Merge branch 'cpuidle' of git://git.kernel.org/pub/scm/linux/kernel/git/lenb/linux...
[deliverable/linux.git] / include / crypto / hash.h
1 /*
2 * Hash: Hash algorithms under the crypto API
3 *
4 * Copyright (c) 2008 Herbert Xu <herbert@gondor.apana.org.au>
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License as published by the Free
8 * Software Foundation; either version 2 of the License, or (at your option)
9 * any later version.
10 *
11 */
12
13 #ifndef _CRYPTO_HASH_H
14 #define _CRYPTO_HASH_H
15
16 #include <linux/crypto.h>
17
18 struct crypto_ahash;
19
20 /**
21 * DOC: Message Digest Algorithm Definitions
22 *
23 * These data structures define modular message digest algorithm
24 * implementations, managed via crypto_register_ahash(),
25 * crypto_register_shash(), crypto_unregister_ahash() and
26 * crypto_unregister_shash().
27 */
28
29 /**
30 * struct hash_alg_common - define properties of message digest
31 * @digestsize: Size of the result of the transformation. A buffer of this size
32 * must be available to the @final and @finup calls, so they can
33 * store the resulting hash into it. For various predefined sizes,
34 * search include/crypto/ using
35 * git grep _DIGEST_SIZE include/crypto.
36 * @statesize: Size of the block for partial state of the transformation. A
37 * buffer of this size must be passed to the @export function as it
38 * will save the partial state of the transformation into it. On the
39 * other side, the @import function will load the state from a
40 * buffer of this size as well.
41 * @base: Start of data structure of cipher algorithm. The common data
42 * structure of crypto_alg contains information common to all ciphers.
43 * The hash_alg_common data structure now adds the hash-specific
44 * information.
45 */
46 struct hash_alg_common {
47 unsigned int digestsize;
48 unsigned int statesize;
49
50 struct crypto_alg base;
51 };
52
53 struct ahash_request {
54 struct crypto_async_request base;
55
56 unsigned int nbytes;
57 struct scatterlist *src;
58 u8 *result;
59
60 /* This field may only be used by the ahash API code. */
61 void *priv;
62
63 void *__ctx[] CRYPTO_MINALIGN_ATTR;
64 };
65
66 #define AHASH_REQUEST_ON_STACK(name, ahash) \
67 char __##name##_desc[sizeof(struct ahash_request) + \
68 crypto_ahash_reqsize(ahash)] CRYPTO_MINALIGN_ATTR; \
69 struct ahash_request *name = (void *)__##name##_desc
70
71 /**
72 * struct ahash_alg - asynchronous message digest definition
73 * @init: Initialize the transformation context. Intended only to initialize the
74 * state of the HASH transformation at the beginning. This shall fill in
75 * the internal structures used during the entire duration of the whole
76 * transformation. No data processing happens at this point.
77 * @update: Push a chunk of data into the driver for transformation. This
78 * function actually pushes blocks of data from upper layers into the
79 * driver, which then passes those to the hardware as seen fit. This
80 * function must not finalize the HASH transformation by calculating the
81 * final message digest as this only adds more data into the
82 * transformation. This function shall not modify the transformation
83 * context, as this function may be called in parallel with the same
84 * transformation object. Data processing can happen synchronously
85 * [SHASH] or asynchronously [AHASH] at this point.
86 * @final: Retrieve result from the driver. This function finalizes the
87 * transformation and retrieves the resulting hash from the driver and
88 * pushes it back to upper layers. No data processing happens at this
89 * point.
90 * @finup: Combination of @update and @final. This function is effectively a
91 * combination of @update and @final calls issued in sequence. As some
92 * hardware cannot do @update and @final separately, this callback was
93 * added to allow such hardware to be used at least by IPsec. Data
94 * processing can happen synchronously [SHASH] or asynchronously [AHASH]
95 * at this point.
96 * @digest: Combination of @init and @update and @final. This function
97 * effectively behaves as the entire chain of operations, @init,
98 * @update and @final issued in sequence. Just like @finup, this was
99 * added for hardware which cannot do even the @finup, but can only do
100 * the whole transformation in one run. Data processing can happen
101 * synchronously [SHASH] or asynchronously [AHASH] at this point.
102 * @setkey: Set optional key used by the hashing algorithm. Intended to push
103 * optional key used by the hashing algorithm from upper layers into
104 * the driver. This function can store the key in the transformation
105 * context or can outright program it into the hardware. In the former
106 * case, one must be careful to program the key into the hardware at
107 * appropriate time and one must be careful that .setkey() can be
108 * called multiple times during the existence of the transformation
109 * object. Not all hashing algorithms do implement this function as it
110 * is only needed for keyed message digests. SHAx/MDx/CRCx do NOT
111 * implement this function. HMAC(MDx)/HMAC(SHAx)/CMAC(AES) do implement
112 * this function. This function must be called before any other of the
113 * @init, @update, @final, @finup, @digest is called. No data
114 * processing happens at this point.
115 * @export: Export partial state of the transformation. This function dumps the
116 * entire state of the ongoing transformation into a provided block of
117 * data so it can be @import 'ed back later on. This is useful in case
118 * you want to save partial result of the transformation after
119 * processing certain amount of data and reload this partial result
120 * multiple times later on for multiple re-use. No data processing
121 * happens at this point.
122 * @import: Import partial state of the transformation. This function loads the
123 * entire state of the ongoing transformation from a provided block of
124 * data so the transformation can continue from this point onward. No
125 * data processing happens at this point.
126 * @halg: see struct hash_alg_common
127 */
128 struct ahash_alg {
129 int (*init)(struct ahash_request *req);
130 int (*update)(struct ahash_request *req);
131 int (*final)(struct ahash_request *req);
132 int (*finup)(struct ahash_request *req);
133 int (*digest)(struct ahash_request *req);
134 int (*export)(struct ahash_request *req, void *out);
135 int (*import)(struct ahash_request *req, const void *in);
136 int (*setkey)(struct crypto_ahash *tfm, const u8 *key,
137 unsigned int keylen);
138
139 struct hash_alg_common halg;
140 };
141
142 struct shash_desc {
143 struct crypto_shash *tfm;
144 u32 flags;
145
146 void *__ctx[] CRYPTO_MINALIGN_ATTR;
147 };
148
149 #define SHASH_DESC_ON_STACK(shash, ctx) \
150 char __##shash##_desc[sizeof(struct shash_desc) + \
151 crypto_shash_descsize(ctx)] CRYPTO_MINALIGN_ATTR; \
152 struct shash_desc *shash = (struct shash_desc *)__##shash##_desc
153
154 /**
155 * struct shash_alg - synchronous message digest definition
156 * @init: see struct ahash_alg
157 * @update: see struct ahash_alg
158 * @final: see struct ahash_alg
159 * @finup: see struct ahash_alg
160 * @digest: see struct ahash_alg
161 * @export: see struct ahash_alg
162 * @import: see struct ahash_alg
163 * @setkey: see struct ahash_alg
164 * @digestsize: see struct ahash_alg
165 * @statesize: see struct ahash_alg
166 * @descsize: Size of the operational state for the message digest. This state
167 * size is the memory size that needs to be allocated for
168 * shash_desc.__ctx
169 * @base: internally used
170 */
171 struct shash_alg {
172 int (*init)(struct shash_desc *desc);
173 int (*update)(struct shash_desc *desc, const u8 *data,
174 unsigned int len);
175 int (*final)(struct shash_desc *desc, u8 *out);
176 int (*finup)(struct shash_desc *desc, const u8 *data,
177 unsigned int len, u8 *out);
178 int (*digest)(struct shash_desc *desc, const u8 *data,
179 unsigned int len, u8 *out);
180 int (*export)(struct shash_desc *desc, void *out);
181 int (*import)(struct shash_desc *desc, const void *in);
182 int (*setkey)(struct crypto_shash *tfm, const u8 *key,
183 unsigned int keylen);
184
185 unsigned int descsize;
186
187 /* These fields must match hash_alg_common. */
188 unsigned int digestsize
189 __attribute__ ((aligned(__alignof__(struct hash_alg_common))));
190 unsigned int statesize;
191
192 struct crypto_alg base;
193 };
194
195 struct crypto_ahash {
196 int (*init)(struct ahash_request *req);
197 int (*update)(struct ahash_request *req);
198 int (*final)(struct ahash_request *req);
199 int (*finup)(struct ahash_request *req);
200 int (*digest)(struct ahash_request *req);
201 int (*export)(struct ahash_request *req, void *out);
202 int (*import)(struct ahash_request *req, const void *in);
203 int (*setkey)(struct crypto_ahash *tfm, const u8 *key,
204 unsigned int keylen);
205
206 unsigned int reqsize;
207 bool has_setkey;
208 struct crypto_tfm base;
209 };
210
211 struct crypto_shash {
212 unsigned int descsize;
213 struct crypto_tfm base;
214 };
215
216 /**
217 * DOC: Asynchronous Message Digest API
218 *
219 * The asynchronous message digest API is used with the ciphers of type
220 * CRYPTO_ALG_TYPE_AHASH (listed as type "ahash" in /proc/crypto)
221 *
222 * The asynchronous cipher operation discussion provided for the
223 * CRYPTO_ALG_TYPE_ABLKCIPHER API applies here as well.
224 */
225
226 static inline struct crypto_ahash *__crypto_ahash_cast(struct crypto_tfm *tfm)
227 {
228 return container_of(tfm, struct crypto_ahash, base);
229 }
230
231 /**
232 * crypto_alloc_ahash() - allocate ahash cipher handle
233 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
234 * ahash cipher
235 * @type: specifies the type of the cipher
236 * @mask: specifies the mask for the cipher
237 *
238 * Allocate a cipher handle for an ahash. The returned struct
239 * crypto_ahash is the cipher handle that is required for any subsequent
240 * API invocation for that ahash.
241 *
242 * Return: allocated cipher handle in case of success; IS_ERR() is true in case
243 * of an error, PTR_ERR() returns the error code.
244 */
245 struct crypto_ahash *crypto_alloc_ahash(const char *alg_name, u32 type,
246 u32 mask);
247
248 static inline struct crypto_tfm *crypto_ahash_tfm(struct crypto_ahash *tfm)
249 {
250 return &tfm->base;
251 }
252
253 /**
254 * crypto_free_ahash() - zeroize and free the ahash handle
255 * @tfm: cipher handle to be freed
256 */
257 static inline void crypto_free_ahash(struct crypto_ahash *tfm)
258 {
259 crypto_destroy_tfm(tfm, crypto_ahash_tfm(tfm));
260 }
261
262 static inline unsigned int crypto_ahash_alignmask(
263 struct crypto_ahash *tfm)
264 {
265 return crypto_tfm_alg_alignmask(crypto_ahash_tfm(tfm));
266 }
267
268 /**
269 * crypto_ahash_blocksize() - obtain block size for cipher
270 * @tfm: cipher handle
271 *
272 * The block size for the message digest cipher referenced with the cipher
273 * handle is returned.
274 *
275 * Return: block size of cipher
276 */
277 static inline unsigned int crypto_ahash_blocksize(struct crypto_ahash *tfm)
278 {
279 return crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm));
280 }
281
282 static inline struct hash_alg_common *__crypto_hash_alg_common(
283 struct crypto_alg *alg)
284 {
285 return container_of(alg, struct hash_alg_common, base);
286 }
287
288 static inline struct hash_alg_common *crypto_hash_alg_common(
289 struct crypto_ahash *tfm)
290 {
291 return __crypto_hash_alg_common(crypto_ahash_tfm(tfm)->__crt_alg);
292 }
293
294 /**
295 * crypto_ahash_digestsize() - obtain message digest size
296 * @tfm: cipher handle
297 *
298 * The size for the message digest created by the message digest cipher
299 * referenced with the cipher handle is returned.
300 *
301 *
302 * Return: message digest size of cipher
303 */
304 static inline unsigned int crypto_ahash_digestsize(struct crypto_ahash *tfm)
305 {
306 return crypto_hash_alg_common(tfm)->digestsize;
307 }
308
309 static inline unsigned int crypto_ahash_statesize(struct crypto_ahash *tfm)
310 {
311 return crypto_hash_alg_common(tfm)->statesize;
312 }
313
314 static inline u32 crypto_ahash_get_flags(struct crypto_ahash *tfm)
315 {
316 return crypto_tfm_get_flags(crypto_ahash_tfm(tfm));
317 }
318
319 static inline void crypto_ahash_set_flags(struct crypto_ahash *tfm, u32 flags)
320 {
321 crypto_tfm_set_flags(crypto_ahash_tfm(tfm), flags);
322 }
323
324 static inline void crypto_ahash_clear_flags(struct crypto_ahash *tfm, u32 flags)
325 {
326 crypto_tfm_clear_flags(crypto_ahash_tfm(tfm), flags);
327 }
328
329 /**
330 * crypto_ahash_reqtfm() - obtain cipher handle from request
331 * @req: asynchronous request handle that contains the reference to the ahash
332 * cipher handle
333 *
334 * Return the ahash cipher handle that is registered with the asynchronous
335 * request handle ahash_request.
336 *
337 * Return: ahash cipher handle
338 */
339 static inline struct crypto_ahash *crypto_ahash_reqtfm(
340 struct ahash_request *req)
341 {
342 return __crypto_ahash_cast(req->base.tfm);
343 }
344
345 /**
346 * crypto_ahash_reqsize() - obtain size of the request data structure
347 * @tfm: cipher handle
348 *
349 * Return the size of the ahash state size. With the crypto_ahash_export
350 * function, the caller can export the state into a buffer whose size is
351 * defined with this function.
352 *
353 * Return: size of the ahash state
354 */
355 static inline unsigned int crypto_ahash_reqsize(struct crypto_ahash *tfm)
356 {
357 return tfm->reqsize;
358 }
359
360 static inline void *ahash_request_ctx(struct ahash_request *req)
361 {
362 return req->__ctx;
363 }
364
365 /**
366 * crypto_ahash_setkey - set key for cipher handle
367 * @tfm: cipher handle
368 * @key: buffer holding the key
369 * @keylen: length of the key in bytes
370 *
371 * The caller provided key is set for the ahash cipher. The cipher
372 * handle must point to a keyed hash in order for this function to succeed.
373 *
374 * Return: 0 if the setting of the key was successful; < 0 if an error occurred
375 */
376 int crypto_ahash_setkey(struct crypto_ahash *tfm, const u8 *key,
377 unsigned int keylen);
378
379 static inline bool crypto_ahash_has_setkey(struct crypto_ahash *tfm)
380 {
381 return tfm->has_setkey;
382 }
383
384 /**
385 * crypto_ahash_finup() - update and finalize message digest
386 * @req: reference to the ahash_request handle that holds all information
387 * needed to perform the cipher operation
388 *
389 * This function is a "short-hand" for the function calls of
390 * crypto_ahash_update and crypto_shash_final. The parameters have the same
391 * meaning as discussed for those separate functions.
392 *
393 * Return: 0 if the message digest creation was successful; < 0 if an error
394 * occurred
395 */
396 int crypto_ahash_finup(struct ahash_request *req);
397
398 /**
399 * crypto_ahash_final() - calculate message digest
400 * @req: reference to the ahash_request handle that holds all information
401 * needed to perform the cipher operation
402 *
403 * Finalize the message digest operation and create the message digest
404 * based on all data added to the cipher handle. The message digest is placed
405 * into the output buffer registered with the ahash_request handle.
406 *
407 * Return: 0 if the message digest creation was successful; < 0 if an error
408 * occurred
409 */
410 int crypto_ahash_final(struct ahash_request *req);
411
412 /**
413 * crypto_ahash_digest() - calculate message digest for a buffer
414 * @req: reference to the ahash_request handle that holds all information
415 * needed to perform the cipher operation
416 *
417 * This function is a "short-hand" for the function calls of crypto_ahash_init,
418 * crypto_ahash_update and crypto_ahash_final. The parameters have the same
419 * meaning as discussed for those separate three functions.
420 *
421 * Return: 0 if the message digest creation was successful; < 0 if an error
422 * occurred
423 */
424 int crypto_ahash_digest(struct ahash_request *req);
425
426 /**
427 * crypto_ahash_export() - extract current message digest state
428 * @req: reference to the ahash_request handle whose state is exported
429 * @out: output buffer of sufficient size that can hold the hash state
430 *
431 * This function exports the hash state of the ahash_request handle into the
432 * caller-allocated output buffer out which must have sufficient size (e.g. by
433 * calling crypto_ahash_reqsize).
434 *
435 * Return: 0 if the export was successful; < 0 if an error occurred
436 */
437 static inline int crypto_ahash_export(struct ahash_request *req, void *out)
438 {
439 return crypto_ahash_reqtfm(req)->export(req, out);
440 }
441
442 /**
443 * crypto_ahash_import() - import message digest state
444 * @req: reference to ahash_request handle the state is imported into
445 * @in: buffer holding the state
446 *
447 * This function imports the hash state into the ahash_request handle from the
448 * input buffer. That buffer should have been generated with the
449 * crypto_ahash_export function.
450 *
451 * Return: 0 if the import was successful; < 0 if an error occurred
452 */
453 static inline int crypto_ahash_import(struct ahash_request *req, const void *in)
454 {
455 return crypto_ahash_reqtfm(req)->import(req, in);
456 }
457
458 /**
459 * crypto_ahash_init() - (re)initialize message digest handle
460 * @req: ahash_request handle that already is initialized with all necessary
461 * data using the ahash_request_* API functions
462 *
463 * The call (re-)initializes the message digest referenced by the ahash_request
464 * handle. Any potentially existing state created by previous operations is
465 * discarded.
466 *
467 * Return: 0 if the message digest initialization was successful; < 0 if an
468 * error occurred
469 */
470 static inline int crypto_ahash_init(struct ahash_request *req)
471 {
472 return crypto_ahash_reqtfm(req)->init(req);
473 }
474
475 /**
476 * crypto_ahash_update() - add data to message digest for processing
477 * @req: ahash_request handle that was previously initialized with the
478 * crypto_ahash_init call.
479 *
480 * Updates the message digest state of the &ahash_request handle. The input data
481 * is pointed to by the scatter/gather list registered in the &ahash_request
482 * handle
483 *
484 * Return: 0 if the message digest update was successful; < 0 if an error
485 * occurred
486 */
487 static inline int crypto_ahash_update(struct ahash_request *req)
488 {
489 return crypto_ahash_reqtfm(req)->update(req);
490 }
491
492 /**
493 * DOC: Asynchronous Hash Request Handle
494 *
495 * The &ahash_request data structure contains all pointers to data
496 * required for the asynchronous cipher operation. This includes the cipher
497 * handle (which can be used by multiple &ahash_request instances), pointer
498 * to plaintext and the message digest output buffer, asynchronous callback
499 * function, etc. It acts as a handle to the ahash_request_* API calls in a
500 * similar way as ahash handle to the crypto_ahash_* API calls.
501 */
502
503 /**
504 * ahash_request_set_tfm() - update cipher handle reference in request
505 * @req: request handle to be modified
506 * @tfm: cipher handle that shall be added to the request handle
507 *
508 * Allow the caller to replace the existing ahash handle in the request
509 * data structure with a different one.
510 */
511 static inline void ahash_request_set_tfm(struct ahash_request *req,
512 struct crypto_ahash *tfm)
513 {
514 req->base.tfm = crypto_ahash_tfm(tfm);
515 }
516
517 /**
518 * ahash_request_alloc() - allocate request data structure
519 * @tfm: cipher handle to be registered with the request
520 * @gfp: memory allocation flag that is handed to kmalloc by the API call.
521 *
522 * Allocate the request data structure that must be used with the ahash
523 * message digest API calls. During
524 * the allocation, the provided ahash handle
525 * is registered in the request data structure.
526 *
527 * Return: allocated request handle in case of success; IS_ERR() is true in case
528 * of an error, PTR_ERR() returns the error code.
529 */
530 static inline struct ahash_request *ahash_request_alloc(
531 struct crypto_ahash *tfm, gfp_t gfp)
532 {
533 struct ahash_request *req;
534
535 req = kmalloc(sizeof(struct ahash_request) +
536 crypto_ahash_reqsize(tfm), gfp);
537
538 if (likely(req))
539 ahash_request_set_tfm(req, tfm);
540
541 return req;
542 }
543
544 /**
545 * ahash_request_free() - zeroize and free the request data structure
546 * @req: request data structure cipher handle to be freed
547 */
548 static inline void ahash_request_free(struct ahash_request *req)
549 {
550 kzfree(req);
551 }
552
553 static inline struct ahash_request *ahash_request_cast(
554 struct crypto_async_request *req)
555 {
556 return container_of(req, struct ahash_request, base);
557 }
558
559 /**
560 * ahash_request_set_callback() - set asynchronous callback function
561 * @req: request handle
562 * @flags: specify zero or an ORing of the flags
563 * CRYPTO_TFM_REQ_MAY_BACKLOG the request queue may back log and
564 * increase the wait queue beyond the initial maximum size;
565 * CRYPTO_TFM_REQ_MAY_SLEEP the request processing may sleep
566 * @compl: callback function pointer to be registered with the request handle
567 * @data: The data pointer refers to memory that is not used by the kernel
568 * crypto API, but provided to the callback function for it to use. Here,
569 * the caller can provide a reference to memory the callback function can
570 * operate on. As the callback function is invoked asynchronously to the
571 * related functionality, it may need to access data structures of the
572 * related functionality which can be referenced using this pointer. The
573 * callback function can access the memory via the "data" field in the
574 * &crypto_async_request data structure provided to the callback function.
575 *
576 * This function allows setting the callback function that is triggered once
577 * the cipher operation completes.
578 *
579 * The callback function is registered with the &ahash_request handle and
580 * must comply with the following template
581 *
582 * void callback_function(struct crypto_async_request *req, int error)
583 */
584 static inline void ahash_request_set_callback(struct ahash_request *req,
585 u32 flags,
586 crypto_completion_t compl,
587 void *data)
588 {
589 req->base.complete = compl;
590 req->base.data = data;
591 req->base.flags = flags;
592 }
593
594 /**
595 * ahash_request_set_crypt() - set data buffers
596 * @req: ahash_request handle to be updated
597 * @src: source scatter/gather list
598 * @result: buffer that is filled with the message digest -- the caller must
599 * ensure that the buffer has sufficient space by, for example, calling
600 * crypto_ahash_digestsize()
601 * @nbytes: number of bytes to process from the source scatter/gather list
602 *
603 * By using this call, the caller references the source scatter/gather list.
604 * The source scatter/gather list points to the data the message digest is to
605 * be calculated for.
606 */
607 static inline void ahash_request_set_crypt(struct ahash_request *req,
608 struct scatterlist *src, u8 *result,
609 unsigned int nbytes)
610 {
611 req->src = src;
612 req->nbytes = nbytes;
613 req->result = result;
614 }
615
616 /**
617 * DOC: Synchronous Message Digest API
618 *
619 * The synchronous message digest API is used with the ciphers of type
620 * CRYPTO_ALG_TYPE_SHASH (listed as type "shash" in /proc/crypto)
621 *
622 * The message digest API is able to maintain state information for the
623 * caller.
624 *
625 * The synchronous message digest API can store user-related context in in its
626 * shash_desc request data structure.
627 */
628
629 /**
630 * crypto_alloc_shash() - allocate message digest handle
631 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
632 * message digest cipher
633 * @type: specifies the type of the cipher
634 * @mask: specifies the mask for the cipher
635 *
636 * Allocate a cipher handle for a message digest. The returned &struct
637 * crypto_shash is the cipher handle that is required for any subsequent
638 * API invocation for that message digest.
639 *
640 * Return: allocated cipher handle in case of success; IS_ERR() is true in case
641 * of an error, PTR_ERR() returns the error code.
642 */
643 struct crypto_shash *crypto_alloc_shash(const char *alg_name, u32 type,
644 u32 mask);
645
646 static inline struct crypto_tfm *crypto_shash_tfm(struct crypto_shash *tfm)
647 {
648 return &tfm->base;
649 }
650
651 /**
652 * crypto_free_shash() - zeroize and free the message digest handle
653 * @tfm: cipher handle to be freed
654 */
655 static inline void crypto_free_shash(struct crypto_shash *tfm)
656 {
657 crypto_destroy_tfm(tfm, crypto_shash_tfm(tfm));
658 }
659
660 static inline unsigned int crypto_shash_alignmask(
661 struct crypto_shash *tfm)
662 {
663 return crypto_tfm_alg_alignmask(crypto_shash_tfm(tfm));
664 }
665
666 /**
667 * crypto_shash_blocksize() - obtain block size for cipher
668 * @tfm: cipher handle
669 *
670 * The block size for the message digest cipher referenced with the cipher
671 * handle is returned.
672 *
673 * Return: block size of cipher
674 */
675 static inline unsigned int crypto_shash_blocksize(struct crypto_shash *tfm)
676 {
677 return crypto_tfm_alg_blocksize(crypto_shash_tfm(tfm));
678 }
679
680 static inline struct shash_alg *__crypto_shash_alg(struct crypto_alg *alg)
681 {
682 return container_of(alg, struct shash_alg, base);
683 }
684
685 static inline struct shash_alg *crypto_shash_alg(struct crypto_shash *tfm)
686 {
687 return __crypto_shash_alg(crypto_shash_tfm(tfm)->__crt_alg);
688 }
689
690 /**
691 * crypto_shash_digestsize() - obtain message digest size
692 * @tfm: cipher handle
693 *
694 * The size for the message digest created by the message digest cipher
695 * referenced with the cipher handle is returned.
696 *
697 * Return: digest size of cipher
698 */
699 static inline unsigned int crypto_shash_digestsize(struct crypto_shash *tfm)
700 {
701 return crypto_shash_alg(tfm)->digestsize;
702 }
703
704 static inline unsigned int crypto_shash_statesize(struct crypto_shash *tfm)
705 {
706 return crypto_shash_alg(tfm)->statesize;
707 }
708
709 static inline u32 crypto_shash_get_flags(struct crypto_shash *tfm)
710 {
711 return crypto_tfm_get_flags(crypto_shash_tfm(tfm));
712 }
713
714 static inline void crypto_shash_set_flags(struct crypto_shash *tfm, u32 flags)
715 {
716 crypto_tfm_set_flags(crypto_shash_tfm(tfm), flags);
717 }
718
719 static inline void crypto_shash_clear_flags(struct crypto_shash *tfm, u32 flags)
720 {
721 crypto_tfm_clear_flags(crypto_shash_tfm(tfm), flags);
722 }
723
724 /**
725 * crypto_shash_descsize() - obtain the operational state size
726 * @tfm: cipher handle
727 *
728 * The size of the operational state the cipher needs during operation is
729 * returned for the hash referenced with the cipher handle. This size is
730 * required to calculate the memory requirements to allow the caller allocating
731 * sufficient memory for operational state.
732 *
733 * The operational state is defined with struct shash_desc where the size of
734 * that data structure is to be calculated as
735 * sizeof(struct shash_desc) + crypto_shash_descsize(alg)
736 *
737 * Return: size of the operational state
738 */
739 static inline unsigned int crypto_shash_descsize(struct crypto_shash *tfm)
740 {
741 return tfm->descsize;
742 }
743
744 static inline void *shash_desc_ctx(struct shash_desc *desc)
745 {
746 return desc->__ctx;
747 }
748
749 /**
750 * crypto_shash_setkey() - set key for message digest
751 * @tfm: cipher handle
752 * @key: buffer holding the key
753 * @keylen: length of the key in bytes
754 *
755 * The caller provided key is set for the keyed message digest cipher. The
756 * cipher handle must point to a keyed message digest cipher in order for this
757 * function to succeed.
758 *
759 * Return: 0 if the setting of the key was successful; < 0 if an error occurred
760 */
761 int crypto_shash_setkey(struct crypto_shash *tfm, const u8 *key,
762 unsigned int keylen);
763
764 /**
765 * crypto_shash_digest() - calculate message digest for buffer
766 * @desc: see crypto_shash_final()
767 * @data: see crypto_shash_update()
768 * @len: see crypto_shash_update()
769 * @out: see crypto_shash_final()
770 *
771 * This function is a "short-hand" for the function calls of crypto_shash_init,
772 * crypto_shash_update and crypto_shash_final. The parameters have the same
773 * meaning as discussed for those separate three functions.
774 *
775 * Return: 0 if the message digest creation was successful; < 0 if an error
776 * occurred
777 */
778 int crypto_shash_digest(struct shash_desc *desc, const u8 *data,
779 unsigned int len, u8 *out);
780
781 /**
782 * crypto_shash_export() - extract operational state for message digest
783 * @desc: reference to the operational state handle whose state is exported
784 * @out: output buffer of sufficient size that can hold the hash state
785 *
786 * This function exports the hash state of the operational state handle into the
787 * caller-allocated output buffer out which must have sufficient size (e.g. by
788 * calling crypto_shash_descsize).
789 *
790 * Return: 0 if the export creation was successful; < 0 if an error occurred
791 */
792 static inline int crypto_shash_export(struct shash_desc *desc, void *out)
793 {
794 return crypto_shash_alg(desc->tfm)->export(desc, out);
795 }
796
797 /**
798 * crypto_shash_import() - import operational state
799 * @desc: reference to the operational state handle the state imported into
800 * @in: buffer holding the state
801 *
802 * This function imports the hash state into the operational state handle from
803 * the input buffer. That buffer should have been generated with the
804 * crypto_ahash_export function.
805 *
806 * Return: 0 if the import was successful; < 0 if an error occurred
807 */
808 static inline int crypto_shash_import(struct shash_desc *desc, const void *in)
809 {
810 return crypto_shash_alg(desc->tfm)->import(desc, in);
811 }
812
813 /**
814 * crypto_shash_init() - (re)initialize message digest
815 * @desc: operational state handle that is already filled
816 *
817 * The call (re-)initializes the message digest referenced by the
818 * operational state handle. Any potentially existing state created by
819 * previous operations is discarded.
820 *
821 * Return: 0 if the message digest initialization was successful; < 0 if an
822 * error occurred
823 */
824 static inline int crypto_shash_init(struct shash_desc *desc)
825 {
826 return crypto_shash_alg(desc->tfm)->init(desc);
827 }
828
829 /**
830 * crypto_shash_update() - add data to message digest for processing
831 * @desc: operational state handle that is already initialized
832 * @data: input data to be added to the message digest
833 * @len: length of the input data
834 *
835 * Updates the message digest state of the operational state handle.
836 *
837 * Return: 0 if the message digest update was successful; < 0 if an error
838 * occurred
839 */
840 int crypto_shash_update(struct shash_desc *desc, const u8 *data,
841 unsigned int len);
842
843 /**
844 * crypto_shash_final() - calculate message digest
845 * @desc: operational state handle that is already filled with data
846 * @out: output buffer filled with the message digest
847 *
848 * Finalize the message digest operation and create the message digest
849 * based on all data added to the cipher handle. The message digest is placed
850 * into the output buffer. The caller must ensure that the output buffer is
851 * large enough by using crypto_shash_digestsize.
852 *
853 * Return: 0 if the message digest creation was successful; < 0 if an error
854 * occurred
855 */
856 int crypto_shash_final(struct shash_desc *desc, u8 *out);
857
858 /**
859 * crypto_shash_finup() - calculate message digest of buffer
860 * @desc: see crypto_shash_final()
861 * @data: see crypto_shash_update()
862 * @len: see crypto_shash_update()
863 * @out: see crypto_shash_final()
864 *
865 * This function is a "short-hand" for the function calls of
866 * crypto_shash_update and crypto_shash_final. The parameters have the same
867 * meaning as discussed for those separate functions.
868 *
869 * Return: 0 if the message digest creation was successful; < 0 if an error
870 * occurred
871 */
872 int crypto_shash_finup(struct shash_desc *desc, const u8 *data,
873 unsigned int len, u8 *out);
874
875 #endif /* _CRYPTO_HASH_H */
This page took 0.048374 seconds and 6 git commands to generate.