbit;
198 }
199
200 /**
201 * test_and_clear_bit - Clear a bit and return its old value
202 * @nr: Bit to clear
203 * @addr: Address to count from
204 *
205 * This operation is atomic and cannot be reordered.
206 * It also implies a memory barrier.
207 */
208 static __inline__ int test_and_clear_bit(int nr, volatile void * addr)
209 {
210 int oldbit;
211
212 __asm__ __volatile__( LOCK_PREFIX
213 "btrl %2,%1\n\tsbbl %0,%0"
214 :"=r" (oldbit),ADDR
215 :"dIr" (nr) : "memory");
216 return oldbit;
217 }
218
219 /**
220 * __test_and_clear_bit - Clear a bit and return its old value
221 * @nr: Bit to clear
222 * @addr: Address to count from
223 *
224 * This operation is non-atomic and can be reordered.
225 * If two examples of this operation race, one can appear to succeed
226 * but actually fail. You must protect multiple accesses with a lock.
227 */
228 static __inline__ int __test_and_clear_bit(int nr, volatile void * addr)
229 {
230 int oldbit;
231
232 __asm__(
233 "btrl %2,%1\n\tsbbl %0,%0"
234 :"=r" (oldbit),ADDR
235 :"dIr" (nr));
236 return oldbit;
237 }
238
239 /* WARNING: non atomic and it can be reordered! */
240 static __inline__ int __test_and_change_bit(int nr, volatile void * addr)
241 {
242 int oldbit;
243
244 __asm__ __volatile__(
245 "btcl %2,%1\n\tsbbl %0,%0"
246 :"=r" (oldbit),ADDR
247 :"dIr" (nr) : "memory");
248 return oldbit;
249 }
250
251 /**
252 * test_and_change_bit - Change a bit and return its old value
253 * @nr: Bit to change
254 * @addr: Address to count from
255 *
256 * This operation is atomic and cannot be reordered.
257 * It also implies a memory barrier.
258 */
259 static __inline__ int test_and_change_bit(int nr, volatile void * addr)
260 {
261 int oldbit;
262
263 __asm__ __volatile__( LOCK_PREFIX
264 "btcl %2,%1\n\tsbbl %0,%0"
265 :"=r" (oldbit),ADDR
266 :"dIr" (nr) : "memory");
267 return oldbit;
268 }
269
270 #if 0 /* Fool kernel-doc since it doesn't do macros yet */
271 /**
272 * test_bit - Determine whether a bit is set
273 * @nr: bit number to test
274 * @addr: Address to start counting from
275 */
276 static int test_bit(int nr, const volatile void * addr);
277 #endif
278
279 static __inline__ int constant_test_bit(int nr, const volatile void * addr)
280 {
281 return ((1UL << (nr & 31)) & (((const volatile unsigned int *) addr)[nr >> 5])) != 0;
282 }
283
284 static __inline__ int variable_test_bit(int nr, volatile const void * addr)
285 {
286 int oldbit;
287
288 __asm__ __volatile__(
289 "btl %2,%1\n\tsbbl %0,%0"
290 :"=r" (oldbit)
291 :"m" (*(volatile long *)addr),"dIr" (nr));
292 return oldbit;
293 }
294
295 #define test_bit(nr,addr) \
296 (__builtin_constant_p(nr) ? \
297 constant_test_bit((nr),(addr)) : \
298 variable_test_bit((nr),(addr)))
299
300 #undef ADDR
301
302 extern long find_first_zero_bit(const unsigned long * addr, unsigned long size);
303 extern long find_next_zero_bit (const unsigned long * addr, long size, long offset);
304 extern long find_first_bit(const unsigned long * addr, unsigned long size);
305 extern long find_next_bit(const unsigned long * addr, long size, long offset);
306
307 /* return index of first bet set in val or max when no bit is set */
308 static inline long __scanbit(unsigned long val, unsigned long max)
309 {
310 asm("bsfq %1,%0 ; cmovz %2,%0" : "=&r" (val) : "r" (val), "r" (max));
311 return val;
312 }
313
314 #define find_first_bit(addr,size) \
315 ((__builtin_constant_p(size) && (size) <= BITS_PER_LONG ? \
316 (__scanbit(*(unsigned long *)addr,(size))) : \
317 find_first_bit(addr,size)))
318
319 #define find_next_bit(addr,size,off) \
320 ((__builtin_constant_p(size) && (size) <= BITS_PER_LONG ? \
321 ((off) + (__scanbit((*(unsigned long *)addr) >> (off),(size)-(off)))) : \
322 find_next_bit(addr,size,off)))
323
324 #define find_first_zero_bit(addr,size) \
325 ((__builtin_constant_p(size) && (size) <= BITS_PER_LONG ? \
326 (__scanbit(~*(unsigned long *)addr,(size))) : \
327 find_first_zero_bit(addr,size)))
328
329 #define find_next_zero_bit(addr,size,off) \
330 ((__builtin_constant_p(size) && (size) <= BITS_PER_LONG ? \
331 ((off)+(__scanbit(~(((*(unsigned long *)addr)) >> (off)),(size)-(off)))) : \
332 find_next_zero_bit(addr,size,off)))
333
334 /*
335 * Find string of zero bits in a bitmap. -1 when not found.
336 */
337 extern unsigned long
338 find_next_zero_string(unsigned long *bitmap, long start, long nbits, int len);
339
340 static inline void set_bit_string(unsigned long *bitmap, unsigned long i,
341 int len)
342 {
343 unsigned long end = i + len;
344 while (i < end) {
345 __set_bit(i, bitmap);
346 i++;
347 }
348 }
349
350 static inline void __clear_bit_string(unsigned long *bitmap, unsigned long i,
351 int len)
352 {
353 unsigned long end = i + len;
354 while (i < end) {
355 __clear_bit(i, bitmap);
356 i++;
357 }
358 }
359
360 /**
361 * ffz - find first zero in word.
362 * @word: The word to search
363 *
364 * Undefined if no zero exists, so code should check against ~0UL first.
365 */
366 static __inline__ unsigned long ffz(unsigned long word)
367 {
368 __asm__("bsfq %1,%0"
369 :"=r" (word)
370 :"r" (~word));
371 return word;
372 }
373
374 /**
375 * __ffs - find first bit in word.
376 * @word: The word to search
377 *
378 * Undefined if no bit exists, so code should check against 0 first.
379 */
380 static __inline__ unsigned long __ffs(unsigned long word)
381 {
382 __asm__("bsfq %1,%0"
383 :"=r" (word)
384 :"rm" (word));
385 return word;
386 }
387
388 /*
389 * __fls: find last bit set.
390 * @word: The word to search
391 *
392 * Undefined if no zero exists, so code should check against ~0UL first.
393 */
394 static __inline__ unsigned long __fls(unsigned long word)
395 {
396 __asm__("bsrq %1,%0"
397 :"=r" (word)
398 :"rm" (word));
399 return word;
400 }
401
402 #ifdef __KERNEL__
403
404 #include <asm-generic/bitops/sched.h>
405
406 /**
407 * ffs - find first bit set
408 * @x: the word to search
409 *
410 * This is defined the same way as
411 * the libc and compiler builtin ffs routines, therefore
412 * differs in spirit from the above ffz (man ffs).
413 */
414 static __inline__ int ffs(int x)
415 {
416 int r;
417
418 __asm__("bsfl %1,%0\n\t"
419 "cmovzl %2,%0"
420 : "=r" (r) : "rm" (x), "r" (-1));
421 return r+1;
422 }
423
424 /**
425 * fls64 - find last bit set in 64 bit word
426 * @x: the word to search
427 *
428 * This is defined the same way as fls.
429 */
430 static __inline__ int fls64(__u64 x)
431 {
432 if (x == 0)
433 return 0;
434 return __fls(x) + 1;
435 }
436
437 /**
438 * fls - find last bit set
439 * @x: the word to search
440 *
441 * This is defined the same way as ffs.
442 */
443 static __inline__ int fls(int x)
444 {
445 int r;
446
447 __asm__("bsrl %1,%0\n\t"
448 "cmovzl %2,%0"
449 : "=&r" (r) : "rm" (x), "rm" (-1));
450 return r+1;
451 }
452
453 #define ARCH_HAS_FAST_MULTIPLIER 1
454
455 #include <asm-generic/bitops/hweight.h>
456
457 #endif /* __KERNEL__ */
458
459 #ifdef __KERNEL__
460
461 #include <asm-generic/bitops/ext2-non-atomic.h>
462
463 #define ext2_set_bit_atomic(lock,nr,addr) \
464 test_and_set_bit((nr),(unsigned long*)addr)
465 #define ext2_clear_bit_atomic(lock,nr,addr) \
466 test_and_clear_bit((nr),(unsigned long*)addr)
467
468 #include <asm-generic/bitops/minix.h>
469
470 #endif /* __KERNEL__ */
471
472 #endif /* _X86_64_BITOPS_H */
This page took 0.04185 seconds and 6 git commands to generate.