x86/paravirt: add spin_lock_flags lock op
[deliverable/linux.git] / include / asm-x86 / spinlock.h
1 #ifndef _X86_SPINLOCK_H_
2 #define _X86_SPINLOCK_H_
3
4 #include <asm/atomic.h>
5 #include <asm/rwlock.h>
6 #include <asm/page.h>
7 #include <asm/processor.h>
8 #include <linux/compiler.h>
9 #include <asm/paravirt.h>
10 /*
11 * Your basic SMP spinlocks, allowing only a single CPU anywhere
12 *
13 * Simple spin lock operations. There are two variants, one clears IRQ's
14 * on the local processor, one does not.
15 *
16 * These are fair FIFO ticket locks, which are currently limited to 256
17 * CPUs.
18 *
19 * (the type definitions are in asm/spinlock_types.h)
20 */
21
22 #ifdef CONFIG_X86_32
23 # define LOCK_PTR_REG "a"
24 #else
25 # define LOCK_PTR_REG "D"
26 #endif
27
28 #if defined(CONFIG_X86_32) && \
29 (defined(CONFIG_X86_OOSTORE) || defined(CONFIG_X86_PPRO_FENCE))
30 /*
31 * On PPro SMP or if we are using OOSTORE, we use a locked operation to unlock
32 * (PPro errata 66, 92)
33 */
34 # define UNLOCK_LOCK_PREFIX LOCK_PREFIX
35 #else
36 # define UNLOCK_LOCK_PREFIX
37 #endif
38
39 /*
40 * Ticket locks are conceptually two parts, one indicating the current head of
41 * the queue, and the other indicating the current tail. The lock is acquired
42 * by atomically noting the tail and incrementing it by one (thus adding
43 * ourself to the queue and noting our position), then waiting until the head
44 * becomes equal to the the initial value of the tail.
45 *
46 * We use an xadd covering *both* parts of the lock, to increment the tail and
47 * also load the position of the head, which takes care of memory ordering
48 * issues and should be optimal for the uncontended case. Note the tail must be
49 * in the high part, because a wide xadd increment of the low part would carry
50 * up and contaminate the high part.
51 *
52 * With fewer than 2^8 possible CPUs, we can use x86's partial registers to
53 * save some instructions and make the code more elegant. There really isn't
54 * much between them in performance though, especially as locks are out of line.
55 */
56 #if (NR_CPUS < 256)
57 static inline int __ticket_spin_is_locked(raw_spinlock_t *lock)
58 {
59 int tmp = ACCESS_ONCE(lock->slock);
60
61 return (((tmp >> 8) & 0xff) != (tmp & 0xff));
62 }
63
64 static inline int __ticket_spin_is_contended(raw_spinlock_t *lock)
65 {
66 int tmp = ACCESS_ONCE(lock->slock);
67
68 return (((tmp >> 8) - tmp) & 0xff) > 1;
69 }
70
71 static __always_inline void __ticket_spin_lock(raw_spinlock_t *lock)
72 {
73 short inc = 0x0100;
74
75 asm volatile (
76 LOCK_PREFIX "xaddw %w0, %1\n"
77 "1:\t"
78 "cmpb %h0, %b0\n\t"
79 "je 2f\n\t"
80 "rep ; nop\n\t"
81 "movb %1, %b0\n\t"
82 /* don't need lfence here, because loads are in-order */
83 "jmp 1b\n"
84 "2:"
85 : "+Q" (inc), "+m" (lock->slock)
86 :
87 : "memory", "cc");
88 }
89
90 static __always_inline int __ticket_spin_trylock(raw_spinlock_t *lock)
91 {
92 int tmp;
93 short new;
94
95 asm volatile("movw %2,%w0\n\t"
96 "cmpb %h0,%b0\n\t"
97 "jne 1f\n\t"
98 "movw %w0,%w1\n\t"
99 "incb %h1\n\t"
100 "lock ; cmpxchgw %w1,%2\n\t"
101 "1:"
102 "sete %b1\n\t"
103 "movzbl %b1,%0\n\t"
104 : "=&a" (tmp), "=Q" (new), "+m" (lock->slock)
105 :
106 : "memory", "cc");
107
108 return tmp;
109 }
110
111 static __always_inline void __ticket_spin_unlock(raw_spinlock_t *lock)
112 {
113 asm volatile(UNLOCK_LOCK_PREFIX "incb %0"
114 : "+m" (lock->slock)
115 :
116 : "memory", "cc");
117 }
118 #else
119 static inline int __ticket_spin_is_locked(raw_spinlock_t *lock)
120 {
121 int tmp = ACCESS_ONCE(lock->slock);
122
123 return (((tmp >> 16) & 0xffff) != (tmp & 0xffff));
124 }
125
126 static inline int __ticket_spin_is_contended(raw_spinlock_t *lock)
127 {
128 int tmp = ACCESS_ONCE(lock->slock);
129
130 return (((tmp >> 16) - tmp) & 0xffff) > 1;
131 }
132
133 static __always_inline void __ticket_spin_lock(raw_spinlock_t *lock)
134 {
135 int inc = 0x00010000;
136 int tmp;
137
138 asm volatile("lock ; xaddl %0, %1\n"
139 "movzwl %w0, %2\n\t"
140 "shrl $16, %0\n\t"
141 "1:\t"
142 "cmpl %0, %2\n\t"
143 "je 2f\n\t"
144 "rep ; nop\n\t"
145 "movzwl %1, %2\n\t"
146 /* don't need lfence here, because loads are in-order */
147 "jmp 1b\n"
148 "2:"
149 : "+Q" (inc), "+m" (lock->slock), "=r" (tmp)
150 :
151 : "memory", "cc");
152 }
153
154 static __always_inline int __ticket_spin_trylock(raw_spinlock_t *lock)
155 {
156 int tmp;
157 int new;
158
159 asm volatile("movl %2,%0\n\t"
160 "movl %0,%1\n\t"
161 "roll $16, %0\n\t"
162 "cmpl %0,%1\n\t"
163 "jne 1f\n\t"
164 "addl $0x00010000, %1\n\t"
165 "lock ; cmpxchgl %1,%2\n\t"
166 "1:"
167 "sete %b1\n\t"
168 "movzbl %b1,%0\n\t"
169 : "=&a" (tmp), "=r" (new), "+m" (lock->slock)
170 :
171 : "memory", "cc");
172
173 return tmp;
174 }
175
176 static __always_inline void __ticket_spin_unlock(raw_spinlock_t *lock)
177 {
178 asm volatile(UNLOCK_LOCK_PREFIX "incw %0"
179 : "+m" (lock->slock)
180 :
181 : "memory", "cc");
182 }
183 #endif
184
185 #ifdef CONFIG_PARAVIRT
186 /*
187 * Define virtualization-friendly old-style lock byte lock, for use in
188 * pv_lock_ops if desired.
189 *
190 * This differs from the pre-2.6.24 spinlock by always using xchgb
191 * rather than decb to take the lock; this allows it to use a
192 * zero-initialized lock structure. It also maintains a 1-byte
193 * contention counter, so that we can implement
194 * __byte_spin_is_contended.
195 */
196 struct __byte_spinlock {
197 s8 lock;
198 s8 spinners;
199 };
200
201 static inline int __byte_spin_is_locked(raw_spinlock_t *lock)
202 {
203 struct __byte_spinlock *bl = (struct __byte_spinlock *)lock;
204 return bl->lock != 0;
205 }
206
207 static inline int __byte_spin_is_contended(raw_spinlock_t *lock)
208 {
209 struct __byte_spinlock *bl = (struct __byte_spinlock *)lock;
210 return bl->spinners != 0;
211 }
212
213 static inline void __byte_spin_lock(raw_spinlock_t *lock)
214 {
215 struct __byte_spinlock *bl = (struct __byte_spinlock *)lock;
216 s8 val = 1;
217
218 asm("1: xchgb %1, %0\n"
219 " test %1,%1\n"
220 " jz 3f\n"
221 " " LOCK_PREFIX "incb %2\n"
222 "2: rep;nop\n"
223 " cmpb $1, %0\n"
224 " je 2b\n"
225 " " LOCK_PREFIX "decb %2\n"
226 " jmp 1b\n"
227 "3:"
228 : "+m" (bl->lock), "+q" (val), "+m" (bl->spinners): : "memory");
229 }
230
231 static inline int __byte_spin_trylock(raw_spinlock_t *lock)
232 {
233 struct __byte_spinlock *bl = (struct __byte_spinlock *)lock;
234 u8 old = 1;
235
236 asm("xchgb %1,%0"
237 : "+m" (bl->lock), "+q" (old) : : "memory");
238
239 return old == 0;
240 }
241
242 static inline void __byte_spin_unlock(raw_spinlock_t *lock)
243 {
244 struct __byte_spinlock *bl = (struct __byte_spinlock *)lock;
245 smp_wmb();
246 bl->lock = 0;
247 }
248 #else /* !CONFIG_PARAVIRT */
249 static inline int __raw_spin_is_locked(raw_spinlock_t *lock)
250 {
251 return __ticket_spin_is_locked(lock);
252 }
253
254 static inline int __raw_spin_is_contended(raw_spinlock_t *lock)
255 {
256 return __ticket_spin_is_contended(lock);
257 }
258
259 static __always_inline void __raw_spin_lock(raw_spinlock_t *lock)
260 {
261 __ticket_spin_lock(lock);
262 }
263
264 static __always_inline int __raw_spin_trylock(raw_spinlock_t *lock)
265 {
266 return __ticket_spin_trylock(lock);
267 }
268
269 static __always_inline void __raw_spin_unlock(raw_spinlock_t *lock)
270 {
271 __ticket_spin_unlock(lock);
272 }
273
274 static __always_inline void __raw_spin_lock_flags(raw_spinlock_t *lock,
275 unsigned long flags)
276 {
277 __raw_spin_lock(lock);
278 }
279
280 #endif /* CONFIG_PARAVIRT */
281
282 static inline void __raw_spin_unlock_wait(raw_spinlock_t *lock)
283 {
284 while (__raw_spin_is_locked(lock))
285 cpu_relax();
286 }
287
288 /*
289 * Read-write spinlocks, allowing multiple readers
290 * but only one writer.
291 *
292 * NOTE! it is quite common to have readers in interrupts
293 * but no interrupt writers. For those circumstances we
294 * can "mix" irq-safe locks - any writer needs to get a
295 * irq-safe write-lock, but readers can get non-irqsafe
296 * read-locks.
297 *
298 * On x86, we implement read-write locks as a 32-bit counter
299 * with the high bit (sign) being the "contended" bit.
300 */
301
302 /**
303 * read_can_lock - would read_trylock() succeed?
304 * @lock: the rwlock in question.
305 */
306 static inline int __raw_read_can_lock(raw_rwlock_t *lock)
307 {
308 return (int)(lock)->lock > 0;
309 }
310
311 /**
312 * write_can_lock - would write_trylock() succeed?
313 * @lock: the rwlock in question.
314 */
315 static inline int __raw_write_can_lock(raw_rwlock_t *lock)
316 {
317 return (lock)->lock == RW_LOCK_BIAS;
318 }
319
320 static inline void __raw_read_lock(raw_rwlock_t *rw)
321 {
322 asm volatile(LOCK_PREFIX " subl $1,(%0)\n\t"
323 "jns 1f\n"
324 "call __read_lock_failed\n\t"
325 "1:\n"
326 ::LOCK_PTR_REG (rw) : "memory");
327 }
328
329 static inline void __raw_write_lock(raw_rwlock_t *rw)
330 {
331 asm volatile(LOCK_PREFIX " subl %1,(%0)\n\t"
332 "jz 1f\n"
333 "call __write_lock_failed\n\t"
334 "1:\n"
335 ::LOCK_PTR_REG (rw), "i" (RW_LOCK_BIAS) : "memory");
336 }
337
338 static inline int __raw_read_trylock(raw_rwlock_t *lock)
339 {
340 atomic_t *count = (atomic_t *)lock;
341
342 atomic_dec(count);
343 if (atomic_read(count) >= 0)
344 return 1;
345 atomic_inc(count);
346 return 0;
347 }
348
349 static inline int __raw_write_trylock(raw_rwlock_t *lock)
350 {
351 atomic_t *count = (atomic_t *)lock;
352
353 if (atomic_sub_and_test(RW_LOCK_BIAS, count))
354 return 1;
355 atomic_add(RW_LOCK_BIAS, count);
356 return 0;
357 }
358
359 static inline void __raw_read_unlock(raw_rwlock_t *rw)
360 {
361 asm volatile(LOCK_PREFIX "incl %0" :"+m" (rw->lock) : : "memory");
362 }
363
364 static inline void __raw_write_unlock(raw_rwlock_t *rw)
365 {
366 asm volatile(LOCK_PREFIX "addl %1, %0"
367 : "+m" (rw->lock) : "i" (RW_LOCK_BIAS) : "memory");
368 }
369
370 #define _raw_spin_relax(lock) cpu_relax()
371 #define _raw_read_relax(lock) cpu_relax()
372 #define _raw_write_relax(lock) cpu_relax()
373
374 #endif
This page took 0.058745 seconds and 5 git commands to generate.