x86/paravirt: add debugging for missing operations
[deliverable/linux.git] / include / asm-x86 / paravirt.h
1 #ifndef __ASM_PARAVIRT_H
2 #define __ASM_PARAVIRT_H
3 /* Various instructions on x86 need to be replaced for
4 * para-virtualization: those hooks are defined here. */
5
6 #ifdef CONFIG_PARAVIRT
7 #include <asm/page.h>
8 #include <asm/asm.h>
9
10 /* Bitmask of what can be clobbered: usually at least eax. */
11 #define CLBR_NONE 0
12 #define CLBR_EAX (1 << 0)
13 #define CLBR_ECX (1 << 1)
14 #define CLBR_EDX (1 << 2)
15
16 #ifdef CONFIG_X86_64
17 #define CLBR_RSI (1 << 3)
18 #define CLBR_RDI (1 << 4)
19 #define CLBR_R8 (1 << 5)
20 #define CLBR_R9 (1 << 6)
21 #define CLBR_R10 (1 << 7)
22 #define CLBR_R11 (1 << 8)
23 #define CLBR_ANY ((1 << 9) - 1)
24 #include <asm/desc_defs.h>
25 #else
26 /* CLBR_ANY should match all regs platform has. For i386, that's just it */
27 #define CLBR_ANY ((1 << 3) - 1)
28 #endif /* X86_64 */
29
30 #ifndef __ASSEMBLY__
31 #include <linux/types.h>
32 #include <linux/cpumask.h>
33 #include <asm/kmap_types.h>
34 #include <asm/desc_defs.h>
35
36 struct page;
37 struct thread_struct;
38 struct desc_ptr;
39 struct tss_struct;
40 struct mm_struct;
41 struct desc_struct;
42
43 /* general info */
44 struct pv_info {
45 unsigned int kernel_rpl;
46 int shared_kernel_pmd;
47 int paravirt_enabled;
48 const char *name;
49 };
50
51 struct pv_init_ops {
52 /*
53 * Patch may replace one of the defined code sequences with
54 * arbitrary code, subject to the same register constraints.
55 * This generally means the code is not free to clobber any
56 * registers other than EAX. The patch function should return
57 * the number of bytes of code generated, as we nop pad the
58 * rest in generic code.
59 */
60 unsigned (*patch)(u8 type, u16 clobber, void *insnbuf,
61 unsigned long addr, unsigned len);
62
63 /* Basic arch-specific setup */
64 void (*arch_setup)(void);
65 char *(*memory_setup)(void);
66 void (*post_allocator_init)(void);
67
68 /* Print a banner to identify the environment */
69 void (*banner)(void);
70 };
71
72
73 struct pv_lazy_ops {
74 /* Set deferred update mode, used for batching operations. */
75 void (*enter)(void);
76 void (*leave)(void);
77 };
78
79 struct pv_time_ops {
80 void (*time_init)(void);
81
82 /* Set and set time of day */
83 unsigned long (*get_wallclock)(void);
84 int (*set_wallclock)(unsigned long);
85
86 unsigned long long (*sched_clock)(void);
87 unsigned long (*get_cpu_khz)(void);
88 };
89
90 struct pv_cpu_ops {
91 /* hooks for various privileged instructions */
92 unsigned long (*get_debugreg)(int regno);
93 void (*set_debugreg)(int regno, unsigned long value);
94
95 void (*clts)(void);
96
97 unsigned long (*read_cr0)(void);
98 void (*write_cr0)(unsigned long);
99
100 unsigned long (*read_cr4_safe)(void);
101 unsigned long (*read_cr4)(void);
102 void (*write_cr4)(unsigned long);
103
104 #ifdef CONFIG_X86_64
105 unsigned long (*read_cr8)(void);
106 void (*write_cr8)(unsigned long);
107 #endif
108
109 /* Segment descriptor handling */
110 void (*load_tr_desc)(void);
111 void (*load_gdt)(const struct desc_ptr *);
112 void (*load_idt)(const struct desc_ptr *);
113 void (*store_gdt)(struct desc_ptr *);
114 void (*store_idt)(struct desc_ptr *);
115 void (*set_ldt)(const void *desc, unsigned entries);
116 unsigned long (*store_tr)(void);
117 void (*load_tls)(struct thread_struct *t, unsigned int cpu);
118 void (*write_ldt_entry)(struct desc_struct *ldt, int entrynum,
119 const void *desc);
120 void (*write_gdt_entry)(struct desc_struct *,
121 int entrynum, const void *desc, int size);
122 void (*write_idt_entry)(gate_desc *,
123 int entrynum, const gate_desc *gate);
124 void (*load_sp0)(struct tss_struct *tss, struct thread_struct *t);
125
126 void (*set_iopl_mask)(unsigned mask);
127
128 void (*wbinvd)(void);
129 void (*io_delay)(void);
130
131 /* cpuid emulation, mostly so that caps bits can be disabled */
132 void (*cpuid)(unsigned int *eax, unsigned int *ebx,
133 unsigned int *ecx, unsigned int *edx);
134
135 /* MSR, PMC and TSR operations.
136 err = 0/-EFAULT. wrmsr returns 0/-EFAULT. */
137 u64 (*read_msr)(unsigned int msr, int *err);
138 int (*write_msr)(unsigned int msr, unsigned low, unsigned high);
139
140 u64 (*read_tsc)(void);
141 u64 (*read_pmc)(int counter);
142 unsigned long long (*read_tscp)(unsigned int *aux);
143
144 /* These two are jmp to, not actually called. */
145 void (*irq_enable_syscall_ret)(void);
146 void (*iret)(void);
147
148 void (*swapgs)(void);
149
150 struct pv_lazy_ops lazy_mode;
151 };
152
153 struct pv_irq_ops {
154 void (*init_IRQ)(void);
155
156 /*
157 * Get/set interrupt state. save_fl and restore_fl are only
158 * expected to use X86_EFLAGS_IF; all other bits
159 * returned from save_fl are undefined, and may be ignored by
160 * restore_fl.
161 */
162 unsigned long (*save_fl)(void);
163 void (*restore_fl)(unsigned long);
164 void (*irq_disable)(void);
165 void (*irq_enable)(void);
166 void (*safe_halt)(void);
167 void (*halt)(void);
168 };
169
170 struct pv_apic_ops {
171 #ifdef CONFIG_X86_LOCAL_APIC
172 /*
173 * Direct APIC operations, principally for VMI. Ideally
174 * these shouldn't be in this interface.
175 */
176 void (*apic_write)(unsigned long reg, u32 v);
177 void (*apic_write_atomic)(unsigned long reg, u32 v);
178 u32 (*apic_read)(unsigned long reg);
179 void (*setup_boot_clock)(void);
180 void (*setup_secondary_clock)(void);
181
182 void (*startup_ipi_hook)(int phys_apicid,
183 unsigned long start_eip,
184 unsigned long start_esp);
185 #endif
186 };
187
188 struct pv_mmu_ops {
189 /*
190 * Called before/after init_mm pagetable setup. setup_start
191 * may reset %cr3, and may pre-install parts of the pagetable;
192 * pagetable setup is expected to preserve any existing
193 * mapping.
194 */
195 void (*pagetable_setup_start)(pgd_t *pgd_base);
196 void (*pagetable_setup_done)(pgd_t *pgd_base);
197
198 unsigned long (*read_cr2)(void);
199 void (*write_cr2)(unsigned long);
200
201 unsigned long (*read_cr3)(void);
202 void (*write_cr3)(unsigned long);
203
204 /*
205 * Hooks for intercepting the creation/use/destruction of an
206 * mm_struct.
207 */
208 void (*activate_mm)(struct mm_struct *prev,
209 struct mm_struct *next);
210 void (*dup_mmap)(struct mm_struct *oldmm,
211 struct mm_struct *mm);
212 void (*exit_mmap)(struct mm_struct *mm);
213
214
215 /* TLB operations */
216 void (*flush_tlb_user)(void);
217 void (*flush_tlb_kernel)(void);
218 void (*flush_tlb_single)(unsigned long addr);
219 void (*flush_tlb_others)(const cpumask_t *cpus, struct mm_struct *mm,
220 unsigned long va);
221
222 /* Hooks for allocating and freeing a pagetable top-level */
223 int (*pgd_alloc)(struct mm_struct *mm);
224 void (*pgd_free)(struct mm_struct *mm, pgd_t *pgd);
225
226 /*
227 * Hooks for allocating/releasing pagetable pages when they're
228 * attached to a pagetable
229 */
230 void (*alloc_pte)(struct mm_struct *mm, u32 pfn);
231 void (*alloc_pmd)(struct mm_struct *mm, u32 pfn);
232 void (*alloc_pmd_clone)(u32 pfn, u32 clonepfn, u32 start, u32 count);
233 void (*alloc_pud)(struct mm_struct *mm, u32 pfn);
234 void (*release_pte)(u32 pfn);
235 void (*release_pmd)(u32 pfn);
236 void (*release_pud)(u32 pfn);
237
238 /* Pagetable manipulation functions */
239 void (*set_pte)(pte_t *ptep, pte_t pteval);
240 void (*set_pte_at)(struct mm_struct *mm, unsigned long addr,
241 pte_t *ptep, pte_t pteval);
242 void (*set_pmd)(pmd_t *pmdp, pmd_t pmdval);
243 void (*pte_update)(struct mm_struct *mm, unsigned long addr,
244 pte_t *ptep);
245 void (*pte_update_defer)(struct mm_struct *mm,
246 unsigned long addr, pte_t *ptep);
247
248 pte_t (*ptep_modify_prot_start)(struct mm_struct *mm, unsigned long addr,
249 pte_t *ptep);
250 void (*ptep_modify_prot_commit)(struct mm_struct *mm, unsigned long addr,
251 pte_t *ptep, pte_t pte);
252
253 pteval_t (*pte_val)(pte_t);
254 pteval_t (*pte_flags)(pte_t);
255 pte_t (*make_pte)(pteval_t pte);
256
257 pgdval_t (*pgd_val)(pgd_t);
258 pgd_t (*make_pgd)(pgdval_t pgd);
259
260 #if PAGETABLE_LEVELS >= 3
261 #ifdef CONFIG_X86_PAE
262 void (*set_pte_atomic)(pte_t *ptep, pte_t pteval);
263 void (*set_pte_present)(struct mm_struct *mm, unsigned long addr,
264 pte_t *ptep, pte_t pte);
265 void (*pte_clear)(struct mm_struct *mm, unsigned long addr,
266 pte_t *ptep);
267 void (*pmd_clear)(pmd_t *pmdp);
268
269 #endif /* CONFIG_X86_PAE */
270
271 void (*set_pud)(pud_t *pudp, pud_t pudval);
272
273 pmdval_t (*pmd_val)(pmd_t);
274 pmd_t (*make_pmd)(pmdval_t pmd);
275
276 #if PAGETABLE_LEVELS == 4
277 pudval_t (*pud_val)(pud_t);
278 pud_t (*make_pud)(pudval_t pud);
279
280 void (*set_pgd)(pgd_t *pudp, pgd_t pgdval);
281 #endif /* PAGETABLE_LEVELS == 4 */
282 #endif /* PAGETABLE_LEVELS >= 3 */
283
284 #ifdef CONFIG_HIGHPTE
285 void *(*kmap_atomic_pte)(struct page *page, enum km_type type);
286 #endif
287
288 struct pv_lazy_ops lazy_mode;
289
290 /* dom0 ops */
291
292 /* Sometimes the physical address is a pfn, and sometimes its
293 an mfn. We can tell which is which from the index. */
294 void (*set_fixmap)(unsigned /* enum fixed_addresses */ idx,
295 unsigned long phys, pgprot_t flags);
296 };
297
298 /* This contains all the paravirt structures: we get a convenient
299 * number for each function using the offset which we use to indicate
300 * what to patch. */
301 struct paravirt_patch_template {
302 struct pv_init_ops pv_init_ops;
303 struct pv_time_ops pv_time_ops;
304 struct pv_cpu_ops pv_cpu_ops;
305 struct pv_irq_ops pv_irq_ops;
306 struct pv_apic_ops pv_apic_ops;
307 struct pv_mmu_ops pv_mmu_ops;
308 };
309
310 extern struct pv_info pv_info;
311 extern struct pv_init_ops pv_init_ops;
312 extern struct pv_time_ops pv_time_ops;
313 extern struct pv_cpu_ops pv_cpu_ops;
314 extern struct pv_irq_ops pv_irq_ops;
315 extern struct pv_apic_ops pv_apic_ops;
316 extern struct pv_mmu_ops pv_mmu_ops;
317
318 #define PARAVIRT_PATCH(x) \
319 (offsetof(struct paravirt_patch_template, x) / sizeof(void *))
320
321 #define paravirt_type(op) \
322 [paravirt_typenum] "i" (PARAVIRT_PATCH(op)), \
323 [paravirt_opptr] "m" (op)
324 #define paravirt_clobber(clobber) \
325 [paravirt_clobber] "i" (clobber)
326
327 /*
328 * Generate some code, and mark it as patchable by the
329 * apply_paravirt() alternate instruction patcher.
330 */
331 #define _paravirt_alt(insn_string, type, clobber) \
332 "771:\n\t" insn_string "\n" "772:\n" \
333 ".pushsection .parainstructions,\"a\"\n" \
334 _ASM_ALIGN "\n" \
335 _ASM_PTR " 771b\n" \
336 " .byte " type "\n" \
337 " .byte 772b-771b\n" \
338 " .short " clobber "\n" \
339 ".popsection\n"
340
341 /* Generate patchable code, with the default asm parameters. */
342 #define paravirt_alt(insn_string) \
343 _paravirt_alt(insn_string, "%c[paravirt_typenum]", "%c[paravirt_clobber]")
344
345 /* Simple instruction patching code. */
346 #define DEF_NATIVE(ops, name, code) \
347 extern const char start_##ops##_##name[], end_##ops##_##name[]; \
348 asm("start_" #ops "_" #name ": " code "; end_" #ops "_" #name ":")
349
350 unsigned paravirt_patch_nop(void);
351 unsigned paravirt_patch_ignore(unsigned len);
352 unsigned paravirt_patch_call(void *insnbuf,
353 const void *target, u16 tgt_clobbers,
354 unsigned long addr, u16 site_clobbers,
355 unsigned len);
356 unsigned paravirt_patch_jmp(void *insnbuf, const void *target,
357 unsigned long addr, unsigned len);
358 unsigned paravirt_patch_default(u8 type, u16 clobbers, void *insnbuf,
359 unsigned long addr, unsigned len);
360
361 unsigned paravirt_patch_insns(void *insnbuf, unsigned len,
362 const char *start, const char *end);
363
364 unsigned native_patch(u8 type, u16 clobbers, void *ibuf,
365 unsigned long addr, unsigned len);
366
367 int paravirt_disable_iospace(void);
368
369 /*
370 * This generates an indirect call based on the operation type number.
371 * The type number, computed in PARAVIRT_PATCH, is derived from the
372 * offset into the paravirt_patch_template structure, and can therefore be
373 * freely converted back into a structure offset.
374 */
375 #define PARAVIRT_CALL "call *%[paravirt_opptr];"
376
377 /*
378 * These macros are intended to wrap calls through one of the paravirt
379 * ops structs, so that they can be later identified and patched at
380 * runtime.
381 *
382 * Normally, a call to a pv_op function is a simple indirect call:
383 * (pv_op_struct.operations)(args...).
384 *
385 * Unfortunately, this is a relatively slow operation for modern CPUs,
386 * because it cannot necessarily determine what the destination
387 * address is. In this case, the address is a runtime constant, so at
388 * the very least we can patch the call to e a simple direct call, or
389 * ideally, patch an inline implementation into the callsite. (Direct
390 * calls are essentially free, because the call and return addresses
391 * are completely predictable.)
392 *
393 * For i386, these macros rely on the standard gcc "regparm(3)" calling
394 * convention, in which the first three arguments are placed in %eax,
395 * %edx, %ecx (in that order), and the remaining arguments are placed
396 * on the stack. All caller-save registers (eax,edx,ecx) are expected
397 * to be modified (either clobbered or used for return values).
398 * X86_64, on the other hand, already specifies a register-based calling
399 * conventions, returning at %rax, with parameteres going on %rdi, %rsi,
400 * %rdx, and %rcx. Note that for this reason, x86_64 does not need any
401 * special handling for dealing with 4 arguments, unlike i386.
402 * However, x86_64 also have to clobber all caller saved registers, which
403 * unfortunately, are quite a bit (r8 - r11)
404 *
405 * The call instruction itself is marked by placing its start address
406 * and size into the .parainstructions section, so that
407 * apply_paravirt() in arch/i386/kernel/alternative.c can do the
408 * appropriate patching under the control of the backend pv_init_ops
409 * implementation.
410 *
411 * Unfortunately there's no way to get gcc to generate the args setup
412 * for the call, and then allow the call itself to be generated by an
413 * inline asm. Because of this, we must do the complete arg setup and
414 * return value handling from within these macros. This is fairly
415 * cumbersome.
416 *
417 * There are 5 sets of PVOP_* macros for dealing with 0-4 arguments.
418 * It could be extended to more arguments, but there would be little
419 * to be gained from that. For each number of arguments, there are
420 * the two VCALL and CALL variants for void and non-void functions.
421 *
422 * When there is a return value, the invoker of the macro must specify
423 * the return type. The macro then uses sizeof() on that type to
424 * determine whether its a 32 or 64 bit value, and places the return
425 * in the right register(s) (just %eax for 32-bit, and %edx:%eax for
426 * 64-bit). For x86_64 machines, it just returns at %rax regardless of
427 * the return value size.
428 *
429 * 64-bit arguments are passed as a pair of adjacent 32-bit arguments
430 * i386 also passes 64-bit arguments as a pair of adjacent 32-bit arguments
431 * in low,high order
432 *
433 * Small structures are passed and returned in registers. The macro
434 * calling convention can't directly deal with this, so the wrapper
435 * functions must do this.
436 *
437 * These PVOP_* macros are only defined within this header. This
438 * means that all uses must be wrapped in inline functions. This also
439 * makes sure the incoming and outgoing types are always correct.
440 */
441 #ifdef CONFIG_X86_32
442 #define PVOP_VCALL_ARGS unsigned long __eax, __edx, __ecx
443 #define PVOP_CALL_ARGS PVOP_VCALL_ARGS
444 #define PVOP_VCALL_CLOBBERS "=a" (__eax), "=d" (__edx), \
445 "=c" (__ecx)
446 #define PVOP_CALL_CLOBBERS PVOP_VCALL_CLOBBERS
447 #define EXTRA_CLOBBERS
448 #define VEXTRA_CLOBBERS
449 #else
450 #define PVOP_VCALL_ARGS unsigned long __edi, __esi, __edx, __ecx
451 #define PVOP_CALL_ARGS PVOP_VCALL_ARGS, __eax
452 #define PVOP_VCALL_CLOBBERS "=D" (__edi), \
453 "=S" (__esi), "=d" (__edx), \
454 "=c" (__ecx)
455
456 #define PVOP_CALL_CLOBBERS PVOP_VCALL_CLOBBERS, "=a" (__eax)
457
458 #define EXTRA_CLOBBERS , "r8", "r9", "r10", "r11"
459 #define VEXTRA_CLOBBERS , "rax", "r8", "r9", "r10", "r11"
460 #endif
461
462 #ifdef CONFIG_PARAVIRT_DEBUG
463 #define PVOP_TEST_NULL(op) BUG_ON(op == NULL)
464 #else
465 #define PVOP_TEST_NULL(op) ((void)op)
466 #endif
467
468 #define __PVOP_CALL(rettype, op, pre, post, ...) \
469 ({ \
470 rettype __ret; \
471 PVOP_CALL_ARGS; \
472 PVOP_TEST_NULL(op); \
473 /* This is 32-bit specific, but is okay in 64-bit */ \
474 /* since this condition will never hold */ \
475 if (sizeof(rettype) > sizeof(unsigned long)) { \
476 asm volatile(pre \
477 paravirt_alt(PARAVIRT_CALL) \
478 post \
479 : PVOP_CALL_CLOBBERS \
480 : paravirt_type(op), \
481 paravirt_clobber(CLBR_ANY), \
482 ##__VA_ARGS__ \
483 : "memory", "cc" EXTRA_CLOBBERS); \
484 __ret = (rettype)((((u64)__edx) << 32) | __eax); \
485 } else { \
486 asm volatile(pre \
487 paravirt_alt(PARAVIRT_CALL) \
488 post \
489 : PVOP_CALL_CLOBBERS \
490 : paravirt_type(op), \
491 paravirt_clobber(CLBR_ANY), \
492 ##__VA_ARGS__ \
493 : "memory", "cc" EXTRA_CLOBBERS); \
494 __ret = (rettype)__eax; \
495 } \
496 __ret; \
497 })
498 #define __PVOP_VCALL(op, pre, post, ...) \
499 ({ \
500 PVOP_VCALL_ARGS; \
501 PVOP_TEST_NULL(op); \
502 asm volatile(pre \
503 paravirt_alt(PARAVIRT_CALL) \
504 post \
505 : PVOP_VCALL_CLOBBERS \
506 : paravirt_type(op), \
507 paravirt_clobber(CLBR_ANY), \
508 ##__VA_ARGS__ \
509 : "memory", "cc" VEXTRA_CLOBBERS); \
510 })
511
512 #define PVOP_CALL0(rettype, op) \
513 __PVOP_CALL(rettype, op, "", "")
514 #define PVOP_VCALL0(op) \
515 __PVOP_VCALL(op, "", "")
516
517 #define PVOP_CALL1(rettype, op, arg1) \
518 __PVOP_CALL(rettype, op, "", "", "0" ((unsigned long)(arg1)))
519 #define PVOP_VCALL1(op, arg1) \
520 __PVOP_VCALL(op, "", "", "0" ((unsigned long)(arg1)))
521
522 #define PVOP_CALL2(rettype, op, arg1, arg2) \
523 __PVOP_CALL(rettype, op, "", "", "0" ((unsigned long)(arg1)), \
524 "1" ((unsigned long)(arg2)))
525 #define PVOP_VCALL2(op, arg1, arg2) \
526 __PVOP_VCALL(op, "", "", "0" ((unsigned long)(arg1)), \
527 "1" ((unsigned long)(arg2)))
528
529 #define PVOP_CALL3(rettype, op, arg1, arg2, arg3) \
530 __PVOP_CALL(rettype, op, "", "", "0" ((unsigned long)(arg1)), \
531 "1"((unsigned long)(arg2)), "2"((unsigned long)(arg3)))
532 #define PVOP_VCALL3(op, arg1, arg2, arg3) \
533 __PVOP_VCALL(op, "", "", "0" ((unsigned long)(arg1)), \
534 "1"((unsigned long)(arg2)), "2"((unsigned long)(arg3)))
535
536 /* This is the only difference in x86_64. We can make it much simpler */
537 #ifdef CONFIG_X86_32
538 #define PVOP_CALL4(rettype, op, arg1, arg2, arg3, arg4) \
539 __PVOP_CALL(rettype, op, \
540 "push %[_arg4];", "lea 4(%%esp),%%esp;", \
541 "0" ((u32)(arg1)), "1" ((u32)(arg2)), \
542 "2" ((u32)(arg3)), [_arg4] "mr" ((u32)(arg4)))
543 #define PVOP_VCALL4(op, arg1, arg2, arg3, arg4) \
544 __PVOP_VCALL(op, \
545 "push %[_arg4];", "lea 4(%%esp),%%esp;", \
546 "0" ((u32)(arg1)), "1" ((u32)(arg2)), \
547 "2" ((u32)(arg3)), [_arg4] "mr" ((u32)(arg4)))
548 #else
549 #define PVOP_CALL4(rettype, op, arg1, arg2, arg3, arg4) \
550 __PVOP_CALL(rettype, op, "", "", "0" ((unsigned long)(arg1)), \
551 "1"((unsigned long)(arg2)), "2"((unsigned long)(arg3)), \
552 "3"((unsigned long)(arg4)))
553 #define PVOP_VCALL4(op, arg1, arg2, arg3, arg4) \
554 __PVOP_VCALL(op, "", "", "0" ((unsigned long)(arg1)), \
555 "1"((unsigned long)(arg2)), "2"((unsigned long)(arg3)), \
556 "3"((unsigned long)(arg4)))
557 #endif
558
559 static inline int paravirt_enabled(void)
560 {
561 return pv_info.paravirt_enabled;
562 }
563
564 static inline void load_sp0(struct tss_struct *tss,
565 struct thread_struct *thread)
566 {
567 PVOP_VCALL2(pv_cpu_ops.load_sp0, tss, thread);
568 }
569
570 #define ARCH_SETUP pv_init_ops.arch_setup();
571 static inline unsigned long get_wallclock(void)
572 {
573 return PVOP_CALL0(unsigned long, pv_time_ops.get_wallclock);
574 }
575
576 static inline int set_wallclock(unsigned long nowtime)
577 {
578 return PVOP_CALL1(int, pv_time_ops.set_wallclock, nowtime);
579 }
580
581 static inline void (*choose_time_init(void))(void)
582 {
583 return pv_time_ops.time_init;
584 }
585
586 /* The paravirtualized CPUID instruction. */
587 static inline void __cpuid(unsigned int *eax, unsigned int *ebx,
588 unsigned int *ecx, unsigned int *edx)
589 {
590 PVOP_VCALL4(pv_cpu_ops.cpuid, eax, ebx, ecx, edx);
591 }
592
593 /*
594 * These special macros can be used to get or set a debugging register
595 */
596 static inline unsigned long paravirt_get_debugreg(int reg)
597 {
598 return PVOP_CALL1(unsigned long, pv_cpu_ops.get_debugreg, reg);
599 }
600 #define get_debugreg(var, reg) var = paravirt_get_debugreg(reg)
601 static inline void set_debugreg(unsigned long val, int reg)
602 {
603 PVOP_VCALL2(pv_cpu_ops.set_debugreg, reg, val);
604 }
605
606 static inline void clts(void)
607 {
608 PVOP_VCALL0(pv_cpu_ops.clts);
609 }
610
611 static inline unsigned long read_cr0(void)
612 {
613 return PVOP_CALL0(unsigned long, pv_cpu_ops.read_cr0);
614 }
615
616 static inline void write_cr0(unsigned long x)
617 {
618 PVOP_VCALL1(pv_cpu_ops.write_cr0, x);
619 }
620
621 static inline unsigned long read_cr2(void)
622 {
623 return PVOP_CALL0(unsigned long, pv_mmu_ops.read_cr2);
624 }
625
626 static inline void write_cr2(unsigned long x)
627 {
628 PVOP_VCALL1(pv_mmu_ops.write_cr2, x);
629 }
630
631 static inline unsigned long read_cr3(void)
632 {
633 return PVOP_CALL0(unsigned long, pv_mmu_ops.read_cr3);
634 }
635
636 static inline void write_cr3(unsigned long x)
637 {
638 PVOP_VCALL1(pv_mmu_ops.write_cr3, x);
639 }
640
641 static inline unsigned long read_cr4(void)
642 {
643 return PVOP_CALL0(unsigned long, pv_cpu_ops.read_cr4);
644 }
645 static inline unsigned long read_cr4_safe(void)
646 {
647 return PVOP_CALL0(unsigned long, pv_cpu_ops.read_cr4_safe);
648 }
649
650 static inline void write_cr4(unsigned long x)
651 {
652 PVOP_VCALL1(pv_cpu_ops.write_cr4, x);
653 }
654
655 #ifdef CONFIG_X86_64
656 static inline unsigned long read_cr8(void)
657 {
658 return PVOP_CALL0(unsigned long, pv_cpu_ops.read_cr8);
659 }
660
661 static inline void write_cr8(unsigned long x)
662 {
663 PVOP_VCALL1(pv_cpu_ops.write_cr8, x);
664 }
665 #endif
666
667 static inline void raw_safe_halt(void)
668 {
669 PVOP_VCALL0(pv_irq_ops.safe_halt);
670 }
671
672 static inline void halt(void)
673 {
674 PVOP_VCALL0(pv_irq_ops.safe_halt);
675 }
676
677 static inline void wbinvd(void)
678 {
679 PVOP_VCALL0(pv_cpu_ops.wbinvd);
680 }
681
682 #define get_kernel_rpl() (pv_info.kernel_rpl)
683
684 static inline u64 paravirt_read_msr(unsigned msr, int *err)
685 {
686 return PVOP_CALL2(u64, pv_cpu_ops.read_msr, msr, err);
687 }
688 static inline int paravirt_write_msr(unsigned msr, unsigned low, unsigned high)
689 {
690 return PVOP_CALL3(int, pv_cpu_ops.write_msr, msr, low, high);
691 }
692
693 /* These should all do BUG_ON(_err), but our headers are too tangled. */
694 #define rdmsr(msr, val1, val2) \
695 do { \
696 int _err; \
697 u64 _l = paravirt_read_msr(msr, &_err); \
698 val1 = (u32)_l; \
699 val2 = _l >> 32; \
700 } while (0)
701
702 #define wrmsr(msr, val1, val2) \
703 do { \
704 paravirt_write_msr(msr, val1, val2); \
705 } while (0)
706
707 #define rdmsrl(msr, val) \
708 do { \
709 int _err; \
710 val = paravirt_read_msr(msr, &_err); \
711 } while (0)
712
713 #define wrmsrl(msr, val) wrmsr(msr, (u32)((u64)(val)), ((u64)(val))>>32)
714 #define wrmsr_safe(msr, a, b) paravirt_write_msr(msr, a, b)
715
716 /* rdmsr with exception handling */
717 #define rdmsr_safe(msr, a, b) \
718 ({ \
719 int _err; \
720 u64 _l = paravirt_read_msr(msr, &_err); \
721 (*a) = (u32)_l; \
722 (*b) = _l >> 32; \
723 _err; \
724 })
725
726 static inline int rdmsrl_safe(unsigned msr, unsigned long long *p)
727 {
728 int err;
729
730 *p = paravirt_read_msr(msr, &err);
731 return err;
732 }
733
734 static inline u64 paravirt_read_tsc(void)
735 {
736 return PVOP_CALL0(u64, pv_cpu_ops.read_tsc);
737 }
738
739 #define rdtscl(low) \
740 do { \
741 u64 _l = paravirt_read_tsc(); \
742 low = (int)_l; \
743 } while (0)
744
745 #define rdtscll(val) (val = paravirt_read_tsc())
746
747 static inline unsigned long long paravirt_sched_clock(void)
748 {
749 return PVOP_CALL0(unsigned long long, pv_time_ops.sched_clock);
750 }
751 #define calculate_cpu_khz() (pv_time_ops.get_cpu_khz())
752
753 static inline unsigned long long paravirt_read_pmc(int counter)
754 {
755 return PVOP_CALL1(u64, pv_cpu_ops.read_pmc, counter);
756 }
757
758 #define rdpmc(counter, low, high) \
759 do { \
760 u64 _l = paravirt_read_pmc(counter); \
761 low = (u32)_l; \
762 high = _l >> 32; \
763 } while (0)
764
765 static inline unsigned long long paravirt_rdtscp(unsigned int *aux)
766 {
767 return PVOP_CALL1(u64, pv_cpu_ops.read_tscp, aux);
768 }
769
770 #define rdtscp(low, high, aux) \
771 do { \
772 int __aux; \
773 unsigned long __val = paravirt_rdtscp(&__aux); \
774 (low) = (u32)__val; \
775 (high) = (u32)(__val >> 32); \
776 (aux) = __aux; \
777 } while (0)
778
779 #define rdtscpll(val, aux) \
780 do { \
781 unsigned long __aux; \
782 val = paravirt_rdtscp(&__aux); \
783 (aux) = __aux; \
784 } while (0)
785
786 static inline void load_TR_desc(void)
787 {
788 PVOP_VCALL0(pv_cpu_ops.load_tr_desc);
789 }
790 static inline void load_gdt(const struct desc_ptr *dtr)
791 {
792 PVOP_VCALL1(pv_cpu_ops.load_gdt, dtr);
793 }
794 static inline void load_idt(const struct desc_ptr *dtr)
795 {
796 PVOP_VCALL1(pv_cpu_ops.load_idt, dtr);
797 }
798 static inline void set_ldt(const void *addr, unsigned entries)
799 {
800 PVOP_VCALL2(pv_cpu_ops.set_ldt, addr, entries);
801 }
802 static inline void store_gdt(struct desc_ptr *dtr)
803 {
804 PVOP_VCALL1(pv_cpu_ops.store_gdt, dtr);
805 }
806 static inline void store_idt(struct desc_ptr *dtr)
807 {
808 PVOP_VCALL1(pv_cpu_ops.store_idt, dtr);
809 }
810 static inline unsigned long paravirt_store_tr(void)
811 {
812 return PVOP_CALL0(unsigned long, pv_cpu_ops.store_tr);
813 }
814 #define store_tr(tr) ((tr) = paravirt_store_tr())
815 static inline void load_TLS(struct thread_struct *t, unsigned cpu)
816 {
817 PVOP_VCALL2(pv_cpu_ops.load_tls, t, cpu);
818 }
819
820 static inline void write_ldt_entry(struct desc_struct *dt, int entry,
821 const void *desc)
822 {
823 PVOP_VCALL3(pv_cpu_ops.write_ldt_entry, dt, entry, desc);
824 }
825
826 static inline void write_gdt_entry(struct desc_struct *dt, int entry,
827 void *desc, int type)
828 {
829 PVOP_VCALL4(pv_cpu_ops.write_gdt_entry, dt, entry, desc, type);
830 }
831
832 static inline void write_idt_entry(gate_desc *dt, int entry, const gate_desc *g)
833 {
834 PVOP_VCALL3(pv_cpu_ops.write_idt_entry, dt, entry, g);
835 }
836 static inline void set_iopl_mask(unsigned mask)
837 {
838 PVOP_VCALL1(pv_cpu_ops.set_iopl_mask, mask);
839 }
840
841 /* The paravirtualized I/O functions */
842 static inline void slow_down_io(void)
843 {
844 pv_cpu_ops.io_delay();
845 #ifdef REALLY_SLOW_IO
846 pv_cpu_ops.io_delay();
847 pv_cpu_ops.io_delay();
848 pv_cpu_ops.io_delay();
849 #endif
850 }
851
852 #ifdef CONFIG_X86_LOCAL_APIC
853 /*
854 * Basic functions accessing APICs.
855 */
856 static inline void apic_write(unsigned long reg, u32 v)
857 {
858 PVOP_VCALL2(pv_apic_ops.apic_write, reg, v);
859 }
860
861 static inline void apic_write_atomic(unsigned long reg, u32 v)
862 {
863 PVOP_VCALL2(pv_apic_ops.apic_write_atomic, reg, v);
864 }
865
866 static inline u32 apic_read(unsigned long reg)
867 {
868 return PVOP_CALL1(unsigned long, pv_apic_ops.apic_read, reg);
869 }
870
871 static inline void setup_boot_clock(void)
872 {
873 PVOP_VCALL0(pv_apic_ops.setup_boot_clock);
874 }
875
876 static inline void setup_secondary_clock(void)
877 {
878 PVOP_VCALL0(pv_apic_ops.setup_secondary_clock);
879 }
880 #endif
881
882 static inline void paravirt_post_allocator_init(void)
883 {
884 if (pv_init_ops.post_allocator_init)
885 (*pv_init_ops.post_allocator_init)();
886 }
887
888 static inline void paravirt_pagetable_setup_start(pgd_t *base)
889 {
890 (*pv_mmu_ops.pagetable_setup_start)(base);
891 }
892
893 static inline void paravirt_pagetable_setup_done(pgd_t *base)
894 {
895 (*pv_mmu_ops.pagetable_setup_done)(base);
896 }
897
898 #ifdef CONFIG_SMP
899 static inline void startup_ipi_hook(int phys_apicid, unsigned long start_eip,
900 unsigned long start_esp)
901 {
902 PVOP_VCALL3(pv_apic_ops.startup_ipi_hook,
903 phys_apicid, start_eip, start_esp);
904 }
905 #endif
906
907 static inline void paravirt_activate_mm(struct mm_struct *prev,
908 struct mm_struct *next)
909 {
910 PVOP_VCALL2(pv_mmu_ops.activate_mm, prev, next);
911 }
912
913 static inline void arch_dup_mmap(struct mm_struct *oldmm,
914 struct mm_struct *mm)
915 {
916 PVOP_VCALL2(pv_mmu_ops.dup_mmap, oldmm, mm);
917 }
918
919 static inline void arch_exit_mmap(struct mm_struct *mm)
920 {
921 PVOP_VCALL1(pv_mmu_ops.exit_mmap, mm);
922 }
923
924 static inline void __flush_tlb(void)
925 {
926 PVOP_VCALL0(pv_mmu_ops.flush_tlb_user);
927 }
928 static inline void __flush_tlb_global(void)
929 {
930 PVOP_VCALL0(pv_mmu_ops.flush_tlb_kernel);
931 }
932 static inline void __flush_tlb_single(unsigned long addr)
933 {
934 PVOP_VCALL1(pv_mmu_ops.flush_tlb_single, addr);
935 }
936
937 static inline void flush_tlb_others(cpumask_t cpumask, struct mm_struct *mm,
938 unsigned long va)
939 {
940 PVOP_VCALL3(pv_mmu_ops.flush_tlb_others, &cpumask, mm, va);
941 }
942
943 static inline int paravirt_pgd_alloc(struct mm_struct *mm)
944 {
945 return PVOP_CALL1(int, pv_mmu_ops.pgd_alloc, mm);
946 }
947
948 static inline void paravirt_pgd_free(struct mm_struct *mm, pgd_t *pgd)
949 {
950 PVOP_VCALL2(pv_mmu_ops.pgd_free, mm, pgd);
951 }
952
953 static inline void paravirt_alloc_pte(struct mm_struct *mm, unsigned pfn)
954 {
955 PVOP_VCALL2(pv_mmu_ops.alloc_pte, mm, pfn);
956 }
957 static inline void paravirt_release_pte(unsigned pfn)
958 {
959 PVOP_VCALL1(pv_mmu_ops.release_pte, pfn);
960 }
961
962 static inline void paravirt_alloc_pmd(struct mm_struct *mm, unsigned pfn)
963 {
964 PVOP_VCALL2(pv_mmu_ops.alloc_pmd, mm, pfn);
965 }
966
967 static inline void paravirt_alloc_pmd_clone(unsigned pfn, unsigned clonepfn,
968 unsigned start, unsigned count)
969 {
970 PVOP_VCALL4(pv_mmu_ops.alloc_pmd_clone, pfn, clonepfn, start, count);
971 }
972 static inline void paravirt_release_pmd(unsigned pfn)
973 {
974 PVOP_VCALL1(pv_mmu_ops.release_pmd, pfn);
975 }
976
977 static inline void paravirt_alloc_pud(struct mm_struct *mm, unsigned pfn)
978 {
979 PVOP_VCALL2(pv_mmu_ops.alloc_pud, mm, pfn);
980 }
981 static inline void paravirt_release_pud(unsigned pfn)
982 {
983 PVOP_VCALL1(pv_mmu_ops.release_pud, pfn);
984 }
985
986 #ifdef CONFIG_HIGHPTE
987 static inline void *kmap_atomic_pte(struct page *page, enum km_type type)
988 {
989 unsigned long ret;
990 ret = PVOP_CALL2(unsigned long, pv_mmu_ops.kmap_atomic_pte, page, type);
991 return (void *)ret;
992 }
993 #endif
994
995 static inline void pte_update(struct mm_struct *mm, unsigned long addr,
996 pte_t *ptep)
997 {
998 PVOP_VCALL3(pv_mmu_ops.pte_update, mm, addr, ptep);
999 }
1000
1001 static inline void pte_update_defer(struct mm_struct *mm, unsigned long addr,
1002 pte_t *ptep)
1003 {
1004 PVOP_VCALL3(pv_mmu_ops.pte_update_defer, mm, addr, ptep);
1005 }
1006
1007 static inline pte_t __pte(pteval_t val)
1008 {
1009 pteval_t ret;
1010
1011 if (sizeof(pteval_t) > sizeof(long))
1012 ret = PVOP_CALL2(pteval_t,
1013 pv_mmu_ops.make_pte,
1014 val, (u64)val >> 32);
1015 else
1016 ret = PVOP_CALL1(pteval_t,
1017 pv_mmu_ops.make_pte,
1018 val);
1019
1020 return (pte_t) { .pte = ret };
1021 }
1022
1023 static inline pteval_t pte_val(pte_t pte)
1024 {
1025 pteval_t ret;
1026
1027 if (sizeof(pteval_t) > sizeof(long))
1028 ret = PVOP_CALL2(pteval_t, pv_mmu_ops.pte_val,
1029 pte.pte, (u64)pte.pte >> 32);
1030 else
1031 ret = PVOP_CALL1(pteval_t, pv_mmu_ops.pte_val,
1032 pte.pte);
1033
1034 return ret;
1035 }
1036
1037 static inline pteval_t pte_flags(pte_t pte)
1038 {
1039 pteval_t ret;
1040
1041 if (sizeof(pteval_t) > sizeof(long))
1042 ret = PVOP_CALL2(pteval_t, pv_mmu_ops.pte_flags,
1043 pte.pte, (u64)pte.pte >> 32);
1044 else
1045 ret = PVOP_CALL1(pteval_t, pv_mmu_ops.pte_flags,
1046 pte.pte);
1047
1048 return ret;
1049 }
1050
1051 static inline pgd_t __pgd(pgdval_t val)
1052 {
1053 pgdval_t ret;
1054
1055 if (sizeof(pgdval_t) > sizeof(long))
1056 ret = PVOP_CALL2(pgdval_t, pv_mmu_ops.make_pgd,
1057 val, (u64)val >> 32);
1058 else
1059 ret = PVOP_CALL1(pgdval_t, pv_mmu_ops.make_pgd,
1060 val);
1061
1062 return (pgd_t) { ret };
1063 }
1064
1065 static inline pgdval_t pgd_val(pgd_t pgd)
1066 {
1067 pgdval_t ret;
1068
1069 if (sizeof(pgdval_t) > sizeof(long))
1070 ret = PVOP_CALL2(pgdval_t, pv_mmu_ops.pgd_val,
1071 pgd.pgd, (u64)pgd.pgd >> 32);
1072 else
1073 ret = PVOP_CALL1(pgdval_t, pv_mmu_ops.pgd_val,
1074 pgd.pgd);
1075
1076 return ret;
1077 }
1078
1079 #define __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
1080 static inline pte_t ptep_modify_prot_start(struct mm_struct *mm, unsigned long addr,
1081 pte_t *ptep)
1082 {
1083 pteval_t ret;
1084
1085 ret = PVOP_CALL3(pteval_t, pv_mmu_ops.ptep_modify_prot_start,
1086 mm, addr, ptep);
1087
1088 return (pte_t) { .pte = ret };
1089 }
1090
1091 static inline void ptep_modify_prot_commit(struct mm_struct *mm, unsigned long addr,
1092 pte_t *ptep, pte_t pte)
1093 {
1094 if (sizeof(pteval_t) > sizeof(long))
1095 /* 5 arg words */
1096 pv_mmu_ops.ptep_modify_prot_commit(mm, addr, ptep, pte);
1097 else
1098 PVOP_VCALL4(pv_mmu_ops.ptep_modify_prot_commit,
1099 mm, addr, ptep, pte.pte);
1100 }
1101
1102 static inline void set_pte(pte_t *ptep, pte_t pte)
1103 {
1104 if (sizeof(pteval_t) > sizeof(long))
1105 PVOP_VCALL3(pv_mmu_ops.set_pte, ptep,
1106 pte.pte, (u64)pte.pte >> 32);
1107 else
1108 PVOP_VCALL2(pv_mmu_ops.set_pte, ptep,
1109 pte.pte);
1110 }
1111
1112 static inline void set_pte_at(struct mm_struct *mm, unsigned long addr,
1113 pte_t *ptep, pte_t pte)
1114 {
1115 if (sizeof(pteval_t) > sizeof(long))
1116 /* 5 arg words */
1117 pv_mmu_ops.set_pte_at(mm, addr, ptep, pte);
1118 else
1119 PVOP_VCALL4(pv_mmu_ops.set_pte_at, mm, addr, ptep, pte.pte);
1120 }
1121
1122 static inline void set_pmd(pmd_t *pmdp, pmd_t pmd)
1123 {
1124 pmdval_t val = native_pmd_val(pmd);
1125
1126 if (sizeof(pmdval_t) > sizeof(long))
1127 PVOP_VCALL3(pv_mmu_ops.set_pmd, pmdp, val, (u64)val >> 32);
1128 else
1129 PVOP_VCALL2(pv_mmu_ops.set_pmd, pmdp, val);
1130 }
1131
1132 #if PAGETABLE_LEVELS >= 3
1133 static inline pmd_t __pmd(pmdval_t val)
1134 {
1135 pmdval_t ret;
1136
1137 if (sizeof(pmdval_t) > sizeof(long))
1138 ret = PVOP_CALL2(pmdval_t, pv_mmu_ops.make_pmd,
1139 val, (u64)val >> 32);
1140 else
1141 ret = PVOP_CALL1(pmdval_t, pv_mmu_ops.make_pmd,
1142 val);
1143
1144 return (pmd_t) { ret };
1145 }
1146
1147 static inline pmdval_t pmd_val(pmd_t pmd)
1148 {
1149 pmdval_t ret;
1150
1151 if (sizeof(pmdval_t) > sizeof(long))
1152 ret = PVOP_CALL2(pmdval_t, pv_mmu_ops.pmd_val,
1153 pmd.pmd, (u64)pmd.pmd >> 32);
1154 else
1155 ret = PVOP_CALL1(pmdval_t, pv_mmu_ops.pmd_val,
1156 pmd.pmd);
1157
1158 return ret;
1159 }
1160
1161 static inline void set_pud(pud_t *pudp, pud_t pud)
1162 {
1163 pudval_t val = native_pud_val(pud);
1164
1165 if (sizeof(pudval_t) > sizeof(long))
1166 PVOP_VCALL3(pv_mmu_ops.set_pud, pudp,
1167 val, (u64)val >> 32);
1168 else
1169 PVOP_VCALL2(pv_mmu_ops.set_pud, pudp,
1170 val);
1171 }
1172 #if PAGETABLE_LEVELS == 4
1173 static inline pud_t __pud(pudval_t val)
1174 {
1175 pudval_t ret;
1176
1177 if (sizeof(pudval_t) > sizeof(long))
1178 ret = PVOP_CALL2(pudval_t, pv_mmu_ops.make_pud,
1179 val, (u64)val >> 32);
1180 else
1181 ret = PVOP_CALL1(pudval_t, pv_mmu_ops.make_pud,
1182 val);
1183
1184 return (pud_t) { ret };
1185 }
1186
1187 static inline pudval_t pud_val(pud_t pud)
1188 {
1189 pudval_t ret;
1190
1191 if (sizeof(pudval_t) > sizeof(long))
1192 ret = PVOP_CALL2(pudval_t, pv_mmu_ops.pud_val,
1193 pud.pud, (u64)pud.pud >> 32);
1194 else
1195 ret = PVOP_CALL1(pudval_t, pv_mmu_ops.pud_val,
1196 pud.pud);
1197
1198 return ret;
1199 }
1200
1201 static inline void set_pgd(pgd_t *pgdp, pgd_t pgd)
1202 {
1203 pgdval_t val = native_pgd_val(pgd);
1204
1205 if (sizeof(pgdval_t) > sizeof(long))
1206 PVOP_VCALL3(pv_mmu_ops.set_pgd, pgdp,
1207 val, (u64)val >> 32);
1208 else
1209 PVOP_VCALL2(pv_mmu_ops.set_pgd, pgdp,
1210 val);
1211 }
1212
1213 static inline void pgd_clear(pgd_t *pgdp)
1214 {
1215 set_pgd(pgdp, __pgd(0));
1216 }
1217
1218 static inline void pud_clear(pud_t *pudp)
1219 {
1220 set_pud(pudp, __pud(0));
1221 }
1222
1223 #endif /* PAGETABLE_LEVELS == 4 */
1224
1225 #endif /* PAGETABLE_LEVELS >= 3 */
1226
1227 #ifdef CONFIG_X86_PAE
1228 /* Special-case pte-setting operations for PAE, which can't update a
1229 64-bit pte atomically */
1230 static inline void set_pte_atomic(pte_t *ptep, pte_t pte)
1231 {
1232 PVOP_VCALL3(pv_mmu_ops.set_pte_atomic, ptep,
1233 pte.pte, pte.pte >> 32);
1234 }
1235
1236 static inline void set_pte_present(struct mm_struct *mm, unsigned long addr,
1237 pte_t *ptep, pte_t pte)
1238 {
1239 /* 5 arg words */
1240 pv_mmu_ops.set_pte_present(mm, addr, ptep, pte);
1241 }
1242
1243 static inline void pte_clear(struct mm_struct *mm, unsigned long addr,
1244 pte_t *ptep)
1245 {
1246 PVOP_VCALL3(pv_mmu_ops.pte_clear, mm, addr, ptep);
1247 }
1248
1249 static inline void pmd_clear(pmd_t *pmdp)
1250 {
1251 PVOP_VCALL1(pv_mmu_ops.pmd_clear, pmdp);
1252 }
1253 #else /* !CONFIG_X86_PAE */
1254 static inline void set_pte_atomic(pte_t *ptep, pte_t pte)
1255 {
1256 set_pte(ptep, pte);
1257 }
1258
1259 static inline void set_pte_present(struct mm_struct *mm, unsigned long addr,
1260 pte_t *ptep, pte_t pte)
1261 {
1262 set_pte(ptep, pte);
1263 }
1264
1265 static inline void pte_clear(struct mm_struct *mm, unsigned long addr,
1266 pte_t *ptep)
1267 {
1268 set_pte_at(mm, addr, ptep, __pte(0));
1269 }
1270
1271 static inline void pmd_clear(pmd_t *pmdp)
1272 {
1273 set_pmd(pmdp, __pmd(0));
1274 }
1275 #endif /* CONFIG_X86_PAE */
1276
1277 /* Lazy mode for batching updates / context switch */
1278 enum paravirt_lazy_mode {
1279 PARAVIRT_LAZY_NONE,
1280 PARAVIRT_LAZY_MMU,
1281 PARAVIRT_LAZY_CPU,
1282 };
1283
1284 enum paravirt_lazy_mode paravirt_get_lazy_mode(void);
1285 void paravirt_enter_lazy_cpu(void);
1286 void paravirt_leave_lazy_cpu(void);
1287 void paravirt_enter_lazy_mmu(void);
1288 void paravirt_leave_lazy_mmu(void);
1289 void paravirt_leave_lazy(enum paravirt_lazy_mode mode);
1290
1291 #define __HAVE_ARCH_ENTER_LAZY_CPU_MODE
1292 static inline void arch_enter_lazy_cpu_mode(void)
1293 {
1294 PVOP_VCALL0(pv_cpu_ops.lazy_mode.enter);
1295 }
1296
1297 static inline void arch_leave_lazy_cpu_mode(void)
1298 {
1299 PVOP_VCALL0(pv_cpu_ops.lazy_mode.leave);
1300 }
1301
1302 static inline void arch_flush_lazy_cpu_mode(void)
1303 {
1304 if (unlikely(paravirt_get_lazy_mode() == PARAVIRT_LAZY_CPU)) {
1305 arch_leave_lazy_cpu_mode();
1306 arch_enter_lazy_cpu_mode();
1307 }
1308 }
1309
1310
1311 #define __HAVE_ARCH_ENTER_LAZY_MMU_MODE
1312 static inline void arch_enter_lazy_mmu_mode(void)
1313 {
1314 PVOP_VCALL0(pv_mmu_ops.lazy_mode.enter);
1315 }
1316
1317 static inline void arch_leave_lazy_mmu_mode(void)
1318 {
1319 PVOP_VCALL0(pv_mmu_ops.lazy_mode.leave);
1320 }
1321
1322 static inline void arch_flush_lazy_mmu_mode(void)
1323 {
1324 if (unlikely(paravirt_get_lazy_mode() == PARAVIRT_LAZY_MMU)) {
1325 arch_leave_lazy_mmu_mode();
1326 arch_enter_lazy_mmu_mode();
1327 }
1328 }
1329
1330 static inline void __set_fixmap(unsigned /* enum fixed_addresses */ idx,
1331 unsigned long phys, pgprot_t flags)
1332 {
1333 pv_mmu_ops.set_fixmap(idx, phys, flags);
1334 }
1335
1336 void _paravirt_nop(void);
1337 #define paravirt_nop ((void *)_paravirt_nop)
1338
1339 /* These all sit in the .parainstructions section to tell us what to patch. */
1340 struct paravirt_patch_site {
1341 u8 *instr; /* original instructions */
1342 u8 instrtype; /* type of this instruction */
1343 u8 len; /* length of original instruction */
1344 u16 clobbers; /* what registers you may clobber */
1345 };
1346
1347 extern struct paravirt_patch_site __parainstructions[],
1348 __parainstructions_end[];
1349
1350 #ifdef CONFIG_X86_32
1351 #define PV_SAVE_REGS "pushl %%ecx; pushl %%edx;"
1352 #define PV_RESTORE_REGS "popl %%edx; popl %%ecx"
1353 #define PV_FLAGS_ARG "0"
1354 #define PV_EXTRA_CLOBBERS
1355 #define PV_VEXTRA_CLOBBERS
1356 #else
1357 /* We save some registers, but all of them, that's too much. We clobber all
1358 * caller saved registers but the argument parameter */
1359 #define PV_SAVE_REGS "pushq %%rdi;"
1360 #define PV_RESTORE_REGS "popq %%rdi;"
1361 #define PV_EXTRA_CLOBBERS EXTRA_CLOBBERS, "rcx" , "rdx"
1362 #define PV_VEXTRA_CLOBBERS EXTRA_CLOBBERS, "rdi", "rcx" , "rdx"
1363 #define PV_FLAGS_ARG "D"
1364 #endif
1365
1366 static inline unsigned long __raw_local_save_flags(void)
1367 {
1368 unsigned long f;
1369
1370 asm volatile(paravirt_alt(PV_SAVE_REGS
1371 PARAVIRT_CALL
1372 PV_RESTORE_REGS)
1373 : "=a"(f)
1374 : paravirt_type(pv_irq_ops.save_fl),
1375 paravirt_clobber(CLBR_EAX)
1376 : "memory", "cc" PV_VEXTRA_CLOBBERS);
1377 return f;
1378 }
1379
1380 static inline void raw_local_irq_restore(unsigned long f)
1381 {
1382 asm volatile(paravirt_alt(PV_SAVE_REGS
1383 PARAVIRT_CALL
1384 PV_RESTORE_REGS)
1385 : "=a"(f)
1386 : PV_FLAGS_ARG(f),
1387 paravirt_type(pv_irq_ops.restore_fl),
1388 paravirt_clobber(CLBR_EAX)
1389 : "memory", "cc" PV_EXTRA_CLOBBERS);
1390 }
1391
1392 static inline void raw_local_irq_disable(void)
1393 {
1394 asm volatile(paravirt_alt(PV_SAVE_REGS
1395 PARAVIRT_CALL
1396 PV_RESTORE_REGS)
1397 :
1398 : paravirt_type(pv_irq_ops.irq_disable),
1399 paravirt_clobber(CLBR_EAX)
1400 : "memory", "eax", "cc" PV_EXTRA_CLOBBERS);
1401 }
1402
1403 static inline void raw_local_irq_enable(void)
1404 {
1405 asm volatile(paravirt_alt(PV_SAVE_REGS
1406 PARAVIRT_CALL
1407 PV_RESTORE_REGS)
1408 :
1409 : paravirt_type(pv_irq_ops.irq_enable),
1410 paravirt_clobber(CLBR_EAX)
1411 : "memory", "eax", "cc" PV_EXTRA_CLOBBERS);
1412 }
1413
1414 static inline unsigned long __raw_local_irq_save(void)
1415 {
1416 unsigned long f;
1417
1418 f = __raw_local_save_flags();
1419 raw_local_irq_disable();
1420 return f;
1421 }
1422
1423 /* Make sure as little as possible of this mess escapes. */
1424 #undef PARAVIRT_CALL
1425 #undef __PVOP_CALL
1426 #undef __PVOP_VCALL
1427 #undef PVOP_VCALL0
1428 #undef PVOP_CALL0
1429 #undef PVOP_VCALL1
1430 #undef PVOP_CALL1
1431 #undef PVOP_VCALL2
1432 #undef PVOP_CALL2
1433 #undef PVOP_VCALL3
1434 #undef PVOP_CALL3
1435 #undef PVOP_VCALL4
1436 #undef PVOP_CALL4
1437
1438 #else /* __ASSEMBLY__ */
1439
1440 #define _PVSITE(ptype, clobbers, ops, word, algn) \
1441 771:; \
1442 ops; \
1443 772:; \
1444 .pushsection .parainstructions,"a"; \
1445 .align algn; \
1446 word 771b; \
1447 .byte ptype; \
1448 .byte 772b-771b; \
1449 .short clobbers; \
1450 .popsection
1451
1452
1453 #ifdef CONFIG_X86_64
1454 #define PV_SAVE_REGS pushq %rax; pushq %rdi; pushq %rcx; pushq %rdx
1455 #define PV_RESTORE_REGS popq %rdx; popq %rcx; popq %rdi; popq %rax
1456 #define PARA_PATCH(struct, off) ((PARAVIRT_PATCH_##struct + (off)) / 8)
1457 #define PARA_SITE(ptype, clobbers, ops) _PVSITE(ptype, clobbers, ops, .quad, 8)
1458 #else
1459 #define PV_SAVE_REGS pushl %eax; pushl %edi; pushl %ecx; pushl %edx
1460 #define PV_RESTORE_REGS popl %edx; popl %ecx; popl %edi; popl %eax
1461 #define PARA_PATCH(struct, off) ((PARAVIRT_PATCH_##struct + (off)) / 4)
1462 #define PARA_SITE(ptype, clobbers, ops) _PVSITE(ptype, clobbers, ops, .long, 4)
1463 #endif
1464
1465 #define INTERRUPT_RETURN \
1466 PARA_SITE(PARA_PATCH(pv_cpu_ops, PV_CPU_iret), CLBR_NONE, \
1467 jmp *%cs:pv_cpu_ops+PV_CPU_iret)
1468
1469 #define DISABLE_INTERRUPTS(clobbers) \
1470 PARA_SITE(PARA_PATCH(pv_irq_ops, PV_IRQ_irq_disable), clobbers, \
1471 PV_SAVE_REGS; \
1472 call *%cs:pv_irq_ops+PV_IRQ_irq_disable; \
1473 PV_RESTORE_REGS;) \
1474
1475 #define ENABLE_INTERRUPTS(clobbers) \
1476 PARA_SITE(PARA_PATCH(pv_irq_ops, PV_IRQ_irq_enable), clobbers, \
1477 PV_SAVE_REGS; \
1478 call *%cs:pv_irq_ops+PV_IRQ_irq_enable; \
1479 PV_RESTORE_REGS;)
1480
1481 #define ENABLE_INTERRUPTS_SYSCALL_RET \
1482 PARA_SITE(PARA_PATCH(pv_cpu_ops, PV_CPU_irq_enable_syscall_ret),\
1483 CLBR_NONE, \
1484 jmp *%cs:pv_cpu_ops+PV_CPU_irq_enable_syscall_ret)
1485
1486
1487 #ifdef CONFIG_X86_32
1488 #define GET_CR0_INTO_EAX \
1489 push %ecx; push %edx; \
1490 call *pv_cpu_ops+PV_CPU_read_cr0; \
1491 pop %edx; pop %ecx
1492 #else
1493 #define SWAPGS \
1494 PARA_SITE(PARA_PATCH(pv_cpu_ops, PV_CPU_swapgs), CLBR_NONE, \
1495 PV_SAVE_REGS; \
1496 call *pv_cpu_ops+PV_CPU_swapgs; \
1497 PV_RESTORE_REGS \
1498 )
1499
1500 #define GET_CR2_INTO_RCX \
1501 call *pv_mmu_ops+PV_MMU_read_cr2; \
1502 movq %rax, %rcx; \
1503 xorq %rax, %rax;
1504
1505 #endif
1506
1507 #endif /* __ASSEMBLY__ */
1508 #endif /* CONFIG_PARAVIRT */
1509 #endif /* __ASM_PARAVIRT_H */
This page took 0.098298 seconds and 6 git commands to generate.