Merge branches 'release', 'acpica', 'bugzilla-10224', 'bugzilla-9772', 'bugzilla...
[deliverable/linux.git] / include / asm-x86 / paravirt.h
1 #ifndef __ASM_PARAVIRT_H
2 #define __ASM_PARAVIRT_H
3 /* Various instructions on x86 need to be replaced for
4 * para-virtualization: those hooks are defined here. */
5
6 #ifdef CONFIG_PARAVIRT
7 #include <asm/page.h>
8 #include <asm/asm.h>
9
10 /* Bitmask of what can be clobbered: usually at least eax. */
11 #define CLBR_NONE 0
12 #define CLBR_EAX (1 << 0)
13 #define CLBR_ECX (1 << 1)
14 #define CLBR_EDX (1 << 2)
15
16 #ifdef CONFIG_X86_64
17 #define CLBR_RSI (1 << 3)
18 #define CLBR_RDI (1 << 4)
19 #define CLBR_R8 (1 << 5)
20 #define CLBR_R9 (1 << 6)
21 #define CLBR_R10 (1 << 7)
22 #define CLBR_R11 (1 << 8)
23 #define CLBR_ANY ((1 << 9) - 1)
24 #include <asm/desc_defs.h>
25 #else
26 /* CLBR_ANY should match all regs platform has. For i386, that's just it */
27 #define CLBR_ANY ((1 << 3) - 1)
28 #endif /* X86_64 */
29
30 #ifndef __ASSEMBLY__
31 #include <linux/types.h>
32 #include <linux/cpumask.h>
33 #include <asm/kmap_types.h>
34 #include <asm/desc_defs.h>
35
36 struct page;
37 struct thread_struct;
38 struct desc_ptr;
39 struct tss_struct;
40 struct mm_struct;
41 struct desc_struct;
42
43 /* general info */
44 struct pv_info {
45 unsigned int kernel_rpl;
46 int shared_kernel_pmd;
47 int paravirt_enabled;
48 const char *name;
49 };
50
51 struct pv_init_ops {
52 /*
53 * Patch may replace one of the defined code sequences with
54 * arbitrary code, subject to the same register constraints.
55 * This generally means the code is not free to clobber any
56 * registers other than EAX. The patch function should return
57 * the number of bytes of code generated, as we nop pad the
58 * rest in generic code.
59 */
60 unsigned (*patch)(u8 type, u16 clobber, void *insnbuf,
61 unsigned long addr, unsigned len);
62
63 /* Basic arch-specific setup */
64 void (*arch_setup)(void);
65 char *(*memory_setup)(void);
66 void (*post_allocator_init)(void);
67
68 /* Print a banner to identify the environment */
69 void (*banner)(void);
70 };
71
72
73 struct pv_lazy_ops {
74 /* Set deferred update mode, used for batching operations. */
75 void (*enter)(void);
76 void (*leave)(void);
77 };
78
79 struct pv_time_ops {
80 void (*time_init)(void);
81
82 /* Set and set time of day */
83 unsigned long (*get_wallclock)(void);
84 int (*set_wallclock)(unsigned long);
85
86 unsigned long long (*sched_clock)(void);
87 unsigned long (*get_cpu_khz)(void);
88 };
89
90 struct pv_cpu_ops {
91 /* hooks for various privileged instructions */
92 unsigned long (*get_debugreg)(int regno);
93 void (*set_debugreg)(int regno, unsigned long value);
94
95 void (*clts)(void);
96
97 unsigned long (*read_cr0)(void);
98 void (*write_cr0)(unsigned long);
99
100 unsigned long (*read_cr4_safe)(void);
101 unsigned long (*read_cr4)(void);
102 void (*write_cr4)(unsigned long);
103
104 #ifdef CONFIG_X86_64
105 unsigned long (*read_cr8)(void);
106 void (*write_cr8)(unsigned long);
107 #endif
108
109 /* Segment descriptor handling */
110 void (*load_tr_desc)(void);
111 void (*load_gdt)(const struct desc_ptr *);
112 void (*load_idt)(const struct desc_ptr *);
113 void (*store_gdt)(struct desc_ptr *);
114 void (*store_idt)(struct desc_ptr *);
115 void (*set_ldt)(const void *desc, unsigned entries);
116 unsigned long (*store_tr)(void);
117 void (*load_tls)(struct thread_struct *t, unsigned int cpu);
118 void (*write_ldt_entry)(struct desc_struct *ldt, int entrynum,
119 const void *desc);
120 void (*write_gdt_entry)(struct desc_struct *,
121 int entrynum, const void *desc, int size);
122 void (*write_idt_entry)(gate_desc *,
123 int entrynum, const gate_desc *gate);
124 void (*load_sp0)(struct tss_struct *tss, struct thread_struct *t);
125
126 void (*set_iopl_mask)(unsigned mask);
127
128 void (*wbinvd)(void);
129 void (*io_delay)(void);
130
131 /* cpuid emulation, mostly so that caps bits can be disabled */
132 void (*cpuid)(unsigned int *eax, unsigned int *ebx,
133 unsigned int *ecx, unsigned int *edx);
134
135 /* MSR, PMC and TSR operations.
136 err = 0/-EFAULT. wrmsr returns 0/-EFAULT. */
137 u64 (*read_msr)(unsigned int msr, int *err);
138 int (*write_msr)(unsigned int msr, unsigned low, unsigned high);
139
140 u64 (*read_tsc)(void);
141 u64 (*read_pmc)(int counter);
142 unsigned long long (*read_tscp)(unsigned int *aux);
143
144 /* These two are jmp to, not actually called. */
145 void (*irq_enable_syscall_ret)(void);
146 void (*iret)(void);
147
148 void (*swapgs)(void);
149
150 struct pv_lazy_ops lazy_mode;
151 };
152
153 struct pv_irq_ops {
154 void (*init_IRQ)(void);
155
156 /*
157 * Get/set interrupt state. save_fl and restore_fl are only
158 * expected to use X86_EFLAGS_IF; all other bits
159 * returned from save_fl are undefined, and may be ignored by
160 * restore_fl.
161 */
162 unsigned long (*save_fl)(void);
163 void (*restore_fl)(unsigned long);
164 void (*irq_disable)(void);
165 void (*irq_enable)(void);
166 void (*safe_halt)(void);
167 void (*halt)(void);
168 };
169
170 struct pv_apic_ops {
171 #ifdef CONFIG_X86_LOCAL_APIC
172 /*
173 * Direct APIC operations, principally for VMI. Ideally
174 * these shouldn't be in this interface.
175 */
176 void (*apic_write)(unsigned long reg, u32 v);
177 void (*apic_write_atomic)(unsigned long reg, u32 v);
178 u32 (*apic_read)(unsigned long reg);
179 void (*setup_boot_clock)(void);
180 void (*setup_secondary_clock)(void);
181
182 void (*startup_ipi_hook)(int phys_apicid,
183 unsigned long start_eip,
184 unsigned long start_esp);
185 #endif
186 };
187
188 struct pv_mmu_ops {
189 /*
190 * Called before/after init_mm pagetable setup. setup_start
191 * may reset %cr3, and may pre-install parts of the pagetable;
192 * pagetable setup is expected to preserve any existing
193 * mapping.
194 */
195 void (*pagetable_setup_start)(pgd_t *pgd_base);
196 void (*pagetable_setup_done)(pgd_t *pgd_base);
197
198 unsigned long (*read_cr2)(void);
199 void (*write_cr2)(unsigned long);
200
201 unsigned long (*read_cr3)(void);
202 void (*write_cr3)(unsigned long);
203
204 /*
205 * Hooks for intercepting the creation/use/destruction of an
206 * mm_struct.
207 */
208 void (*activate_mm)(struct mm_struct *prev,
209 struct mm_struct *next);
210 void (*dup_mmap)(struct mm_struct *oldmm,
211 struct mm_struct *mm);
212 void (*exit_mmap)(struct mm_struct *mm);
213
214
215 /* TLB operations */
216 void (*flush_tlb_user)(void);
217 void (*flush_tlb_kernel)(void);
218 void (*flush_tlb_single)(unsigned long addr);
219 void (*flush_tlb_others)(const cpumask_t *cpus, struct mm_struct *mm,
220 unsigned long va);
221
222 /* Hooks for allocating/releasing pagetable pages */
223 void (*alloc_pte)(struct mm_struct *mm, u32 pfn);
224 void (*alloc_pmd)(struct mm_struct *mm, u32 pfn);
225 void (*alloc_pmd_clone)(u32 pfn, u32 clonepfn, u32 start, u32 count);
226 void (*alloc_pud)(struct mm_struct *mm, u32 pfn);
227 void (*release_pte)(u32 pfn);
228 void (*release_pmd)(u32 pfn);
229 void (*release_pud)(u32 pfn);
230
231 /* Pagetable manipulation functions */
232 void (*set_pte)(pte_t *ptep, pte_t pteval);
233 void (*set_pte_at)(struct mm_struct *mm, unsigned long addr,
234 pte_t *ptep, pte_t pteval);
235 void (*set_pmd)(pmd_t *pmdp, pmd_t pmdval);
236 void (*pte_update)(struct mm_struct *mm, unsigned long addr,
237 pte_t *ptep);
238 void (*pte_update_defer)(struct mm_struct *mm,
239 unsigned long addr, pte_t *ptep);
240
241 pteval_t (*pte_val)(pte_t);
242 pte_t (*make_pte)(pteval_t pte);
243
244 pgdval_t (*pgd_val)(pgd_t);
245 pgd_t (*make_pgd)(pgdval_t pgd);
246
247 #if PAGETABLE_LEVELS >= 3
248 #ifdef CONFIG_X86_PAE
249 void (*set_pte_atomic)(pte_t *ptep, pte_t pteval);
250 void (*set_pte_present)(struct mm_struct *mm, unsigned long addr,
251 pte_t *ptep, pte_t pte);
252 void (*pte_clear)(struct mm_struct *mm, unsigned long addr,
253 pte_t *ptep);
254 void (*pmd_clear)(pmd_t *pmdp);
255
256 #endif /* CONFIG_X86_PAE */
257
258 void (*set_pud)(pud_t *pudp, pud_t pudval);
259
260 pmdval_t (*pmd_val)(pmd_t);
261 pmd_t (*make_pmd)(pmdval_t pmd);
262
263 #if PAGETABLE_LEVELS == 4
264 pudval_t (*pud_val)(pud_t);
265 pud_t (*make_pud)(pudval_t pud);
266
267 void (*set_pgd)(pgd_t *pudp, pgd_t pgdval);
268 #endif /* PAGETABLE_LEVELS == 4 */
269 #endif /* PAGETABLE_LEVELS >= 3 */
270
271 #ifdef CONFIG_HIGHPTE
272 void *(*kmap_atomic_pte)(struct page *page, enum km_type type);
273 #endif
274
275 struct pv_lazy_ops lazy_mode;
276 };
277
278 /* This contains all the paravirt structures: we get a convenient
279 * number for each function using the offset which we use to indicate
280 * what to patch. */
281 struct paravirt_patch_template {
282 struct pv_init_ops pv_init_ops;
283 struct pv_time_ops pv_time_ops;
284 struct pv_cpu_ops pv_cpu_ops;
285 struct pv_irq_ops pv_irq_ops;
286 struct pv_apic_ops pv_apic_ops;
287 struct pv_mmu_ops pv_mmu_ops;
288 };
289
290 extern struct pv_info pv_info;
291 extern struct pv_init_ops pv_init_ops;
292 extern struct pv_time_ops pv_time_ops;
293 extern struct pv_cpu_ops pv_cpu_ops;
294 extern struct pv_irq_ops pv_irq_ops;
295 extern struct pv_apic_ops pv_apic_ops;
296 extern struct pv_mmu_ops pv_mmu_ops;
297
298 #define PARAVIRT_PATCH(x) \
299 (offsetof(struct paravirt_patch_template, x) / sizeof(void *))
300
301 #define paravirt_type(op) \
302 [paravirt_typenum] "i" (PARAVIRT_PATCH(op)), \
303 [paravirt_opptr] "m" (op)
304 #define paravirt_clobber(clobber) \
305 [paravirt_clobber] "i" (clobber)
306
307 /*
308 * Generate some code, and mark it as patchable by the
309 * apply_paravirt() alternate instruction patcher.
310 */
311 #define _paravirt_alt(insn_string, type, clobber) \
312 "771:\n\t" insn_string "\n" "772:\n" \
313 ".pushsection .parainstructions,\"a\"\n" \
314 _ASM_ALIGN "\n" \
315 _ASM_PTR " 771b\n" \
316 " .byte " type "\n" \
317 " .byte 772b-771b\n" \
318 " .short " clobber "\n" \
319 ".popsection\n"
320
321 /* Generate patchable code, with the default asm parameters. */
322 #define paravirt_alt(insn_string) \
323 _paravirt_alt(insn_string, "%c[paravirt_typenum]", "%c[paravirt_clobber]")
324
325 /* Simple instruction patching code. */
326 #define DEF_NATIVE(ops, name, code) \
327 extern const char start_##ops##_##name[], end_##ops##_##name[]; \
328 asm("start_" #ops "_" #name ": " code "; end_" #ops "_" #name ":")
329
330 unsigned paravirt_patch_nop(void);
331 unsigned paravirt_patch_ignore(unsigned len);
332 unsigned paravirt_patch_call(void *insnbuf,
333 const void *target, u16 tgt_clobbers,
334 unsigned long addr, u16 site_clobbers,
335 unsigned len);
336 unsigned paravirt_patch_jmp(void *insnbuf, const void *target,
337 unsigned long addr, unsigned len);
338 unsigned paravirt_patch_default(u8 type, u16 clobbers, void *insnbuf,
339 unsigned long addr, unsigned len);
340
341 unsigned paravirt_patch_insns(void *insnbuf, unsigned len,
342 const char *start, const char *end);
343
344 unsigned native_patch(u8 type, u16 clobbers, void *ibuf,
345 unsigned long addr, unsigned len);
346
347 int paravirt_disable_iospace(void);
348
349 /*
350 * This generates an indirect call based on the operation type number.
351 * The type number, computed in PARAVIRT_PATCH, is derived from the
352 * offset into the paravirt_patch_template structure, and can therefore be
353 * freely converted back into a structure offset.
354 */
355 #define PARAVIRT_CALL "call *%[paravirt_opptr];"
356
357 /*
358 * These macros are intended to wrap calls through one of the paravirt
359 * ops structs, so that they can be later identified and patched at
360 * runtime.
361 *
362 * Normally, a call to a pv_op function is a simple indirect call:
363 * (pv_op_struct.operations)(args...).
364 *
365 * Unfortunately, this is a relatively slow operation for modern CPUs,
366 * because it cannot necessarily determine what the destination
367 * address is. In this case, the address is a runtime constant, so at
368 * the very least we can patch the call to e a simple direct call, or
369 * ideally, patch an inline implementation into the callsite. (Direct
370 * calls are essentially free, because the call and return addresses
371 * are completely predictable.)
372 *
373 * For i386, these macros rely on the standard gcc "regparm(3)" calling
374 * convention, in which the first three arguments are placed in %eax,
375 * %edx, %ecx (in that order), and the remaining arguments are placed
376 * on the stack. All caller-save registers (eax,edx,ecx) are expected
377 * to be modified (either clobbered or used for return values).
378 * X86_64, on the other hand, already specifies a register-based calling
379 * conventions, returning at %rax, with parameteres going on %rdi, %rsi,
380 * %rdx, and %rcx. Note that for this reason, x86_64 does not need any
381 * special handling for dealing with 4 arguments, unlike i386.
382 * However, x86_64 also have to clobber all caller saved registers, which
383 * unfortunately, are quite a bit (r8 - r11)
384 *
385 * The call instruction itself is marked by placing its start address
386 * and size into the .parainstructions section, so that
387 * apply_paravirt() in arch/i386/kernel/alternative.c can do the
388 * appropriate patching under the control of the backend pv_init_ops
389 * implementation.
390 *
391 * Unfortunately there's no way to get gcc to generate the args setup
392 * for the call, and then allow the call itself to be generated by an
393 * inline asm. Because of this, we must do the complete arg setup and
394 * return value handling from within these macros. This is fairly
395 * cumbersome.
396 *
397 * There are 5 sets of PVOP_* macros for dealing with 0-4 arguments.
398 * It could be extended to more arguments, but there would be little
399 * to be gained from that. For each number of arguments, there are
400 * the two VCALL and CALL variants for void and non-void functions.
401 *
402 * When there is a return value, the invoker of the macro must specify
403 * the return type. The macro then uses sizeof() on that type to
404 * determine whether its a 32 or 64 bit value, and places the return
405 * in the right register(s) (just %eax for 32-bit, and %edx:%eax for
406 * 64-bit). For x86_64 machines, it just returns at %rax regardless of
407 * the return value size.
408 *
409 * 64-bit arguments are passed as a pair of adjacent 32-bit arguments
410 * i386 also passes 64-bit arguments as a pair of adjacent 32-bit arguments
411 * in low,high order
412 *
413 * Small structures are passed and returned in registers. The macro
414 * calling convention can't directly deal with this, so the wrapper
415 * functions must do this.
416 *
417 * These PVOP_* macros are only defined within this header. This
418 * means that all uses must be wrapped in inline functions. This also
419 * makes sure the incoming and outgoing types are always correct.
420 */
421 #ifdef CONFIG_X86_32
422 #define PVOP_VCALL_ARGS unsigned long __eax, __edx, __ecx
423 #define PVOP_CALL_ARGS PVOP_VCALL_ARGS
424 #define PVOP_VCALL_CLOBBERS "=a" (__eax), "=d" (__edx), \
425 "=c" (__ecx)
426 #define PVOP_CALL_CLOBBERS PVOP_VCALL_CLOBBERS
427 #define EXTRA_CLOBBERS
428 #define VEXTRA_CLOBBERS
429 #else
430 #define PVOP_VCALL_ARGS unsigned long __edi, __esi, __edx, __ecx
431 #define PVOP_CALL_ARGS PVOP_VCALL_ARGS, __eax
432 #define PVOP_VCALL_CLOBBERS "=D" (__edi), \
433 "=S" (__esi), "=d" (__edx), \
434 "=c" (__ecx)
435
436 #define PVOP_CALL_CLOBBERS PVOP_VCALL_CLOBBERS, "=a" (__eax)
437
438 #define EXTRA_CLOBBERS , "r8", "r9", "r10", "r11"
439 #define VEXTRA_CLOBBERS , "rax", "r8", "r9", "r10", "r11"
440 #endif
441
442 #define __PVOP_CALL(rettype, op, pre, post, ...) \
443 ({ \
444 rettype __ret; \
445 PVOP_CALL_ARGS; \
446 /* This is 32-bit specific, but is okay in 64-bit */ \
447 /* since this condition will never hold */ \
448 if (sizeof(rettype) > sizeof(unsigned long)) { \
449 asm volatile(pre \
450 paravirt_alt(PARAVIRT_CALL) \
451 post \
452 : PVOP_CALL_CLOBBERS \
453 : paravirt_type(op), \
454 paravirt_clobber(CLBR_ANY), \
455 ##__VA_ARGS__ \
456 : "memory", "cc" EXTRA_CLOBBERS); \
457 __ret = (rettype)((((u64)__edx) << 32) | __eax); \
458 } else { \
459 asm volatile(pre \
460 paravirt_alt(PARAVIRT_CALL) \
461 post \
462 : PVOP_CALL_CLOBBERS \
463 : paravirt_type(op), \
464 paravirt_clobber(CLBR_ANY), \
465 ##__VA_ARGS__ \
466 : "memory", "cc" EXTRA_CLOBBERS); \
467 __ret = (rettype)__eax; \
468 } \
469 __ret; \
470 })
471 #define __PVOP_VCALL(op, pre, post, ...) \
472 ({ \
473 PVOP_VCALL_ARGS; \
474 asm volatile(pre \
475 paravirt_alt(PARAVIRT_CALL) \
476 post \
477 : PVOP_VCALL_CLOBBERS \
478 : paravirt_type(op), \
479 paravirt_clobber(CLBR_ANY), \
480 ##__VA_ARGS__ \
481 : "memory", "cc" VEXTRA_CLOBBERS); \
482 })
483
484 #define PVOP_CALL0(rettype, op) \
485 __PVOP_CALL(rettype, op, "", "")
486 #define PVOP_VCALL0(op) \
487 __PVOP_VCALL(op, "", "")
488
489 #define PVOP_CALL1(rettype, op, arg1) \
490 __PVOP_CALL(rettype, op, "", "", "0" ((unsigned long)(arg1)))
491 #define PVOP_VCALL1(op, arg1) \
492 __PVOP_VCALL(op, "", "", "0" ((unsigned long)(arg1)))
493
494 #define PVOP_CALL2(rettype, op, arg1, arg2) \
495 __PVOP_CALL(rettype, op, "", "", "0" ((unsigned long)(arg1)), \
496 "1" ((unsigned long)(arg2)))
497 #define PVOP_VCALL2(op, arg1, arg2) \
498 __PVOP_VCALL(op, "", "", "0" ((unsigned long)(arg1)), \
499 "1" ((unsigned long)(arg2)))
500
501 #define PVOP_CALL3(rettype, op, arg1, arg2, arg3) \
502 __PVOP_CALL(rettype, op, "", "", "0" ((unsigned long)(arg1)), \
503 "1"((unsigned long)(arg2)), "2"((unsigned long)(arg3)))
504 #define PVOP_VCALL3(op, arg1, arg2, arg3) \
505 __PVOP_VCALL(op, "", "", "0" ((unsigned long)(arg1)), \
506 "1"((unsigned long)(arg2)), "2"((unsigned long)(arg3)))
507
508 /* This is the only difference in x86_64. We can make it much simpler */
509 #ifdef CONFIG_X86_32
510 #define PVOP_CALL4(rettype, op, arg1, arg2, arg3, arg4) \
511 __PVOP_CALL(rettype, op, \
512 "push %[_arg4];", "lea 4(%%esp),%%esp;", \
513 "0" ((u32)(arg1)), "1" ((u32)(arg2)), \
514 "2" ((u32)(arg3)), [_arg4] "mr" ((u32)(arg4)))
515 #define PVOP_VCALL4(op, arg1, arg2, arg3, arg4) \
516 __PVOP_VCALL(op, \
517 "push %[_arg4];", "lea 4(%%esp),%%esp;", \
518 "0" ((u32)(arg1)), "1" ((u32)(arg2)), \
519 "2" ((u32)(arg3)), [_arg4] "mr" ((u32)(arg4)))
520 #else
521 #define PVOP_CALL4(rettype, op, arg1, arg2, arg3, arg4) \
522 __PVOP_CALL(rettype, op, "", "", "0" ((unsigned long)(arg1)), \
523 "1"((unsigned long)(arg2)), "2"((unsigned long)(arg3)), \
524 "3"((unsigned long)(arg4)))
525 #define PVOP_VCALL4(op, arg1, arg2, arg3, arg4) \
526 __PVOP_VCALL(op, "", "", "0" ((unsigned long)(arg1)), \
527 "1"((unsigned long)(arg2)), "2"((unsigned long)(arg3)), \
528 "3"((unsigned long)(arg4)))
529 #endif
530
531 static inline int paravirt_enabled(void)
532 {
533 return pv_info.paravirt_enabled;
534 }
535
536 static inline void load_sp0(struct tss_struct *tss,
537 struct thread_struct *thread)
538 {
539 PVOP_VCALL2(pv_cpu_ops.load_sp0, tss, thread);
540 }
541
542 #define ARCH_SETUP pv_init_ops.arch_setup();
543 static inline unsigned long get_wallclock(void)
544 {
545 return PVOP_CALL0(unsigned long, pv_time_ops.get_wallclock);
546 }
547
548 static inline int set_wallclock(unsigned long nowtime)
549 {
550 return PVOP_CALL1(int, pv_time_ops.set_wallclock, nowtime);
551 }
552
553 static inline void (*choose_time_init(void))(void)
554 {
555 return pv_time_ops.time_init;
556 }
557
558 /* The paravirtualized CPUID instruction. */
559 static inline void __cpuid(unsigned int *eax, unsigned int *ebx,
560 unsigned int *ecx, unsigned int *edx)
561 {
562 PVOP_VCALL4(pv_cpu_ops.cpuid, eax, ebx, ecx, edx);
563 }
564
565 /*
566 * These special macros can be used to get or set a debugging register
567 */
568 static inline unsigned long paravirt_get_debugreg(int reg)
569 {
570 return PVOP_CALL1(unsigned long, pv_cpu_ops.get_debugreg, reg);
571 }
572 #define get_debugreg(var, reg) var = paravirt_get_debugreg(reg)
573 static inline void set_debugreg(unsigned long val, int reg)
574 {
575 PVOP_VCALL2(pv_cpu_ops.set_debugreg, reg, val);
576 }
577
578 static inline void clts(void)
579 {
580 PVOP_VCALL0(pv_cpu_ops.clts);
581 }
582
583 static inline unsigned long read_cr0(void)
584 {
585 return PVOP_CALL0(unsigned long, pv_cpu_ops.read_cr0);
586 }
587
588 static inline void write_cr0(unsigned long x)
589 {
590 PVOP_VCALL1(pv_cpu_ops.write_cr0, x);
591 }
592
593 static inline unsigned long read_cr2(void)
594 {
595 return PVOP_CALL0(unsigned long, pv_mmu_ops.read_cr2);
596 }
597
598 static inline void write_cr2(unsigned long x)
599 {
600 PVOP_VCALL1(pv_mmu_ops.write_cr2, x);
601 }
602
603 static inline unsigned long read_cr3(void)
604 {
605 return PVOP_CALL0(unsigned long, pv_mmu_ops.read_cr3);
606 }
607
608 static inline void write_cr3(unsigned long x)
609 {
610 PVOP_VCALL1(pv_mmu_ops.write_cr3, x);
611 }
612
613 static inline unsigned long read_cr4(void)
614 {
615 return PVOP_CALL0(unsigned long, pv_cpu_ops.read_cr4);
616 }
617 static inline unsigned long read_cr4_safe(void)
618 {
619 return PVOP_CALL0(unsigned long, pv_cpu_ops.read_cr4_safe);
620 }
621
622 static inline void write_cr4(unsigned long x)
623 {
624 PVOP_VCALL1(pv_cpu_ops.write_cr4, x);
625 }
626
627 #ifdef CONFIG_X86_64
628 static inline unsigned long read_cr8(void)
629 {
630 return PVOP_CALL0(unsigned long, pv_cpu_ops.read_cr8);
631 }
632
633 static inline void write_cr8(unsigned long x)
634 {
635 PVOP_VCALL1(pv_cpu_ops.write_cr8, x);
636 }
637 #endif
638
639 static inline void raw_safe_halt(void)
640 {
641 PVOP_VCALL0(pv_irq_ops.safe_halt);
642 }
643
644 static inline void halt(void)
645 {
646 PVOP_VCALL0(pv_irq_ops.safe_halt);
647 }
648
649 static inline void wbinvd(void)
650 {
651 PVOP_VCALL0(pv_cpu_ops.wbinvd);
652 }
653
654 #define get_kernel_rpl() (pv_info.kernel_rpl)
655
656 static inline u64 paravirt_read_msr(unsigned msr, int *err)
657 {
658 return PVOP_CALL2(u64, pv_cpu_ops.read_msr, msr, err);
659 }
660 static inline int paravirt_write_msr(unsigned msr, unsigned low, unsigned high)
661 {
662 return PVOP_CALL3(int, pv_cpu_ops.write_msr, msr, low, high);
663 }
664
665 /* These should all do BUG_ON(_err), but our headers are too tangled. */
666 #define rdmsr(msr, val1, val2) \
667 do { \
668 int _err; \
669 u64 _l = paravirt_read_msr(msr, &_err); \
670 val1 = (u32)_l; \
671 val2 = _l >> 32; \
672 } while (0)
673
674 #define wrmsr(msr, val1, val2) \
675 do { \
676 paravirt_write_msr(msr, val1, val2); \
677 } while (0)
678
679 #define rdmsrl(msr, val) \
680 do { \
681 int _err; \
682 val = paravirt_read_msr(msr, &_err); \
683 } while (0)
684
685 #define wrmsrl(msr, val) wrmsr(msr, (u32)((u64)(val)), ((u64)(val))>>32)
686 #define wrmsr_safe(msr, a, b) paravirt_write_msr(msr, a, b)
687
688 /* rdmsr with exception handling */
689 #define rdmsr_safe(msr, a, b) \
690 ({ \
691 int _err; \
692 u64 _l = paravirt_read_msr(msr, &_err); \
693 (*a) = (u32)_l; \
694 (*b) = _l >> 32; \
695 _err; \
696 })
697
698 static inline int rdmsrl_safe(unsigned msr, unsigned long long *p)
699 {
700 int err;
701
702 *p = paravirt_read_msr(msr, &err);
703 return err;
704 }
705
706 static inline u64 paravirt_read_tsc(void)
707 {
708 return PVOP_CALL0(u64, pv_cpu_ops.read_tsc);
709 }
710
711 #define rdtscl(low) \
712 do { \
713 u64 _l = paravirt_read_tsc(); \
714 low = (int)_l; \
715 } while (0)
716
717 #define rdtscll(val) (val = paravirt_read_tsc())
718
719 static inline unsigned long long paravirt_sched_clock(void)
720 {
721 return PVOP_CALL0(unsigned long long, pv_time_ops.sched_clock);
722 }
723 #define calculate_cpu_khz() (pv_time_ops.get_cpu_khz())
724
725 static inline unsigned long long paravirt_read_pmc(int counter)
726 {
727 return PVOP_CALL1(u64, pv_cpu_ops.read_pmc, counter);
728 }
729
730 #define rdpmc(counter, low, high) \
731 do { \
732 u64 _l = paravirt_read_pmc(counter); \
733 low = (u32)_l; \
734 high = _l >> 32; \
735 } while (0)
736
737 static inline unsigned long long paravirt_rdtscp(unsigned int *aux)
738 {
739 return PVOP_CALL1(u64, pv_cpu_ops.read_tscp, aux);
740 }
741
742 #define rdtscp(low, high, aux) \
743 do { \
744 int __aux; \
745 unsigned long __val = paravirt_rdtscp(&__aux); \
746 (low) = (u32)__val; \
747 (high) = (u32)(__val >> 32); \
748 (aux) = __aux; \
749 } while (0)
750
751 #define rdtscpll(val, aux) \
752 do { \
753 unsigned long __aux; \
754 val = paravirt_rdtscp(&__aux); \
755 (aux) = __aux; \
756 } while (0)
757
758 static inline void load_TR_desc(void)
759 {
760 PVOP_VCALL0(pv_cpu_ops.load_tr_desc);
761 }
762 static inline void load_gdt(const struct desc_ptr *dtr)
763 {
764 PVOP_VCALL1(pv_cpu_ops.load_gdt, dtr);
765 }
766 static inline void load_idt(const struct desc_ptr *dtr)
767 {
768 PVOP_VCALL1(pv_cpu_ops.load_idt, dtr);
769 }
770 static inline void set_ldt(const void *addr, unsigned entries)
771 {
772 PVOP_VCALL2(pv_cpu_ops.set_ldt, addr, entries);
773 }
774 static inline void store_gdt(struct desc_ptr *dtr)
775 {
776 PVOP_VCALL1(pv_cpu_ops.store_gdt, dtr);
777 }
778 static inline void store_idt(struct desc_ptr *dtr)
779 {
780 PVOP_VCALL1(pv_cpu_ops.store_idt, dtr);
781 }
782 static inline unsigned long paravirt_store_tr(void)
783 {
784 return PVOP_CALL0(unsigned long, pv_cpu_ops.store_tr);
785 }
786 #define store_tr(tr) ((tr) = paravirt_store_tr())
787 static inline void load_TLS(struct thread_struct *t, unsigned cpu)
788 {
789 PVOP_VCALL2(pv_cpu_ops.load_tls, t, cpu);
790 }
791
792 static inline void write_ldt_entry(struct desc_struct *dt, int entry,
793 const void *desc)
794 {
795 PVOP_VCALL3(pv_cpu_ops.write_ldt_entry, dt, entry, desc);
796 }
797
798 static inline void write_gdt_entry(struct desc_struct *dt, int entry,
799 void *desc, int type)
800 {
801 PVOP_VCALL4(pv_cpu_ops.write_gdt_entry, dt, entry, desc, type);
802 }
803
804 static inline void write_idt_entry(gate_desc *dt, int entry, const gate_desc *g)
805 {
806 PVOP_VCALL3(pv_cpu_ops.write_idt_entry, dt, entry, g);
807 }
808 static inline void set_iopl_mask(unsigned mask)
809 {
810 PVOP_VCALL1(pv_cpu_ops.set_iopl_mask, mask);
811 }
812
813 /* The paravirtualized I/O functions */
814 static inline void slow_down_io(void)
815 {
816 pv_cpu_ops.io_delay();
817 #ifdef REALLY_SLOW_IO
818 pv_cpu_ops.io_delay();
819 pv_cpu_ops.io_delay();
820 pv_cpu_ops.io_delay();
821 #endif
822 }
823
824 #ifdef CONFIG_X86_LOCAL_APIC
825 /*
826 * Basic functions accessing APICs.
827 */
828 static inline void apic_write(unsigned long reg, u32 v)
829 {
830 PVOP_VCALL2(pv_apic_ops.apic_write, reg, v);
831 }
832
833 static inline void apic_write_atomic(unsigned long reg, u32 v)
834 {
835 PVOP_VCALL2(pv_apic_ops.apic_write_atomic, reg, v);
836 }
837
838 static inline u32 apic_read(unsigned long reg)
839 {
840 return PVOP_CALL1(unsigned long, pv_apic_ops.apic_read, reg);
841 }
842
843 static inline void setup_boot_clock(void)
844 {
845 PVOP_VCALL0(pv_apic_ops.setup_boot_clock);
846 }
847
848 static inline void setup_secondary_clock(void)
849 {
850 PVOP_VCALL0(pv_apic_ops.setup_secondary_clock);
851 }
852 #endif
853
854 static inline void paravirt_post_allocator_init(void)
855 {
856 if (pv_init_ops.post_allocator_init)
857 (*pv_init_ops.post_allocator_init)();
858 }
859
860 static inline void paravirt_pagetable_setup_start(pgd_t *base)
861 {
862 (*pv_mmu_ops.pagetable_setup_start)(base);
863 }
864
865 static inline void paravirt_pagetable_setup_done(pgd_t *base)
866 {
867 (*pv_mmu_ops.pagetable_setup_done)(base);
868 }
869
870 #ifdef CONFIG_SMP
871 static inline void startup_ipi_hook(int phys_apicid, unsigned long start_eip,
872 unsigned long start_esp)
873 {
874 PVOP_VCALL3(pv_apic_ops.startup_ipi_hook,
875 phys_apicid, start_eip, start_esp);
876 }
877 #endif
878
879 static inline void paravirt_activate_mm(struct mm_struct *prev,
880 struct mm_struct *next)
881 {
882 PVOP_VCALL2(pv_mmu_ops.activate_mm, prev, next);
883 }
884
885 static inline void arch_dup_mmap(struct mm_struct *oldmm,
886 struct mm_struct *mm)
887 {
888 PVOP_VCALL2(pv_mmu_ops.dup_mmap, oldmm, mm);
889 }
890
891 static inline void arch_exit_mmap(struct mm_struct *mm)
892 {
893 PVOP_VCALL1(pv_mmu_ops.exit_mmap, mm);
894 }
895
896 static inline void __flush_tlb(void)
897 {
898 PVOP_VCALL0(pv_mmu_ops.flush_tlb_user);
899 }
900 static inline void __flush_tlb_global(void)
901 {
902 PVOP_VCALL0(pv_mmu_ops.flush_tlb_kernel);
903 }
904 static inline void __flush_tlb_single(unsigned long addr)
905 {
906 PVOP_VCALL1(pv_mmu_ops.flush_tlb_single, addr);
907 }
908
909 static inline void flush_tlb_others(cpumask_t cpumask, struct mm_struct *mm,
910 unsigned long va)
911 {
912 PVOP_VCALL3(pv_mmu_ops.flush_tlb_others, &cpumask, mm, va);
913 }
914
915 static inline void paravirt_alloc_pte(struct mm_struct *mm, unsigned pfn)
916 {
917 PVOP_VCALL2(pv_mmu_ops.alloc_pte, mm, pfn);
918 }
919 static inline void paravirt_release_pte(unsigned pfn)
920 {
921 PVOP_VCALL1(pv_mmu_ops.release_pte, pfn);
922 }
923
924 static inline void paravirt_alloc_pmd(struct mm_struct *mm, unsigned pfn)
925 {
926 PVOP_VCALL2(pv_mmu_ops.alloc_pmd, mm, pfn);
927 }
928
929 static inline void paravirt_alloc_pmd_clone(unsigned pfn, unsigned clonepfn,
930 unsigned start, unsigned count)
931 {
932 PVOP_VCALL4(pv_mmu_ops.alloc_pmd_clone, pfn, clonepfn, start, count);
933 }
934 static inline void paravirt_release_pmd(unsigned pfn)
935 {
936 PVOP_VCALL1(pv_mmu_ops.release_pmd, pfn);
937 }
938
939 static inline void paravirt_alloc_pud(struct mm_struct *mm, unsigned pfn)
940 {
941 PVOP_VCALL2(pv_mmu_ops.alloc_pud, mm, pfn);
942 }
943 static inline void paravirt_release_pud(unsigned pfn)
944 {
945 PVOP_VCALL1(pv_mmu_ops.release_pud, pfn);
946 }
947
948 #ifdef CONFIG_HIGHPTE
949 static inline void *kmap_atomic_pte(struct page *page, enum km_type type)
950 {
951 unsigned long ret;
952 ret = PVOP_CALL2(unsigned long, pv_mmu_ops.kmap_atomic_pte, page, type);
953 return (void *)ret;
954 }
955 #endif
956
957 static inline void pte_update(struct mm_struct *mm, unsigned long addr,
958 pte_t *ptep)
959 {
960 PVOP_VCALL3(pv_mmu_ops.pte_update, mm, addr, ptep);
961 }
962
963 static inline void pte_update_defer(struct mm_struct *mm, unsigned long addr,
964 pte_t *ptep)
965 {
966 PVOP_VCALL3(pv_mmu_ops.pte_update_defer, mm, addr, ptep);
967 }
968
969 static inline pte_t __pte(pteval_t val)
970 {
971 pteval_t ret;
972
973 if (sizeof(pteval_t) > sizeof(long))
974 ret = PVOP_CALL2(pteval_t,
975 pv_mmu_ops.make_pte,
976 val, (u64)val >> 32);
977 else
978 ret = PVOP_CALL1(pteval_t,
979 pv_mmu_ops.make_pte,
980 val);
981
982 return (pte_t) { .pte = ret };
983 }
984
985 static inline pteval_t pte_val(pte_t pte)
986 {
987 pteval_t ret;
988
989 if (sizeof(pteval_t) > sizeof(long))
990 ret = PVOP_CALL2(pteval_t, pv_mmu_ops.pte_val,
991 pte.pte, (u64)pte.pte >> 32);
992 else
993 ret = PVOP_CALL1(pteval_t, pv_mmu_ops.pte_val,
994 pte.pte);
995
996 return ret;
997 }
998
999 static inline pgd_t __pgd(pgdval_t val)
1000 {
1001 pgdval_t ret;
1002
1003 if (sizeof(pgdval_t) > sizeof(long))
1004 ret = PVOP_CALL2(pgdval_t, pv_mmu_ops.make_pgd,
1005 val, (u64)val >> 32);
1006 else
1007 ret = PVOP_CALL1(pgdval_t, pv_mmu_ops.make_pgd,
1008 val);
1009
1010 return (pgd_t) { ret };
1011 }
1012
1013 static inline pgdval_t pgd_val(pgd_t pgd)
1014 {
1015 pgdval_t ret;
1016
1017 if (sizeof(pgdval_t) > sizeof(long))
1018 ret = PVOP_CALL2(pgdval_t, pv_mmu_ops.pgd_val,
1019 pgd.pgd, (u64)pgd.pgd >> 32);
1020 else
1021 ret = PVOP_CALL1(pgdval_t, pv_mmu_ops.pgd_val,
1022 pgd.pgd);
1023
1024 return ret;
1025 }
1026
1027 static inline void set_pte(pte_t *ptep, pte_t pte)
1028 {
1029 if (sizeof(pteval_t) > sizeof(long))
1030 PVOP_VCALL3(pv_mmu_ops.set_pte, ptep,
1031 pte.pte, (u64)pte.pte >> 32);
1032 else
1033 PVOP_VCALL2(pv_mmu_ops.set_pte, ptep,
1034 pte.pte);
1035 }
1036
1037 static inline void set_pte_at(struct mm_struct *mm, unsigned long addr,
1038 pte_t *ptep, pte_t pte)
1039 {
1040 if (sizeof(pteval_t) > sizeof(long))
1041 /* 5 arg words */
1042 pv_mmu_ops.set_pte_at(mm, addr, ptep, pte);
1043 else
1044 PVOP_VCALL4(pv_mmu_ops.set_pte_at, mm, addr, ptep, pte.pte);
1045 }
1046
1047 static inline void set_pmd(pmd_t *pmdp, pmd_t pmd)
1048 {
1049 pmdval_t val = native_pmd_val(pmd);
1050
1051 if (sizeof(pmdval_t) > sizeof(long))
1052 PVOP_VCALL3(pv_mmu_ops.set_pmd, pmdp, val, (u64)val >> 32);
1053 else
1054 PVOP_VCALL2(pv_mmu_ops.set_pmd, pmdp, val);
1055 }
1056
1057 #if PAGETABLE_LEVELS >= 3
1058 static inline pmd_t __pmd(pmdval_t val)
1059 {
1060 pmdval_t ret;
1061
1062 if (sizeof(pmdval_t) > sizeof(long))
1063 ret = PVOP_CALL2(pmdval_t, pv_mmu_ops.make_pmd,
1064 val, (u64)val >> 32);
1065 else
1066 ret = PVOP_CALL1(pmdval_t, pv_mmu_ops.make_pmd,
1067 val);
1068
1069 return (pmd_t) { ret };
1070 }
1071
1072 static inline pmdval_t pmd_val(pmd_t pmd)
1073 {
1074 pmdval_t ret;
1075
1076 if (sizeof(pmdval_t) > sizeof(long))
1077 ret = PVOP_CALL2(pmdval_t, pv_mmu_ops.pmd_val,
1078 pmd.pmd, (u64)pmd.pmd >> 32);
1079 else
1080 ret = PVOP_CALL1(pmdval_t, pv_mmu_ops.pmd_val,
1081 pmd.pmd);
1082
1083 return ret;
1084 }
1085
1086 static inline void set_pud(pud_t *pudp, pud_t pud)
1087 {
1088 pudval_t val = native_pud_val(pud);
1089
1090 if (sizeof(pudval_t) > sizeof(long))
1091 PVOP_VCALL3(pv_mmu_ops.set_pud, pudp,
1092 val, (u64)val >> 32);
1093 else
1094 PVOP_VCALL2(pv_mmu_ops.set_pud, pudp,
1095 val);
1096 }
1097 #if PAGETABLE_LEVELS == 4
1098 static inline pud_t __pud(pudval_t val)
1099 {
1100 pudval_t ret;
1101
1102 if (sizeof(pudval_t) > sizeof(long))
1103 ret = PVOP_CALL2(pudval_t, pv_mmu_ops.make_pud,
1104 val, (u64)val >> 32);
1105 else
1106 ret = PVOP_CALL1(pudval_t, pv_mmu_ops.make_pud,
1107 val);
1108
1109 return (pud_t) { ret };
1110 }
1111
1112 static inline pudval_t pud_val(pud_t pud)
1113 {
1114 pudval_t ret;
1115
1116 if (sizeof(pudval_t) > sizeof(long))
1117 ret = PVOP_CALL2(pudval_t, pv_mmu_ops.pud_val,
1118 pud.pud, (u64)pud.pud >> 32);
1119 else
1120 ret = PVOP_CALL1(pudval_t, pv_mmu_ops.pud_val,
1121 pud.pud);
1122
1123 return ret;
1124 }
1125
1126 static inline void set_pgd(pgd_t *pgdp, pgd_t pgd)
1127 {
1128 pgdval_t val = native_pgd_val(pgd);
1129
1130 if (sizeof(pgdval_t) > sizeof(long))
1131 PVOP_VCALL3(pv_mmu_ops.set_pgd, pgdp,
1132 val, (u64)val >> 32);
1133 else
1134 PVOP_VCALL2(pv_mmu_ops.set_pgd, pgdp,
1135 val);
1136 }
1137
1138 static inline void pgd_clear(pgd_t *pgdp)
1139 {
1140 set_pgd(pgdp, __pgd(0));
1141 }
1142
1143 static inline void pud_clear(pud_t *pudp)
1144 {
1145 set_pud(pudp, __pud(0));
1146 }
1147
1148 #endif /* PAGETABLE_LEVELS == 4 */
1149
1150 #endif /* PAGETABLE_LEVELS >= 3 */
1151
1152 #ifdef CONFIG_X86_PAE
1153 /* Special-case pte-setting operations for PAE, which can't update a
1154 64-bit pte atomically */
1155 static inline void set_pte_atomic(pte_t *ptep, pte_t pte)
1156 {
1157 PVOP_VCALL3(pv_mmu_ops.set_pte_atomic, ptep,
1158 pte.pte, pte.pte >> 32);
1159 }
1160
1161 static inline void set_pte_present(struct mm_struct *mm, unsigned long addr,
1162 pte_t *ptep, pte_t pte)
1163 {
1164 /* 5 arg words */
1165 pv_mmu_ops.set_pte_present(mm, addr, ptep, pte);
1166 }
1167
1168 static inline void pte_clear(struct mm_struct *mm, unsigned long addr,
1169 pte_t *ptep)
1170 {
1171 PVOP_VCALL3(pv_mmu_ops.pte_clear, mm, addr, ptep);
1172 }
1173
1174 static inline void pmd_clear(pmd_t *pmdp)
1175 {
1176 PVOP_VCALL1(pv_mmu_ops.pmd_clear, pmdp);
1177 }
1178 #else /* !CONFIG_X86_PAE */
1179 static inline void set_pte_atomic(pte_t *ptep, pte_t pte)
1180 {
1181 set_pte(ptep, pte);
1182 }
1183
1184 static inline void set_pte_present(struct mm_struct *mm, unsigned long addr,
1185 pte_t *ptep, pte_t pte)
1186 {
1187 set_pte(ptep, pte);
1188 }
1189
1190 static inline void pte_clear(struct mm_struct *mm, unsigned long addr,
1191 pte_t *ptep)
1192 {
1193 set_pte_at(mm, addr, ptep, __pte(0));
1194 }
1195
1196 static inline void pmd_clear(pmd_t *pmdp)
1197 {
1198 set_pmd(pmdp, __pmd(0));
1199 }
1200 #endif /* CONFIG_X86_PAE */
1201
1202 /* Lazy mode for batching updates / context switch */
1203 enum paravirt_lazy_mode {
1204 PARAVIRT_LAZY_NONE,
1205 PARAVIRT_LAZY_MMU,
1206 PARAVIRT_LAZY_CPU,
1207 };
1208
1209 enum paravirt_lazy_mode paravirt_get_lazy_mode(void);
1210 void paravirt_enter_lazy_cpu(void);
1211 void paravirt_leave_lazy_cpu(void);
1212 void paravirt_enter_lazy_mmu(void);
1213 void paravirt_leave_lazy_mmu(void);
1214 void paravirt_leave_lazy(enum paravirt_lazy_mode mode);
1215
1216 #define __HAVE_ARCH_ENTER_LAZY_CPU_MODE
1217 static inline void arch_enter_lazy_cpu_mode(void)
1218 {
1219 PVOP_VCALL0(pv_cpu_ops.lazy_mode.enter);
1220 }
1221
1222 static inline void arch_leave_lazy_cpu_mode(void)
1223 {
1224 PVOP_VCALL0(pv_cpu_ops.lazy_mode.leave);
1225 }
1226
1227 static inline void arch_flush_lazy_cpu_mode(void)
1228 {
1229 if (unlikely(paravirt_get_lazy_mode() == PARAVIRT_LAZY_CPU)) {
1230 arch_leave_lazy_cpu_mode();
1231 arch_enter_lazy_cpu_mode();
1232 }
1233 }
1234
1235
1236 #define __HAVE_ARCH_ENTER_LAZY_MMU_MODE
1237 static inline void arch_enter_lazy_mmu_mode(void)
1238 {
1239 PVOP_VCALL0(pv_mmu_ops.lazy_mode.enter);
1240 }
1241
1242 static inline void arch_leave_lazy_mmu_mode(void)
1243 {
1244 PVOP_VCALL0(pv_mmu_ops.lazy_mode.leave);
1245 }
1246
1247 static inline void arch_flush_lazy_mmu_mode(void)
1248 {
1249 if (unlikely(paravirt_get_lazy_mode() == PARAVIRT_LAZY_MMU)) {
1250 arch_leave_lazy_mmu_mode();
1251 arch_enter_lazy_mmu_mode();
1252 }
1253 }
1254
1255 void _paravirt_nop(void);
1256 #define paravirt_nop ((void *)_paravirt_nop)
1257
1258 /* These all sit in the .parainstructions section to tell us what to patch. */
1259 struct paravirt_patch_site {
1260 u8 *instr; /* original instructions */
1261 u8 instrtype; /* type of this instruction */
1262 u8 len; /* length of original instruction */
1263 u16 clobbers; /* what registers you may clobber */
1264 };
1265
1266 extern struct paravirt_patch_site __parainstructions[],
1267 __parainstructions_end[];
1268
1269 #ifdef CONFIG_X86_32
1270 #define PV_SAVE_REGS "pushl %%ecx; pushl %%edx;"
1271 #define PV_RESTORE_REGS "popl %%edx; popl %%ecx"
1272 #define PV_FLAGS_ARG "0"
1273 #define PV_EXTRA_CLOBBERS
1274 #define PV_VEXTRA_CLOBBERS
1275 #else
1276 /* We save some registers, but all of them, that's too much. We clobber all
1277 * caller saved registers but the argument parameter */
1278 #define PV_SAVE_REGS "pushq %%rdi;"
1279 #define PV_RESTORE_REGS "popq %%rdi;"
1280 #define PV_EXTRA_CLOBBERS EXTRA_CLOBBERS, "rcx" , "rdx"
1281 #define PV_VEXTRA_CLOBBERS EXTRA_CLOBBERS, "rdi", "rcx" , "rdx"
1282 #define PV_FLAGS_ARG "D"
1283 #endif
1284
1285 static inline unsigned long __raw_local_save_flags(void)
1286 {
1287 unsigned long f;
1288
1289 asm volatile(paravirt_alt(PV_SAVE_REGS
1290 PARAVIRT_CALL
1291 PV_RESTORE_REGS)
1292 : "=a"(f)
1293 : paravirt_type(pv_irq_ops.save_fl),
1294 paravirt_clobber(CLBR_EAX)
1295 : "memory", "cc" PV_VEXTRA_CLOBBERS);
1296 return f;
1297 }
1298
1299 static inline void raw_local_irq_restore(unsigned long f)
1300 {
1301 asm volatile(paravirt_alt(PV_SAVE_REGS
1302 PARAVIRT_CALL
1303 PV_RESTORE_REGS)
1304 : "=a"(f)
1305 : PV_FLAGS_ARG(f),
1306 paravirt_type(pv_irq_ops.restore_fl),
1307 paravirt_clobber(CLBR_EAX)
1308 : "memory", "cc" PV_EXTRA_CLOBBERS);
1309 }
1310
1311 static inline void raw_local_irq_disable(void)
1312 {
1313 asm volatile(paravirt_alt(PV_SAVE_REGS
1314 PARAVIRT_CALL
1315 PV_RESTORE_REGS)
1316 :
1317 : paravirt_type(pv_irq_ops.irq_disable),
1318 paravirt_clobber(CLBR_EAX)
1319 : "memory", "eax", "cc" PV_EXTRA_CLOBBERS);
1320 }
1321
1322 static inline void raw_local_irq_enable(void)
1323 {
1324 asm volatile(paravirt_alt(PV_SAVE_REGS
1325 PARAVIRT_CALL
1326 PV_RESTORE_REGS)
1327 :
1328 : paravirt_type(pv_irq_ops.irq_enable),
1329 paravirt_clobber(CLBR_EAX)
1330 : "memory", "eax", "cc" PV_EXTRA_CLOBBERS);
1331 }
1332
1333 static inline unsigned long __raw_local_irq_save(void)
1334 {
1335 unsigned long f;
1336
1337 f = __raw_local_save_flags();
1338 raw_local_irq_disable();
1339 return f;
1340 }
1341
1342 /* Make sure as little as possible of this mess escapes. */
1343 #undef PARAVIRT_CALL
1344 #undef __PVOP_CALL
1345 #undef __PVOP_VCALL
1346 #undef PVOP_VCALL0
1347 #undef PVOP_CALL0
1348 #undef PVOP_VCALL1
1349 #undef PVOP_CALL1
1350 #undef PVOP_VCALL2
1351 #undef PVOP_CALL2
1352 #undef PVOP_VCALL3
1353 #undef PVOP_CALL3
1354 #undef PVOP_VCALL4
1355 #undef PVOP_CALL4
1356
1357 #else /* __ASSEMBLY__ */
1358
1359 #define _PVSITE(ptype, clobbers, ops, word, algn) \
1360 771:; \
1361 ops; \
1362 772:; \
1363 .pushsection .parainstructions,"a"; \
1364 .align algn; \
1365 word 771b; \
1366 .byte ptype; \
1367 .byte 772b-771b; \
1368 .short clobbers; \
1369 .popsection
1370
1371
1372 #ifdef CONFIG_X86_64
1373 #define PV_SAVE_REGS pushq %rax; pushq %rdi; pushq %rcx; pushq %rdx
1374 #define PV_RESTORE_REGS popq %rdx; popq %rcx; popq %rdi; popq %rax
1375 #define PARA_PATCH(struct, off) ((PARAVIRT_PATCH_##struct + (off)) / 8)
1376 #define PARA_SITE(ptype, clobbers, ops) _PVSITE(ptype, clobbers, ops, .quad, 8)
1377 #else
1378 #define PV_SAVE_REGS pushl %eax; pushl %edi; pushl %ecx; pushl %edx
1379 #define PV_RESTORE_REGS popl %edx; popl %ecx; popl %edi; popl %eax
1380 #define PARA_PATCH(struct, off) ((PARAVIRT_PATCH_##struct + (off)) / 4)
1381 #define PARA_SITE(ptype, clobbers, ops) _PVSITE(ptype, clobbers, ops, .long, 4)
1382 #endif
1383
1384 #define INTERRUPT_RETURN \
1385 PARA_SITE(PARA_PATCH(pv_cpu_ops, PV_CPU_iret), CLBR_NONE, \
1386 jmp *%cs:pv_cpu_ops+PV_CPU_iret)
1387
1388 #define DISABLE_INTERRUPTS(clobbers) \
1389 PARA_SITE(PARA_PATCH(pv_irq_ops, PV_IRQ_irq_disable), clobbers, \
1390 PV_SAVE_REGS; \
1391 call *%cs:pv_irq_ops+PV_IRQ_irq_disable; \
1392 PV_RESTORE_REGS;) \
1393
1394 #define ENABLE_INTERRUPTS(clobbers) \
1395 PARA_SITE(PARA_PATCH(pv_irq_ops, PV_IRQ_irq_enable), clobbers, \
1396 PV_SAVE_REGS; \
1397 call *%cs:pv_irq_ops+PV_IRQ_irq_enable; \
1398 PV_RESTORE_REGS;)
1399
1400 #define ENABLE_INTERRUPTS_SYSCALL_RET \
1401 PARA_SITE(PARA_PATCH(pv_cpu_ops, PV_CPU_irq_enable_syscall_ret),\
1402 CLBR_NONE, \
1403 jmp *%cs:pv_cpu_ops+PV_CPU_irq_enable_syscall_ret)
1404
1405
1406 #ifdef CONFIG_X86_32
1407 #define GET_CR0_INTO_EAX \
1408 push %ecx; push %edx; \
1409 call *pv_cpu_ops+PV_CPU_read_cr0; \
1410 pop %edx; pop %ecx
1411 #else
1412 #define SWAPGS \
1413 PARA_SITE(PARA_PATCH(pv_cpu_ops, PV_CPU_swapgs), CLBR_NONE, \
1414 PV_SAVE_REGS; \
1415 call *pv_cpu_ops+PV_CPU_swapgs; \
1416 PV_RESTORE_REGS \
1417 )
1418
1419 #define GET_CR2_INTO_RCX \
1420 call *pv_mmu_ops+PV_MMU_read_cr2; \
1421 movq %rax, %rcx; \
1422 xorq %rax, %rax;
1423
1424 #endif
1425
1426 #endif /* __ASSEMBLY__ */
1427 #endif /* CONFIG_PARAVIRT */
1428 #endif /* __ASM_PARAVIRT_H */
This page took 0.064809 seconds and 6 git commands to generate.