crypto: doc - cover new AEAD interface
[deliverable/linux.git] / include / crypto / aead.h
1 /*
2 * AEAD: Authenticated Encryption with Associated Data
3 *
4 * Copyright (c) 2007 Herbert Xu <herbert@gondor.apana.org.au>
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License as published by the Free
8 * Software Foundation; either version 2 of the License, or (at your option)
9 * any later version.
10 *
11 */
12
13 #ifndef _CRYPTO_AEAD_H
14 #define _CRYPTO_AEAD_H
15
16 #include <linux/crypto.h>
17 #include <linux/kernel.h>
18 #include <linux/slab.h>
19
20 /**
21 * DOC: Authenticated Encryption With Associated Data (AEAD) Cipher API
22 *
23 * The AEAD cipher API is used with the ciphers of type CRYPTO_ALG_TYPE_AEAD
24 * (listed as type "aead" in /proc/crypto)
25 *
26 * The most prominent examples for this type of encryption is GCM and CCM.
27 * However, the kernel supports other types of AEAD ciphers which are defined
28 * with the following cipher string:
29 *
30 * authenc(keyed message digest, block cipher)
31 *
32 * For example: authenc(hmac(sha256), cbc(aes))
33 *
34 * The example code provided for the asynchronous block cipher operation
35 * applies here as well. Naturally all *ablkcipher* symbols must be exchanged
36 * the *aead* pendants discussed in the following. In addtion, for the AEAD
37 * operation, the aead_request_set_assoc function must be used to set the
38 * pointer to the associated data memory location before performing the
39 * encryption or decryption operation. In case of an encryption, the associated
40 * data memory is filled during the encryption operation. For decryption, the
41 * associated data memory must contain data that is used to verify the integrity
42 * of the decrypted data. Another deviation from the asynchronous block cipher
43 * operation is that the caller should explicitly check for -EBADMSG of the
44 * crypto_aead_decrypt. That error indicates an authentication error, i.e.
45 * a breach in the integrity of the message. In essence, that -EBADMSG error
46 * code is the key bonus an AEAD cipher has over "standard" block chaining
47 * modes.
48 */
49
50 /**
51 * struct aead_request - AEAD request
52 * @base: Common attributes for async crypto requests
53 * @old: Boolean whether the old or new AEAD API is used
54 * @assoclen: Length in bytes of associated data for authentication
55 * @cryptlen: Length of data to be encrypted or decrypted
56 * @iv: Initialisation vector
57 * @assoc: Associated data
58 * @src: Source data
59 * @dst: Destination data
60 * @__ctx: Start of private context data
61 */
62 struct aead_request {
63 struct crypto_async_request base;
64
65 bool old;
66
67 unsigned int assoclen;
68 unsigned int cryptlen;
69
70 u8 *iv;
71
72 struct scatterlist *assoc;
73 struct scatterlist *src;
74 struct scatterlist *dst;
75
76 void *__ctx[] CRYPTO_MINALIGN_ATTR;
77 };
78
79 /**
80 * struct aead_givcrypt_request - AEAD request with IV generation
81 * @seq: Sequence number for IV generation
82 * @giv: Space for generated IV
83 * @areq: The AEAD request itself
84 */
85 struct aead_givcrypt_request {
86 u64 seq;
87 u8 *giv;
88
89 struct aead_request areq;
90 };
91
92 /**
93 * struct aead_alg - AEAD cipher definition
94 * @maxauthsize: Set the maximum authentication tag size supported by the
95 * transformation. A transformation may support smaller tag sizes.
96 * As the authentication tag is a message digest to ensure the
97 * integrity of the encrypted data, a consumer typically wants the
98 * largest authentication tag possible as defined by this
99 * variable.
100 * @setauthsize: Set authentication size for the AEAD transformation. This
101 * function is used to specify the consumer requested size of the
102 * authentication tag to be either generated by the transformation
103 * during encryption or the size of the authentication tag to be
104 * supplied during the decryption operation. This function is also
105 * responsible for checking the authentication tag size for
106 * validity.
107 * @setkey: see struct ablkcipher_alg
108 * @encrypt: see struct ablkcipher_alg
109 * @decrypt: see struct ablkcipher_alg
110 * @geniv: see struct ablkcipher_alg
111 * @ivsize: see struct ablkcipher_alg
112 *
113 * All fields except @ivsize is mandatory and must be filled.
114 */
115 struct aead_alg {
116 int (*setkey)(struct crypto_aead *tfm, const u8 *key,
117 unsigned int keylen);
118 int (*setauthsize)(struct crypto_aead *tfm, unsigned int authsize);
119 int (*encrypt)(struct aead_request *req);
120 int (*decrypt)(struct aead_request *req);
121
122 const char *geniv;
123
124 unsigned int ivsize;
125 unsigned int maxauthsize;
126
127 struct crypto_alg base;
128 };
129
130 struct crypto_aead {
131 int (*setkey)(struct crypto_aead *tfm, const u8 *key,
132 unsigned int keylen);
133 int (*setauthsize)(struct crypto_aead *tfm, unsigned int authsize);
134 int (*encrypt)(struct aead_request *req);
135 int (*decrypt)(struct aead_request *req);
136 int (*givencrypt)(struct aead_givcrypt_request *req);
137 int (*givdecrypt)(struct aead_givcrypt_request *req);
138
139 struct crypto_aead *child;
140
141 unsigned int authsize;
142 unsigned int reqsize;
143
144 struct crypto_tfm base;
145 };
146
147 static inline struct crypto_aead *__crypto_aead_cast(struct crypto_tfm *tfm)
148 {
149 return container_of(tfm, struct crypto_aead, base);
150 }
151
152 /**
153 * crypto_alloc_aead() - allocate AEAD cipher handle
154 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
155 * AEAD cipher
156 * @type: specifies the type of the cipher
157 * @mask: specifies the mask for the cipher
158 *
159 * Allocate a cipher handle for an AEAD. The returned struct
160 * crypto_aead is the cipher handle that is required for any subsequent
161 * API invocation for that AEAD.
162 *
163 * Return: allocated cipher handle in case of success; IS_ERR() is true in case
164 * of an error, PTR_ERR() returns the error code.
165 */
166 struct crypto_aead *crypto_alloc_aead(const char *alg_name, u32 type, u32 mask);
167
168 static inline struct crypto_tfm *crypto_aead_tfm(struct crypto_aead *tfm)
169 {
170 return &tfm->base;
171 }
172
173 /**
174 * crypto_free_aead() - zeroize and free aead handle
175 * @tfm: cipher handle to be freed
176 */
177 static inline void crypto_free_aead(struct crypto_aead *tfm)
178 {
179 crypto_destroy_tfm(tfm, crypto_aead_tfm(tfm));
180 }
181
182 static inline struct crypto_aead *crypto_aead_crt(struct crypto_aead *tfm)
183 {
184 return tfm;
185 }
186
187 static inline struct old_aead_alg *crypto_old_aead_alg(struct crypto_aead *tfm)
188 {
189 return &crypto_aead_tfm(tfm)->__crt_alg->cra_aead;
190 }
191
192 static inline struct aead_alg *crypto_aead_alg(struct crypto_aead *tfm)
193 {
194 return container_of(crypto_aead_tfm(tfm)->__crt_alg,
195 struct aead_alg, base);
196 }
197
198 static inline unsigned int crypto_aead_alg_ivsize(struct aead_alg *alg)
199 {
200 return alg->base.cra_aead.encrypt ? alg->base.cra_aead.ivsize :
201 alg->ivsize;
202 }
203
204 /**
205 * crypto_aead_ivsize() - obtain IV size
206 * @tfm: cipher handle
207 *
208 * The size of the IV for the aead referenced by the cipher handle is
209 * returned. This IV size may be zero if the cipher does not need an IV.
210 *
211 * Return: IV size in bytes
212 */
213 static inline unsigned int crypto_aead_ivsize(struct crypto_aead *tfm)
214 {
215 return crypto_aead_alg_ivsize(crypto_aead_alg(tfm));
216 }
217
218 /**
219 * crypto_aead_authsize() - obtain maximum authentication data size
220 * @tfm: cipher handle
221 *
222 * The maximum size of the authentication data for the AEAD cipher referenced
223 * by the AEAD cipher handle is returned. The authentication data size may be
224 * zero if the cipher implements a hard-coded maximum.
225 *
226 * The authentication data may also be known as "tag value".
227 *
228 * Return: authentication data size / tag size in bytes
229 */
230 static inline unsigned int crypto_aead_authsize(struct crypto_aead *tfm)
231 {
232 return tfm->authsize;
233 }
234
235 /**
236 * crypto_aead_blocksize() - obtain block size of cipher
237 * @tfm: cipher handle
238 *
239 * The block size for the AEAD referenced with the cipher handle is returned.
240 * The caller may use that information to allocate appropriate memory for the
241 * data returned by the encryption or decryption operation
242 *
243 * Return: block size of cipher
244 */
245 static inline unsigned int crypto_aead_blocksize(struct crypto_aead *tfm)
246 {
247 return crypto_tfm_alg_blocksize(crypto_aead_tfm(tfm));
248 }
249
250 static inline unsigned int crypto_aead_alignmask(struct crypto_aead *tfm)
251 {
252 return crypto_tfm_alg_alignmask(crypto_aead_tfm(tfm));
253 }
254
255 static inline u32 crypto_aead_get_flags(struct crypto_aead *tfm)
256 {
257 return crypto_tfm_get_flags(crypto_aead_tfm(tfm));
258 }
259
260 static inline void crypto_aead_set_flags(struct crypto_aead *tfm, u32 flags)
261 {
262 crypto_tfm_set_flags(crypto_aead_tfm(tfm), flags);
263 }
264
265 static inline void crypto_aead_clear_flags(struct crypto_aead *tfm, u32 flags)
266 {
267 crypto_tfm_clear_flags(crypto_aead_tfm(tfm), flags);
268 }
269
270 /**
271 * crypto_aead_setkey() - set key for cipher
272 * @tfm: cipher handle
273 * @key: buffer holding the key
274 * @keylen: length of the key in bytes
275 *
276 * The caller provided key is set for the AEAD referenced by the cipher
277 * handle.
278 *
279 * Note, the key length determines the cipher type. Many block ciphers implement
280 * different cipher modes depending on the key size, such as AES-128 vs AES-192
281 * vs. AES-256. When providing a 16 byte key for an AES cipher handle, AES-128
282 * is performed.
283 *
284 * Return: 0 if the setting of the key was successful; < 0 if an error occurred
285 */
286 int crypto_aead_setkey(struct crypto_aead *tfm,
287 const u8 *key, unsigned int keylen);
288
289 /**
290 * crypto_aead_setauthsize() - set authentication data size
291 * @tfm: cipher handle
292 * @authsize: size of the authentication data / tag in bytes
293 *
294 * Set the authentication data size / tag size. AEAD requires an authentication
295 * tag (or MAC) in addition to the associated data.
296 *
297 * Return: 0 if the setting of the key was successful; < 0 if an error occurred
298 */
299 int crypto_aead_setauthsize(struct crypto_aead *tfm, unsigned int authsize);
300
301 static inline struct crypto_aead *crypto_aead_reqtfm(struct aead_request *req)
302 {
303 return __crypto_aead_cast(req->base.tfm);
304 }
305
306 /**
307 * crypto_aead_encrypt() - encrypt plaintext
308 * @req: reference to the aead_request handle that holds all information
309 * needed to perform the cipher operation
310 *
311 * Encrypt plaintext data using the aead_request handle. That data structure
312 * and how it is filled with data is discussed with the aead_request_*
313 * functions.
314 *
315 * IMPORTANT NOTE The encryption operation creates the authentication data /
316 * tag. That data is concatenated with the created ciphertext.
317 * The ciphertext memory size is therefore the given number of
318 * block cipher blocks + the size defined by the
319 * crypto_aead_setauthsize invocation. The caller must ensure
320 * that sufficient memory is available for the ciphertext and
321 * the authentication tag.
322 *
323 * Return: 0 if the cipher operation was successful; < 0 if an error occurred
324 */
325 static inline int crypto_aead_encrypt(struct aead_request *req)
326 {
327 return crypto_aead_reqtfm(req)->encrypt(req);
328 }
329
330 /**
331 * crypto_aead_decrypt() - decrypt ciphertext
332 * @req: reference to the ablkcipher_request handle that holds all information
333 * needed to perform the cipher operation
334 *
335 * Decrypt ciphertext data using the aead_request handle. That data structure
336 * and how it is filled with data is discussed with the aead_request_*
337 * functions.
338 *
339 * IMPORTANT NOTE The caller must concatenate the ciphertext followed by the
340 * authentication data / tag. That authentication data / tag
341 * must have the size defined by the crypto_aead_setauthsize
342 * invocation.
343 *
344 *
345 * Return: 0 if the cipher operation was successful; -EBADMSG: The AEAD
346 * cipher operation performs the authentication of the data during the
347 * decryption operation. Therefore, the function returns this error if
348 * the authentication of the ciphertext was unsuccessful (i.e. the
349 * integrity of the ciphertext or the associated data was violated);
350 * < 0 if an error occurred.
351 */
352 static inline int crypto_aead_decrypt(struct aead_request *req)
353 {
354 if (req->cryptlen < crypto_aead_authsize(crypto_aead_reqtfm(req)))
355 return -EINVAL;
356
357 return crypto_aead_reqtfm(req)->decrypt(req);
358 }
359
360 /**
361 * DOC: Asynchronous AEAD Request Handle
362 *
363 * The aead_request data structure contains all pointers to data required for
364 * the AEAD cipher operation. This includes the cipher handle (which can be
365 * used by multiple aead_request instances), pointer to plaintext and
366 * ciphertext, asynchronous callback function, etc. It acts as a handle to the
367 * aead_request_* API calls in a similar way as AEAD handle to the
368 * crypto_aead_* API calls.
369 */
370
371 /**
372 * crypto_aead_reqsize() - obtain size of the request data structure
373 * @tfm: cipher handle
374 *
375 * Return: number of bytes
376 */
377 unsigned int crypto_aead_reqsize(struct crypto_aead *tfm);
378
379 /**
380 * aead_request_set_tfm() - update cipher handle reference in request
381 * @req: request handle to be modified
382 * @tfm: cipher handle that shall be added to the request handle
383 *
384 * Allow the caller to replace the existing aead handle in the request
385 * data structure with a different one.
386 */
387 static inline void aead_request_set_tfm(struct aead_request *req,
388 struct crypto_aead *tfm)
389 {
390 req->base.tfm = crypto_aead_tfm(tfm->child);
391 }
392
393 /**
394 * aead_request_alloc() - allocate request data structure
395 * @tfm: cipher handle to be registered with the request
396 * @gfp: memory allocation flag that is handed to kmalloc by the API call.
397 *
398 * Allocate the request data structure that must be used with the AEAD
399 * encrypt and decrypt API calls. During the allocation, the provided aead
400 * handle is registered in the request data structure.
401 *
402 * Return: allocated request handle in case of success; IS_ERR() is true in case
403 * of an error, PTR_ERR() returns the error code.
404 */
405 static inline struct aead_request *aead_request_alloc(struct crypto_aead *tfm,
406 gfp_t gfp)
407 {
408 struct aead_request *req;
409
410 req = kmalloc(sizeof(*req) + crypto_aead_reqsize(tfm), gfp);
411
412 if (likely(req))
413 aead_request_set_tfm(req, tfm);
414
415 return req;
416 }
417
418 /**
419 * aead_request_free() - zeroize and free request data structure
420 * @req: request data structure cipher handle to be freed
421 */
422 static inline void aead_request_free(struct aead_request *req)
423 {
424 kzfree(req);
425 }
426
427 /**
428 * aead_request_set_callback() - set asynchronous callback function
429 * @req: request handle
430 * @flags: specify zero or an ORing of the flags
431 * CRYPTO_TFM_REQ_MAY_BACKLOG the request queue may back log and
432 * increase the wait queue beyond the initial maximum size;
433 * CRYPTO_TFM_REQ_MAY_SLEEP the request processing may sleep
434 * @compl: callback function pointer to be registered with the request handle
435 * @data: The data pointer refers to memory that is not used by the kernel
436 * crypto API, but provided to the callback function for it to use. Here,
437 * the caller can provide a reference to memory the callback function can
438 * operate on. As the callback function is invoked asynchronously to the
439 * related functionality, it may need to access data structures of the
440 * related functionality which can be referenced using this pointer. The
441 * callback function can access the memory via the "data" field in the
442 * crypto_async_request data structure provided to the callback function.
443 *
444 * Setting the callback function that is triggered once the cipher operation
445 * completes
446 *
447 * The callback function is registered with the aead_request handle and
448 * must comply with the following template
449 *
450 * void callback_function(struct crypto_async_request *req, int error)
451 */
452 static inline void aead_request_set_callback(struct aead_request *req,
453 u32 flags,
454 crypto_completion_t compl,
455 void *data)
456 {
457 req->base.complete = compl;
458 req->base.data = data;
459 req->base.flags = flags;
460 }
461
462 /**
463 * aead_request_set_crypt - set data buffers
464 * @req: request handle
465 * @src: source scatter / gather list
466 * @dst: destination scatter / gather list
467 * @cryptlen: number of bytes to process from @src
468 * @iv: IV for the cipher operation which must comply with the IV size defined
469 * by crypto_aead_ivsize()
470 *
471 * Setting the source data and destination data scatter / gather lists which
472 * hold the associated data concatenated with the plaintext or ciphertext. See
473 * below for the authentication tag.
474 *
475 * For encryption, the source is treated as the plaintext and the
476 * destination is the ciphertext. For a decryption operation, the use is
477 * reversed - the source is the ciphertext and the destination is the plaintext.
478 *
479 * For both src/dst the layout is associated data, plain/cipher text,
480 * authentication tag.
481 *
482 * The content of the AD in the destination buffer after processing
483 * will either be untouched, or it will contain a copy of the AD
484 * from the source buffer. In order to ensure that it always has
485 * a copy of the AD, the user must copy the AD over either before
486 * or after processing. Of course this is not relevant if the user
487 * is doing in-place processing where src == dst.
488 *
489 * IMPORTANT NOTE AEAD requires an authentication tag (MAC). For decryption,
490 * the caller must concatenate the ciphertext followed by the
491 * authentication tag and provide the entire data stream to the
492 * decryption operation (i.e. the data length used for the
493 * initialization of the scatterlist and the data length for the
494 * decryption operation is identical). For encryption, however,
495 * the authentication tag is created while encrypting the data.
496 * The destination buffer must hold sufficient space for the
497 * ciphertext and the authentication tag while the encryption
498 * invocation must only point to the plaintext data size. The
499 * following code snippet illustrates the memory usage
500 * buffer = kmalloc(ptbuflen + (enc ? authsize : 0));
501 * sg_init_one(&sg, buffer, ptbuflen + (enc ? authsize : 0));
502 * aead_request_set_crypt(req, &sg, &sg, ptbuflen, iv);
503 */
504 static inline void aead_request_set_crypt(struct aead_request *req,
505 struct scatterlist *src,
506 struct scatterlist *dst,
507 unsigned int cryptlen, u8 *iv)
508 {
509 req->src = src;
510 req->dst = dst;
511 req->cryptlen = cryptlen;
512 req->iv = iv;
513 }
514
515 /**
516 * aead_request_set_assoc() - set the associated data scatter / gather list
517 * @req: request handle
518 * @assoc: associated data scatter / gather list
519 * @assoclen: number of bytes to process from @assoc
520 *
521 * Obsolete, do not use.
522 */
523 static inline void aead_request_set_assoc(struct aead_request *req,
524 struct scatterlist *assoc,
525 unsigned int assoclen)
526 {
527 req->assoc = assoc;
528 req->assoclen = assoclen;
529 req->old = true;
530 }
531
532 /**
533 * aead_request_set_ad - set associated data information
534 * @req: request handle
535 * @assoclen: number of bytes in associated data
536 *
537 * Setting the AD information. This function sets the length of
538 * the associated data.
539 */
540 static inline void aead_request_set_ad(struct aead_request *req,
541 unsigned int assoclen)
542 {
543 req->assoclen = assoclen;
544 req->old = false;
545 }
546
547 static inline struct crypto_aead *aead_givcrypt_reqtfm(
548 struct aead_givcrypt_request *req)
549 {
550 return crypto_aead_reqtfm(&req->areq);
551 }
552
553 static inline int crypto_aead_givencrypt(struct aead_givcrypt_request *req)
554 {
555 return aead_givcrypt_reqtfm(req)->givencrypt(req);
556 };
557
558 static inline int crypto_aead_givdecrypt(struct aead_givcrypt_request *req)
559 {
560 return aead_givcrypt_reqtfm(req)->givdecrypt(req);
561 };
562
563 static inline void aead_givcrypt_set_tfm(struct aead_givcrypt_request *req,
564 struct crypto_aead *tfm)
565 {
566 req->areq.base.tfm = crypto_aead_tfm(tfm);
567 }
568
569 static inline struct aead_givcrypt_request *aead_givcrypt_alloc(
570 struct crypto_aead *tfm, gfp_t gfp)
571 {
572 struct aead_givcrypt_request *req;
573
574 req = kmalloc(sizeof(struct aead_givcrypt_request) +
575 crypto_aead_reqsize(tfm), gfp);
576
577 if (likely(req))
578 aead_givcrypt_set_tfm(req, tfm);
579
580 return req;
581 }
582
583 static inline void aead_givcrypt_free(struct aead_givcrypt_request *req)
584 {
585 kfree(req);
586 }
587
588 static inline void aead_givcrypt_set_callback(
589 struct aead_givcrypt_request *req, u32 flags,
590 crypto_completion_t compl, void *data)
591 {
592 aead_request_set_callback(&req->areq, flags, compl, data);
593 }
594
595 static inline void aead_givcrypt_set_crypt(struct aead_givcrypt_request *req,
596 struct scatterlist *src,
597 struct scatterlist *dst,
598 unsigned int nbytes, void *iv)
599 {
600 aead_request_set_crypt(&req->areq, src, dst, nbytes, iv);
601 }
602
603 static inline void aead_givcrypt_set_assoc(struct aead_givcrypt_request *req,
604 struct scatterlist *assoc,
605 unsigned int assoclen)
606 {
607 aead_request_set_assoc(&req->areq, assoc, assoclen);
608 }
609
610 static inline void aead_givcrypt_set_giv(struct aead_givcrypt_request *req,
611 u8 *giv, u64 seq)
612 {
613 req->giv = giv;
614 req->seq = seq;
615 }
616
617 #endif /* _CRYPTO_AEAD_H */
This page took 0.045432 seconds and 5 git commands to generate.