Merge branch 'cputime' of git://git390.osdl.marist.edu/pub/scm/linux-2.6
[deliverable/linux.git] / include / linux / cpumask.h
1 #ifndef __LINUX_CPUMASK_H
2 #define __LINUX_CPUMASK_H
3
4 /*
5 * Cpumasks provide a bitmap suitable for representing the
6 * set of CPU's in a system, one bit position per CPU number.
7 *
8 * The new cpumask_ ops take a "struct cpumask *"; the old ones
9 * use cpumask_t.
10 *
11 * See detailed comments in the file linux/bitmap.h describing the
12 * data type on which these cpumasks are based.
13 *
14 * For details of cpumask_scnprintf() and cpumask_parse_user(),
15 * see bitmap_scnprintf() and bitmap_parse_user() in lib/bitmap.c.
16 * For details of cpulist_scnprintf() and cpulist_parse(), see
17 * bitmap_scnlistprintf() and bitmap_parselist(), also in bitmap.c.
18 * For details of cpu_remap(), see bitmap_bitremap in lib/bitmap.c
19 * For details of cpus_remap(), see bitmap_remap in lib/bitmap.c.
20 * For details of cpus_onto(), see bitmap_onto in lib/bitmap.c.
21 * For details of cpus_fold(), see bitmap_fold in lib/bitmap.c.
22 *
23 * . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
24 * Note: The alternate operations with the suffix "_nr" are used
25 * to limit the range of the loop to nr_cpu_ids instead of
26 * NR_CPUS when NR_CPUS > 64 for performance reasons.
27 * If NR_CPUS is <= 64 then most assembler bitmask
28 * operators execute faster with a constant range, so
29 * the operator will continue to use NR_CPUS.
30 *
31 * Another consideration is that nr_cpu_ids is initialized
32 * to NR_CPUS and isn't lowered until the possible cpus are
33 * discovered (including any disabled cpus). So early uses
34 * will span the entire range of NR_CPUS.
35 * . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
36 *
37 * The obsolescent cpumask operations are:
38 *
39 * void cpu_set(cpu, mask) turn on bit 'cpu' in mask
40 * void cpu_clear(cpu, mask) turn off bit 'cpu' in mask
41 * void cpus_setall(mask) set all bits
42 * void cpus_clear(mask) clear all bits
43 * int cpu_isset(cpu, mask) true iff bit 'cpu' set in mask
44 * int cpu_test_and_set(cpu, mask) test and set bit 'cpu' in mask
45 *
46 * void cpus_and(dst, src1, src2) dst = src1 & src2 [intersection]
47 * void cpus_or(dst, src1, src2) dst = src1 | src2 [union]
48 * void cpus_xor(dst, src1, src2) dst = src1 ^ src2
49 * void cpus_andnot(dst, src1, src2) dst = src1 & ~src2
50 * void cpus_complement(dst, src) dst = ~src
51 *
52 * int cpus_equal(mask1, mask2) Does mask1 == mask2?
53 * int cpus_intersects(mask1, mask2) Do mask1 and mask2 intersect?
54 * int cpus_subset(mask1, mask2) Is mask1 a subset of mask2?
55 * int cpus_empty(mask) Is mask empty (no bits sets)?
56 * int cpus_full(mask) Is mask full (all bits sets)?
57 * int cpus_weight(mask) Hamming weigh - number of set bits
58 * int cpus_weight_nr(mask) Same using nr_cpu_ids instead of NR_CPUS
59 *
60 * void cpus_shift_right(dst, src, n) Shift right
61 * void cpus_shift_left(dst, src, n) Shift left
62 *
63 * int first_cpu(mask) Number lowest set bit, or NR_CPUS
64 * int next_cpu(cpu, mask) Next cpu past 'cpu', or NR_CPUS
65 * int next_cpu_nr(cpu, mask) Next cpu past 'cpu', or nr_cpu_ids
66 *
67 * cpumask_t cpumask_of_cpu(cpu) Return cpumask with bit 'cpu' set
68 * (can be used as an lvalue)
69 * CPU_MASK_ALL Initializer - all bits set
70 * CPU_MASK_NONE Initializer - no bits set
71 * unsigned long *cpus_addr(mask) Array of unsigned long's in mask
72 *
73 * CPUMASK_ALLOC kmalloc's a structure that is a composite of many cpumask_t
74 * variables, and CPUMASK_PTR provides pointers to each field.
75 *
76 * The structure should be defined something like this:
77 * struct my_cpumasks {
78 * cpumask_t mask1;
79 * cpumask_t mask2;
80 * };
81 *
82 * Usage is then:
83 * CPUMASK_ALLOC(my_cpumasks);
84 * CPUMASK_PTR(mask1, my_cpumasks);
85 * CPUMASK_PTR(mask2, my_cpumasks);
86 *
87 * --- DO NOT reference cpumask_t pointers until this check ---
88 * if (my_cpumasks == NULL)
89 * "kmalloc failed"...
90 *
91 * References are now pointers to the cpumask_t variables (*mask1, ...)
92 *
93 *if NR_CPUS > BITS_PER_LONG
94 * CPUMASK_ALLOC(m) Declares and allocates struct m *m =
95 * kmalloc(sizeof(*m), GFP_KERNEL)
96 * CPUMASK_FREE(m) Macro for kfree(m)
97 *else
98 * CPUMASK_ALLOC(m) Declares struct m _m, *m = &_m
99 * CPUMASK_FREE(m) Nop
100 *endif
101 * CPUMASK_PTR(v, m) Declares cpumask_t *v = &(m->v)
102 * ------------------------------------------------------------------------
103 *
104 * int cpumask_scnprintf(buf, len, mask) Format cpumask for printing
105 * int cpumask_parse_user(ubuf, ulen, mask) Parse ascii string as cpumask
106 * int cpulist_scnprintf(buf, len, mask) Format cpumask as list for printing
107 * int cpulist_parse(buf, map) Parse ascii string as cpulist
108 * int cpu_remap(oldbit, old, new) newbit = map(old, new)(oldbit)
109 * void cpus_remap(dst, src, old, new) *dst = map(old, new)(src)
110 * void cpus_onto(dst, orig, relmap) *dst = orig relative to relmap
111 * void cpus_fold(dst, orig, sz) dst bits = orig bits mod sz
112 *
113 * for_each_cpu_mask(cpu, mask) for-loop cpu over mask using NR_CPUS
114 * for_each_cpu_mask_nr(cpu, mask) for-loop cpu over mask using nr_cpu_ids
115 *
116 * int num_online_cpus() Number of online CPUs
117 * int num_possible_cpus() Number of all possible CPUs
118 * int num_present_cpus() Number of present CPUs
119 *
120 * int cpu_online(cpu) Is some cpu online?
121 * int cpu_possible(cpu) Is some cpu possible?
122 * int cpu_present(cpu) Is some cpu present (can schedule)?
123 *
124 * int any_online_cpu(mask) First online cpu in mask
125 *
126 * for_each_possible_cpu(cpu) for-loop cpu over cpu_possible_map
127 * for_each_online_cpu(cpu) for-loop cpu over cpu_online_map
128 * for_each_present_cpu(cpu) for-loop cpu over cpu_present_map
129 *
130 * Subtlety:
131 * 1) The 'type-checked' form of cpu_isset() causes gcc (3.3.2, anyway)
132 * to generate slightly worse code. Note for example the additional
133 * 40 lines of assembly code compiling the "for each possible cpu"
134 * loops buried in the disk_stat_read() macros calls when compiling
135 * drivers/block/genhd.c (arch i386, CONFIG_SMP=y). So use a simple
136 * one-line #define for cpu_isset(), instead of wrapping an inline
137 * inside a macro, the way we do the other calls.
138 */
139
140 #include <linux/kernel.h>
141 #include <linux/threads.h>
142 #include <linux/bitmap.h>
143
144 typedef struct cpumask { DECLARE_BITMAP(bits, NR_CPUS); } cpumask_t;
145 extern cpumask_t _unused_cpumask_arg_;
146
147 #define cpu_set(cpu, dst) __cpu_set((cpu), &(dst))
148 static inline void __cpu_set(int cpu, volatile cpumask_t *dstp)
149 {
150 set_bit(cpu, dstp->bits);
151 }
152
153 #define cpu_clear(cpu, dst) __cpu_clear((cpu), &(dst))
154 static inline void __cpu_clear(int cpu, volatile cpumask_t *dstp)
155 {
156 clear_bit(cpu, dstp->bits);
157 }
158
159 #define cpus_setall(dst) __cpus_setall(&(dst), NR_CPUS)
160 static inline void __cpus_setall(cpumask_t *dstp, int nbits)
161 {
162 bitmap_fill(dstp->bits, nbits);
163 }
164
165 #define cpus_clear(dst) __cpus_clear(&(dst), NR_CPUS)
166 static inline void __cpus_clear(cpumask_t *dstp, int nbits)
167 {
168 bitmap_zero(dstp->bits, nbits);
169 }
170
171 /* No static inline type checking - see Subtlety (1) above. */
172 #define cpu_isset(cpu, cpumask) test_bit((cpu), (cpumask).bits)
173
174 #define cpu_test_and_set(cpu, cpumask) __cpu_test_and_set((cpu), &(cpumask))
175 static inline int __cpu_test_and_set(int cpu, cpumask_t *addr)
176 {
177 return test_and_set_bit(cpu, addr->bits);
178 }
179
180 #define cpus_and(dst, src1, src2) __cpus_and(&(dst), &(src1), &(src2), NR_CPUS)
181 static inline void __cpus_and(cpumask_t *dstp, const cpumask_t *src1p,
182 const cpumask_t *src2p, int nbits)
183 {
184 bitmap_and(dstp->bits, src1p->bits, src2p->bits, nbits);
185 }
186
187 #define cpus_or(dst, src1, src2) __cpus_or(&(dst), &(src1), &(src2), NR_CPUS)
188 static inline void __cpus_or(cpumask_t *dstp, const cpumask_t *src1p,
189 const cpumask_t *src2p, int nbits)
190 {
191 bitmap_or(dstp->bits, src1p->bits, src2p->bits, nbits);
192 }
193
194 #define cpus_xor(dst, src1, src2) __cpus_xor(&(dst), &(src1), &(src2), NR_CPUS)
195 static inline void __cpus_xor(cpumask_t *dstp, const cpumask_t *src1p,
196 const cpumask_t *src2p, int nbits)
197 {
198 bitmap_xor(dstp->bits, src1p->bits, src2p->bits, nbits);
199 }
200
201 #define cpus_andnot(dst, src1, src2) \
202 __cpus_andnot(&(dst), &(src1), &(src2), NR_CPUS)
203 static inline void __cpus_andnot(cpumask_t *dstp, const cpumask_t *src1p,
204 const cpumask_t *src2p, int nbits)
205 {
206 bitmap_andnot(dstp->bits, src1p->bits, src2p->bits, nbits);
207 }
208
209 #define cpus_complement(dst, src) __cpus_complement(&(dst), &(src), NR_CPUS)
210 static inline void __cpus_complement(cpumask_t *dstp,
211 const cpumask_t *srcp, int nbits)
212 {
213 bitmap_complement(dstp->bits, srcp->bits, nbits);
214 }
215
216 #define cpus_equal(src1, src2) __cpus_equal(&(src1), &(src2), NR_CPUS)
217 static inline int __cpus_equal(const cpumask_t *src1p,
218 const cpumask_t *src2p, int nbits)
219 {
220 return bitmap_equal(src1p->bits, src2p->bits, nbits);
221 }
222
223 #define cpus_intersects(src1, src2) __cpus_intersects(&(src1), &(src2), NR_CPUS)
224 static inline int __cpus_intersects(const cpumask_t *src1p,
225 const cpumask_t *src2p, int nbits)
226 {
227 return bitmap_intersects(src1p->bits, src2p->bits, nbits);
228 }
229
230 #define cpus_subset(src1, src2) __cpus_subset(&(src1), &(src2), NR_CPUS)
231 static inline int __cpus_subset(const cpumask_t *src1p,
232 const cpumask_t *src2p, int nbits)
233 {
234 return bitmap_subset(src1p->bits, src2p->bits, nbits);
235 }
236
237 #define cpus_empty(src) __cpus_empty(&(src), NR_CPUS)
238 static inline int __cpus_empty(const cpumask_t *srcp, int nbits)
239 {
240 return bitmap_empty(srcp->bits, nbits);
241 }
242
243 #define cpus_full(cpumask) __cpus_full(&(cpumask), NR_CPUS)
244 static inline int __cpus_full(const cpumask_t *srcp, int nbits)
245 {
246 return bitmap_full(srcp->bits, nbits);
247 }
248
249 #define cpus_weight(cpumask) __cpus_weight(&(cpumask), NR_CPUS)
250 static inline int __cpus_weight(const cpumask_t *srcp, int nbits)
251 {
252 return bitmap_weight(srcp->bits, nbits);
253 }
254
255 #define cpus_shift_right(dst, src, n) \
256 __cpus_shift_right(&(dst), &(src), (n), NR_CPUS)
257 static inline void __cpus_shift_right(cpumask_t *dstp,
258 const cpumask_t *srcp, int n, int nbits)
259 {
260 bitmap_shift_right(dstp->bits, srcp->bits, n, nbits);
261 }
262
263 #define cpus_shift_left(dst, src, n) \
264 __cpus_shift_left(&(dst), &(src), (n), NR_CPUS)
265 static inline void __cpus_shift_left(cpumask_t *dstp,
266 const cpumask_t *srcp, int n, int nbits)
267 {
268 bitmap_shift_left(dstp->bits, srcp->bits, n, nbits);
269 }
270
271 /*
272 * Special-case data structure for "single bit set only" constant CPU masks.
273 *
274 * We pre-generate all the 64 (or 32) possible bit positions, with enough
275 * padding to the left and the right, and return the constant pointer
276 * appropriately offset.
277 */
278 extern const unsigned long
279 cpu_bit_bitmap[BITS_PER_LONG+1][BITS_TO_LONGS(NR_CPUS)];
280
281 static inline const cpumask_t *get_cpu_mask(unsigned int cpu)
282 {
283 const unsigned long *p = cpu_bit_bitmap[1 + cpu % BITS_PER_LONG];
284 p -= cpu / BITS_PER_LONG;
285 return (const cpumask_t *)p;
286 }
287
288 /*
289 * In cases where we take the address of the cpumask immediately,
290 * gcc optimizes it out (it's a constant) and there's no huge stack
291 * variable created:
292 */
293 #define cpumask_of_cpu(cpu) (*get_cpu_mask(cpu))
294
295
296 #define CPU_MASK_LAST_WORD BITMAP_LAST_WORD_MASK(NR_CPUS)
297
298 #if NR_CPUS <= BITS_PER_LONG
299
300 #define CPU_MASK_ALL \
301 (cpumask_t) { { \
302 [BITS_TO_LONGS(NR_CPUS)-1] = CPU_MASK_LAST_WORD \
303 } }
304
305 #define CPU_MASK_ALL_PTR (&CPU_MASK_ALL)
306
307 #else
308
309 #define CPU_MASK_ALL \
310 (cpumask_t) { { \
311 [0 ... BITS_TO_LONGS(NR_CPUS)-2] = ~0UL, \
312 [BITS_TO_LONGS(NR_CPUS)-1] = CPU_MASK_LAST_WORD \
313 } }
314
315 /* cpu_mask_all is in init/main.c */
316 extern cpumask_t cpu_mask_all;
317 #define CPU_MASK_ALL_PTR (&cpu_mask_all)
318
319 #endif
320
321 #define CPU_MASK_NONE \
322 (cpumask_t) { { \
323 [0 ... BITS_TO_LONGS(NR_CPUS)-1] = 0UL \
324 } }
325
326 #define CPU_MASK_CPU0 \
327 (cpumask_t) { { \
328 [0] = 1UL \
329 } }
330
331 #define cpus_addr(src) ((src).bits)
332
333 #if NR_CPUS > BITS_PER_LONG
334 #define CPUMASK_ALLOC(m) struct m *m = kmalloc(sizeof(*m), GFP_KERNEL)
335 #define CPUMASK_FREE(m) kfree(m)
336 #else
337 #define CPUMASK_ALLOC(m) struct m _m, *m = &_m
338 #define CPUMASK_FREE(m)
339 #endif
340 #define CPUMASK_PTR(v, m) cpumask_t *v = &(m->v)
341
342 #define cpu_remap(oldbit, old, new) \
343 __cpu_remap((oldbit), &(old), &(new), NR_CPUS)
344 static inline int __cpu_remap(int oldbit,
345 const cpumask_t *oldp, const cpumask_t *newp, int nbits)
346 {
347 return bitmap_bitremap(oldbit, oldp->bits, newp->bits, nbits);
348 }
349
350 #define cpus_remap(dst, src, old, new) \
351 __cpus_remap(&(dst), &(src), &(old), &(new), NR_CPUS)
352 static inline void __cpus_remap(cpumask_t *dstp, const cpumask_t *srcp,
353 const cpumask_t *oldp, const cpumask_t *newp, int nbits)
354 {
355 bitmap_remap(dstp->bits, srcp->bits, oldp->bits, newp->bits, nbits);
356 }
357
358 #define cpus_onto(dst, orig, relmap) \
359 __cpus_onto(&(dst), &(orig), &(relmap), NR_CPUS)
360 static inline void __cpus_onto(cpumask_t *dstp, const cpumask_t *origp,
361 const cpumask_t *relmapp, int nbits)
362 {
363 bitmap_onto(dstp->bits, origp->bits, relmapp->bits, nbits);
364 }
365
366 #define cpus_fold(dst, orig, sz) \
367 __cpus_fold(&(dst), &(orig), sz, NR_CPUS)
368 static inline void __cpus_fold(cpumask_t *dstp, const cpumask_t *origp,
369 int sz, int nbits)
370 {
371 bitmap_fold(dstp->bits, origp->bits, sz, nbits);
372 }
373
374 #if NR_CPUS == 1
375
376 #define nr_cpu_ids 1
377 #define first_cpu(src) ({ (void)(src); 0; })
378 #define next_cpu(n, src) ({ (void)(src); 1; })
379 #define any_online_cpu(mask) 0
380 #define for_each_cpu_mask(cpu, mask) \
381 for ((cpu) = 0; (cpu) < 1; (cpu)++, (void)mask)
382
383 #else /* NR_CPUS > 1 */
384
385 extern int nr_cpu_ids;
386 int __first_cpu(const cpumask_t *srcp);
387 int __next_cpu(int n, const cpumask_t *srcp);
388 int __any_online_cpu(const cpumask_t *mask);
389
390 #define first_cpu(src) __first_cpu(&(src))
391 #define next_cpu(n, src) __next_cpu((n), &(src))
392 #define any_online_cpu(mask) __any_online_cpu(&(mask))
393 #define for_each_cpu_mask(cpu, mask) \
394 for ((cpu) = -1; \
395 (cpu) = next_cpu((cpu), (mask)), \
396 (cpu) < NR_CPUS; )
397 #endif
398
399 #if NR_CPUS <= 64
400
401 #define next_cpu_nr(n, src) next_cpu(n, src)
402 #define cpus_weight_nr(cpumask) cpus_weight(cpumask)
403 #define for_each_cpu_mask_nr(cpu, mask) for_each_cpu_mask(cpu, mask)
404
405 #else /* NR_CPUS > 64 */
406
407 int __next_cpu_nr(int n, const cpumask_t *srcp);
408 #define next_cpu_nr(n, src) __next_cpu_nr((n), &(src))
409 #define cpus_weight_nr(cpumask) __cpus_weight(&(cpumask), nr_cpu_ids)
410 #define for_each_cpu_mask_nr(cpu, mask) \
411 for ((cpu) = -1; \
412 (cpu) = next_cpu_nr((cpu), (mask)), \
413 (cpu) < nr_cpu_ids; )
414
415 #endif /* NR_CPUS > 64 */
416
417 /*
418 * The following particular system cpumasks and operations manage
419 * possible, present, active and online cpus. Each of them is a fixed size
420 * bitmap of size NR_CPUS.
421 *
422 * #ifdef CONFIG_HOTPLUG_CPU
423 * cpu_possible_map - has bit 'cpu' set iff cpu is populatable
424 * cpu_present_map - has bit 'cpu' set iff cpu is populated
425 * cpu_online_map - has bit 'cpu' set iff cpu available to scheduler
426 * cpu_active_map - has bit 'cpu' set iff cpu available to migration
427 * #else
428 * cpu_possible_map - has bit 'cpu' set iff cpu is populated
429 * cpu_present_map - copy of cpu_possible_map
430 * cpu_online_map - has bit 'cpu' set iff cpu available to scheduler
431 * #endif
432 *
433 * In either case, NR_CPUS is fixed at compile time, as the static
434 * size of these bitmaps. The cpu_possible_map is fixed at boot
435 * time, as the set of CPU id's that it is possible might ever
436 * be plugged in at anytime during the life of that system boot.
437 * The cpu_present_map is dynamic(*), representing which CPUs
438 * are currently plugged in. And cpu_online_map is the dynamic
439 * subset of cpu_present_map, indicating those CPUs available
440 * for scheduling.
441 *
442 * If HOTPLUG is enabled, then cpu_possible_map is forced to have
443 * all NR_CPUS bits set, otherwise it is just the set of CPUs that
444 * ACPI reports present at boot.
445 *
446 * If HOTPLUG is enabled, then cpu_present_map varies dynamically,
447 * depending on what ACPI reports as currently plugged in, otherwise
448 * cpu_present_map is just a copy of cpu_possible_map.
449 *
450 * (*) Well, cpu_present_map is dynamic in the hotplug case. If not
451 * hotplug, it's a copy of cpu_possible_map, hence fixed at boot.
452 *
453 * Subtleties:
454 * 1) UP arch's (NR_CPUS == 1, CONFIG_SMP not defined) hardcode
455 * assumption that their single CPU is online. The UP
456 * cpu_{online,possible,present}_maps are placebos. Changing them
457 * will have no useful affect on the following num_*_cpus()
458 * and cpu_*() macros in the UP case. This ugliness is a UP
459 * optimization - don't waste any instructions or memory references
460 * asking if you're online or how many CPUs there are if there is
461 * only one CPU.
462 * 2) Most SMP arch's #define some of these maps to be some
463 * other map specific to that arch. Therefore, the following
464 * must be #define macros, not inlines. To see why, examine
465 * the assembly code produced by the following. Note that
466 * set1() writes phys_x_map, but set2() writes x_map:
467 * int x_map, phys_x_map;
468 * #define set1(a) x_map = a
469 * inline void set2(int a) { x_map = a; }
470 * #define x_map phys_x_map
471 * main(){ set1(3); set2(5); }
472 */
473
474 extern cpumask_t cpu_possible_map;
475 extern cpumask_t cpu_online_map;
476 extern cpumask_t cpu_present_map;
477 extern cpumask_t cpu_active_map;
478
479 #if NR_CPUS > 1
480 #define num_online_cpus() cpus_weight_nr(cpu_online_map)
481 #define num_possible_cpus() cpus_weight_nr(cpu_possible_map)
482 #define num_present_cpus() cpus_weight_nr(cpu_present_map)
483 #define cpu_online(cpu) cpu_isset((cpu), cpu_online_map)
484 #define cpu_possible(cpu) cpu_isset((cpu), cpu_possible_map)
485 #define cpu_present(cpu) cpu_isset((cpu), cpu_present_map)
486 #define cpu_active(cpu) cpu_isset((cpu), cpu_active_map)
487 #else
488 #define num_online_cpus() 1
489 #define num_possible_cpus() 1
490 #define num_present_cpus() 1
491 #define cpu_online(cpu) ((cpu) == 0)
492 #define cpu_possible(cpu) ((cpu) == 0)
493 #define cpu_present(cpu) ((cpu) == 0)
494 #define cpu_active(cpu) ((cpu) == 0)
495 #endif
496
497 #define cpu_is_offline(cpu) unlikely(!cpu_online(cpu))
498
499 #define for_each_possible_cpu(cpu) for_each_cpu_mask_nr((cpu), cpu_possible_map)
500 #define for_each_online_cpu(cpu) for_each_cpu_mask_nr((cpu), cpu_online_map)
501 #define for_each_present_cpu(cpu) for_each_cpu_mask_nr((cpu), cpu_present_map)
502
503 /* These are the new versions of the cpumask operators: passed by pointer.
504 * The older versions will be implemented in terms of these, then deleted. */
505 #define cpumask_bits(maskp) ((maskp)->bits)
506
507 #if NR_CPUS <= BITS_PER_LONG
508 #define CPU_BITS_ALL \
509 { \
510 [BITS_TO_LONGS(NR_CPUS)-1] = CPU_MASK_LAST_WORD \
511 }
512
513 #else /* NR_CPUS > BITS_PER_LONG */
514
515 #define CPU_BITS_ALL \
516 { \
517 [0 ... BITS_TO_LONGS(NR_CPUS)-2] = ~0UL, \
518 [BITS_TO_LONGS(NR_CPUS)-1] = CPU_MASK_LAST_WORD \
519 }
520 #endif /* NR_CPUS > BITS_PER_LONG */
521
522 #ifdef CONFIG_CPUMASK_OFFSTACK
523 /* Assuming NR_CPUS is huge, a runtime limit is more efficient. Also,
524 * not all bits may be allocated. */
525 #define nr_cpumask_bits nr_cpu_ids
526 #else
527 #define nr_cpumask_bits NR_CPUS
528 #endif
529
530 /* verify cpu argument to cpumask_* operators */
531 static inline unsigned int cpumask_check(unsigned int cpu)
532 {
533 #ifdef CONFIG_DEBUG_PER_CPU_MAPS
534 WARN_ON_ONCE(cpu >= nr_cpumask_bits);
535 #endif /* CONFIG_DEBUG_PER_CPU_MAPS */
536 return cpu;
537 }
538
539 #if NR_CPUS == 1
540 /* Uniprocessor. Assume all masks are "1". */
541 static inline unsigned int cpumask_first(const struct cpumask *srcp)
542 {
543 return 0;
544 }
545
546 /* Valid inputs for n are -1 and 0. */
547 static inline unsigned int cpumask_next(int n, const struct cpumask *srcp)
548 {
549 return n+1;
550 }
551
552 static inline unsigned int cpumask_next_zero(int n, const struct cpumask *srcp)
553 {
554 return n+1;
555 }
556
557 static inline unsigned int cpumask_next_and(int n,
558 const struct cpumask *srcp,
559 const struct cpumask *andp)
560 {
561 return n+1;
562 }
563
564 /* cpu must be a valid cpu, ie 0, so there's no other choice. */
565 static inline unsigned int cpumask_any_but(const struct cpumask *mask,
566 unsigned int cpu)
567 {
568 return 1;
569 }
570
571 #define for_each_cpu(cpu, mask) \
572 for ((cpu) = 0; (cpu) < 1; (cpu)++, (void)mask)
573 #define for_each_cpu_and(cpu, mask, and) \
574 for ((cpu) = 0; (cpu) < 1; (cpu)++, (void)mask, (void)and)
575 #else
576 /**
577 * cpumask_first - get the first cpu in a cpumask
578 * @srcp: the cpumask pointer
579 *
580 * Returns >= nr_cpu_ids if no cpus set.
581 */
582 static inline unsigned int cpumask_first(const struct cpumask *srcp)
583 {
584 return find_first_bit(cpumask_bits(srcp), nr_cpumask_bits);
585 }
586
587 /**
588 * cpumask_next - get the next cpu in a cpumask
589 * @n: the cpu prior to the place to search (ie. return will be > @n)
590 * @srcp: the cpumask pointer
591 *
592 * Returns >= nr_cpu_ids if no further cpus set.
593 */
594 static inline unsigned int cpumask_next(int n, const struct cpumask *srcp)
595 {
596 /* -1 is a legal arg here. */
597 if (n != -1)
598 cpumask_check(n);
599 return find_next_bit(cpumask_bits(srcp), nr_cpumask_bits, n+1);
600 }
601
602 /**
603 * cpumask_next_zero - get the next unset cpu in a cpumask
604 * @n: the cpu prior to the place to search (ie. return will be > @n)
605 * @srcp: the cpumask pointer
606 *
607 * Returns >= nr_cpu_ids if no further cpus unset.
608 */
609 static inline unsigned int cpumask_next_zero(int n, const struct cpumask *srcp)
610 {
611 /* -1 is a legal arg here. */
612 if (n != -1)
613 cpumask_check(n);
614 return find_next_zero_bit(cpumask_bits(srcp), nr_cpumask_bits, n+1);
615 }
616
617 int cpumask_next_and(int n, const struct cpumask *, const struct cpumask *);
618 int cpumask_any_but(const struct cpumask *mask, unsigned int cpu);
619
620 /**
621 * for_each_cpu - iterate over every cpu in a mask
622 * @cpu: the (optionally unsigned) integer iterator
623 * @mask: the cpumask pointer
624 *
625 * After the loop, cpu is >= nr_cpu_ids.
626 */
627 #define for_each_cpu(cpu, mask) \
628 for ((cpu) = -1; \
629 (cpu) = cpumask_next((cpu), (mask)), \
630 (cpu) < nr_cpu_ids;)
631
632 /**
633 * for_each_cpu_and - iterate over every cpu in both masks
634 * @cpu: the (optionally unsigned) integer iterator
635 * @mask: the first cpumask pointer
636 * @and: the second cpumask pointer
637 *
638 * This saves a temporary CPU mask in many places. It is equivalent to:
639 * struct cpumask tmp;
640 * cpumask_and(&tmp, &mask, &and);
641 * for_each_cpu(cpu, &tmp)
642 * ...
643 *
644 * After the loop, cpu is >= nr_cpu_ids.
645 */
646 #define for_each_cpu_and(cpu, mask, and) \
647 for ((cpu) = -1; \
648 (cpu) = cpumask_next_and((cpu), (mask), (and)), \
649 (cpu) < nr_cpu_ids;)
650 #endif /* SMP */
651
652 #define CPU_BITS_NONE \
653 { \
654 [0 ... BITS_TO_LONGS(NR_CPUS)-1] = 0UL \
655 }
656
657 #define CPU_BITS_CPU0 \
658 { \
659 [0] = 1UL \
660 }
661
662 /**
663 * cpumask_set_cpu - set a cpu in a cpumask
664 * @cpu: cpu number (< nr_cpu_ids)
665 * @dstp: the cpumask pointer
666 */
667 static inline void cpumask_set_cpu(unsigned int cpu, struct cpumask *dstp)
668 {
669 set_bit(cpumask_check(cpu), cpumask_bits(dstp));
670 }
671
672 /**
673 * cpumask_clear_cpu - clear a cpu in a cpumask
674 * @cpu: cpu number (< nr_cpu_ids)
675 * @dstp: the cpumask pointer
676 */
677 static inline void cpumask_clear_cpu(int cpu, struct cpumask *dstp)
678 {
679 clear_bit(cpumask_check(cpu), cpumask_bits(dstp));
680 }
681
682 /**
683 * cpumask_test_cpu - test for a cpu in a cpumask
684 * @cpu: cpu number (< nr_cpu_ids)
685 * @cpumask: the cpumask pointer
686 *
687 * No static inline type checking - see Subtlety (1) above.
688 */
689 #define cpumask_test_cpu(cpu, cpumask) \
690 test_bit(cpumask_check(cpu), (cpumask)->bits)
691
692 /**
693 * cpumask_test_and_set_cpu - atomically test and set a cpu in a cpumask
694 * @cpu: cpu number (< nr_cpu_ids)
695 * @cpumask: the cpumask pointer
696 *
697 * test_and_set_bit wrapper for cpumasks.
698 */
699 static inline int cpumask_test_and_set_cpu(int cpu, struct cpumask *cpumask)
700 {
701 return test_and_set_bit(cpumask_check(cpu), cpumask_bits(cpumask));
702 }
703
704 /**
705 * cpumask_setall - set all cpus (< nr_cpu_ids) in a cpumask
706 * @dstp: the cpumask pointer
707 */
708 static inline void cpumask_setall(struct cpumask *dstp)
709 {
710 bitmap_fill(cpumask_bits(dstp), nr_cpumask_bits);
711 }
712
713 /**
714 * cpumask_clear - clear all cpus (< nr_cpu_ids) in a cpumask
715 * @dstp: the cpumask pointer
716 */
717 static inline void cpumask_clear(struct cpumask *dstp)
718 {
719 bitmap_zero(cpumask_bits(dstp), nr_cpumask_bits);
720 }
721
722 /**
723 * cpumask_and - *dstp = *src1p & *src2p
724 * @dstp: the cpumask result
725 * @src1p: the first input
726 * @src2p: the second input
727 */
728 static inline void cpumask_and(struct cpumask *dstp,
729 const struct cpumask *src1p,
730 const struct cpumask *src2p)
731 {
732 bitmap_and(cpumask_bits(dstp), cpumask_bits(src1p),
733 cpumask_bits(src2p), nr_cpumask_bits);
734 }
735
736 /**
737 * cpumask_or - *dstp = *src1p | *src2p
738 * @dstp: the cpumask result
739 * @src1p: the first input
740 * @src2p: the second input
741 */
742 static inline void cpumask_or(struct cpumask *dstp, const struct cpumask *src1p,
743 const struct cpumask *src2p)
744 {
745 bitmap_or(cpumask_bits(dstp), cpumask_bits(src1p),
746 cpumask_bits(src2p), nr_cpumask_bits);
747 }
748
749 /**
750 * cpumask_xor - *dstp = *src1p ^ *src2p
751 * @dstp: the cpumask result
752 * @src1p: the first input
753 * @src2p: the second input
754 */
755 static inline void cpumask_xor(struct cpumask *dstp,
756 const struct cpumask *src1p,
757 const struct cpumask *src2p)
758 {
759 bitmap_xor(cpumask_bits(dstp), cpumask_bits(src1p),
760 cpumask_bits(src2p), nr_cpumask_bits);
761 }
762
763 /**
764 * cpumask_andnot - *dstp = *src1p & ~*src2p
765 * @dstp: the cpumask result
766 * @src1p: the first input
767 * @src2p: the second input
768 */
769 static inline void cpumask_andnot(struct cpumask *dstp,
770 const struct cpumask *src1p,
771 const struct cpumask *src2p)
772 {
773 bitmap_andnot(cpumask_bits(dstp), cpumask_bits(src1p),
774 cpumask_bits(src2p), nr_cpumask_bits);
775 }
776
777 /**
778 * cpumask_complement - *dstp = ~*srcp
779 * @dstp: the cpumask result
780 * @srcp: the input to invert
781 */
782 static inline void cpumask_complement(struct cpumask *dstp,
783 const struct cpumask *srcp)
784 {
785 bitmap_complement(cpumask_bits(dstp), cpumask_bits(srcp),
786 nr_cpumask_bits);
787 }
788
789 /**
790 * cpumask_equal - *src1p == *src2p
791 * @src1p: the first input
792 * @src2p: the second input
793 */
794 static inline bool cpumask_equal(const struct cpumask *src1p,
795 const struct cpumask *src2p)
796 {
797 return bitmap_equal(cpumask_bits(src1p), cpumask_bits(src2p),
798 nr_cpumask_bits);
799 }
800
801 /**
802 * cpumask_intersects - (*src1p & *src2p) != 0
803 * @src1p: the first input
804 * @src2p: the second input
805 */
806 static inline bool cpumask_intersects(const struct cpumask *src1p,
807 const struct cpumask *src2p)
808 {
809 return bitmap_intersects(cpumask_bits(src1p), cpumask_bits(src2p),
810 nr_cpumask_bits);
811 }
812
813 /**
814 * cpumask_subset - (*src1p & ~*src2p) == 0
815 * @src1p: the first input
816 * @src2p: the second input
817 */
818 static inline int cpumask_subset(const struct cpumask *src1p,
819 const struct cpumask *src2p)
820 {
821 return bitmap_subset(cpumask_bits(src1p), cpumask_bits(src2p),
822 nr_cpumask_bits);
823 }
824
825 /**
826 * cpumask_empty - *srcp == 0
827 * @srcp: the cpumask to that all cpus < nr_cpu_ids are clear.
828 */
829 static inline bool cpumask_empty(const struct cpumask *srcp)
830 {
831 return bitmap_empty(cpumask_bits(srcp), nr_cpumask_bits);
832 }
833
834 /**
835 * cpumask_full - *srcp == 0xFFFFFFFF...
836 * @srcp: the cpumask to that all cpus < nr_cpu_ids are set.
837 */
838 static inline bool cpumask_full(const struct cpumask *srcp)
839 {
840 return bitmap_full(cpumask_bits(srcp), nr_cpumask_bits);
841 }
842
843 /**
844 * cpumask_weight - Count of bits in *srcp
845 * @srcp: the cpumask to count bits (< nr_cpu_ids) in.
846 */
847 static inline unsigned int cpumask_weight(const struct cpumask *srcp)
848 {
849 return bitmap_weight(cpumask_bits(srcp), nr_cpumask_bits);
850 }
851
852 /**
853 * cpumask_shift_right - *dstp = *srcp >> n
854 * @dstp: the cpumask result
855 * @srcp: the input to shift
856 * @n: the number of bits to shift by
857 */
858 static inline void cpumask_shift_right(struct cpumask *dstp,
859 const struct cpumask *srcp, int n)
860 {
861 bitmap_shift_right(cpumask_bits(dstp), cpumask_bits(srcp), n,
862 nr_cpumask_bits);
863 }
864
865 /**
866 * cpumask_shift_left - *dstp = *srcp << n
867 * @dstp: the cpumask result
868 * @srcp: the input to shift
869 * @n: the number of bits to shift by
870 */
871 static inline void cpumask_shift_left(struct cpumask *dstp,
872 const struct cpumask *srcp, int n)
873 {
874 bitmap_shift_left(cpumask_bits(dstp), cpumask_bits(srcp), n,
875 nr_cpumask_bits);
876 }
877
878 /**
879 * cpumask_copy - *dstp = *srcp
880 * @dstp: the result
881 * @srcp: the input cpumask
882 */
883 static inline void cpumask_copy(struct cpumask *dstp,
884 const struct cpumask *srcp)
885 {
886 bitmap_copy(cpumask_bits(dstp), cpumask_bits(srcp), nr_cpumask_bits);
887 }
888
889 /**
890 * cpumask_any - pick a "random" cpu from *srcp
891 * @srcp: the input cpumask
892 *
893 * Returns >= nr_cpu_ids if no cpus set.
894 */
895 #define cpumask_any(srcp) cpumask_first(srcp)
896
897 /**
898 * cpumask_first_and - return the first cpu from *srcp1 & *srcp2
899 * @src1p: the first input
900 * @src2p: the second input
901 *
902 * Returns >= nr_cpu_ids if no cpus set in both. See also cpumask_next_and().
903 */
904 #define cpumask_first_and(src1p, src2p) cpumask_next_and(-1, (src1p), (src2p))
905
906 /**
907 * cpumask_any_and - pick a "random" cpu from *mask1 & *mask2
908 * @mask1: the first input cpumask
909 * @mask2: the second input cpumask
910 *
911 * Returns >= nr_cpu_ids if no cpus set.
912 */
913 #define cpumask_any_and(mask1, mask2) cpumask_first_and((mask1), (mask2))
914
915 /**
916 * cpumask_of - the cpumask containing just a given cpu
917 * @cpu: the cpu (<= nr_cpu_ids)
918 */
919 #define cpumask_of(cpu) (get_cpu_mask(cpu))
920
921 /**
922 * cpumask_scnprintf - print a cpumask into a string as comma-separated hex
923 * @buf: the buffer to sprintf into
924 * @len: the length of the buffer
925 * @srcp: the cpumask to print
926 *
927 * If len is zero, returns zero. Otherwise returns the length of the
928 * (nul-terminated) @buf string.
929 */
930 static inline int cpumask_scnprintf(char *buf, int len,
931 const struct cpumask *srcp)
932 {
933 return bitmap_scnprintf(buf, len, srcp->bits, nr_cpumask_bits);
934 }
935
936 /**
937 * cpumask_parse_user - extract a cpumask from a user string
938 * @buf: the buffer to extract from
939 * @len: the length of the buffer
940 * @dstp: the cpumask to set.
941 *
942 * Returns -errno, or 0 for success.
943 */
944 static inline int cpumask_parse_user(const char __user *buf, int len,
945 struct cpumask *dstp)
946 {
947 return bitmap_parse_user(buf, len, dstp->bits, nr_cpumask_bits);
948 }
949
950 /**
951 * cpulist_scnprintf - print a cpumask into a string as comma-separated list
952 * @buf: the buffer to sprintf into
953 * @len: the length of the buffer
954 * @srcp: the cpumask to print
955 *
956 * If len is zero, returns zero. Otherwise returns the length of the
957 * (nul-terminated) @buf string.
958 */
959 static inline int cpulist_scnprintf(char *buf, int len,
960 const struct cpumask *srcp)
961 {
962 return bitmap_scnlistprintf(buf, len, srcp->bits, nr_cpumask_bits);
963 }
964
965 /**
966 * cpulist_parse_user - extract a cpumask from a user string of ranges
967 * @buf: the buffer to extract from
968 * @len: the length of the buffer
969 * @dstp: the cpumask to set.
970 *
971 * Returns -errno, or 0 for success.
972 */
973 static inline int cpulist_parse(const char *buf, struct cpumask *dstp)
974 {
975 return bitmap_parselist(buf, dstp->bits, nr_cpumask_bits);
976 }
977
978 /**
979 * to_cpumask - convert an NR_CPUS bitmap to a struct cpumask *
980 * @bitmap: the bitmap
981 *
982 * There are a few places where cpumask_var_t isn't appropriate and
983 * static cpumasks must be used (eg. very early boot), yet we don't
984 * expose the definition of 'struct cpumask'.
985 *
986 * This does the conversion, and can be used as a constant initializer.
987 */
988 #define to_cpumask(bitmap) \
989 ((struct cpumask *)(1 ? (bitmap) \
990 : (void *)sizeof(__check_is_bitmap(bitmap))))
991
992 static inline int __check_is_bitmap(const unsigned long *bitmap)
993 {
994 return 1;
995 }
996
997 /**
998 * cpumask_size - size to allocate for a 'struct cpumask' in bytes
999 *
1000 * This will eventually be a runtime variable, depending on nr_cpu_ids.
1001 */
1002 static inline size_t cpumask_size(void)
1003 {
1004 /* FIXME: Once all cpumask assignments are eliminated, this
1005 * can be nr_cpumask_bits */
1006 return BITS_TO_LONGS(NR_CPUS) * sizeof(long);
1007 }
1008
1009 /*
1010 * cpumask_var_t: struct cpumask for stack usage.
1011 *
1012 * Oh, the wicked games we play! In order to make kernel coding a
1013 * little more difficult, we typedef cpumask_var_t to an array or a
1014 * pointer: doing &mask on an array is a noop, so it still works.
1015 *
1016 * ie.
1017 * cpumask_var_t tmpmask;
1018 * if (!alloc_cpumask_var(&tmpmask, GFP_KERNEL))
1019 * return -ENOMEM;
1020 *
1021 * ... use 'tmpmask' like a normal struct cpumask * ...
1022 *
1023 * free_cpumask_var(tmpmask);
1024 */
1025 #ifdef CONFIG_CPUMASK_OFFSTACK
1026 typedef struct cpumask *cpumask_var_t;
1027
1028 bool alloc_cpumask_var(cpumask_var_t *mask, gfp_t flags);
1029 void alloc_bootmem_cpumask_var(cpumask_var_t *mask);
1030 void free_cpumask_var(cpumask_var_t mask);
1031 void free_bootmem_cpumask_var(cpumask_var_t mask);
1032
1033 #else
1034 typedef struct cpumask cpumask_var_t[1];
1035
1036 static inline bool alloc_cpumask_var(cpumask_var_t *mask, gfp_t flags)
1037 {
1038 return true;
1039 }
1040
1041 static inline void alloc_bootmem_cpumask_var(cpumask_var_t *mask)
1042 {
1043 }
1044
1045 static inline void free_cpumask_var(cpumask_var_t mask)
1046 {
1047 }
1048
1049 static inline void free_bootmem_cpumask_var(cpumask_var_t mask)
1050 {
1051 }
1052 #endif /* CONFIG_CPUMASK_OFFSTACK */
1053
1054 /* The pointer versions of the maps, these will become the primary versions. */
1055 #define cpu_possible_mask ((const struct cpumask *)&cpu_possible_map)
1056 #define cpu_online_mask ((const struct cpumask *)&cpu_online_map)
1057 #define cpu_present_mask ((const struct cpumask *)&cpu_present_map)
1058 #define cpu_active_mask ((const struct cpumask *)&cpu_active_map)
1059
1060 /* It's common to want to use cpu_all_mask in struct member initializers,
1061 * so it has to refer to an address rather than a pointer. */
1062 extern const DECLARE_BITMAP(cpu_all_bits, NR_CPUS);
1063 #define cpu_all_mask to_cpumask(cpu_all_bits)
1064
1065 /* First bits of cpu_bit_bitmap are in fact unset. */
1066 #define cpu_none_mask to_cpumask(cpu_bit_bitmap[0])
1067
1068 /* Wrappers for arch boot code to manipulate normally-constant masks */
1069 static inline void set_cpu_possible(unsigned int cpu, bool possible)
1070 {
1071 if (possible)
1072 cpumask_set_cpu(cpu, &cpu_possible_map);
1073 else
1074 cpumask_clear_cpu(cpu, &cpu_possible_map);
1075 }
1076
1077 static inline void set_cpu_present(unsigned int cpu, bool present)
1078 {
1079 if (present)
1080 cpumask_set_cpu(cpu, &cpu_present_map);
1081 else
1082 cpumask_clear_cpu(cpu, &cpu_present_map);
1083 }
1084
1085 static inline void set_cpu_online(unsigned int cpu, bool online)
1086 {
1087 if (online)
1088 cpumask_set_cpu(cpu, &cpu_online_map);
1089 else
1090 cpumask_clear_cpu(cpu, &cpu_online_map);
1091 }
1092
1093 static inline void set_cpu_active(unsigned int cpu, bool active)
1094 {
1095 if (active)
1096 cpumask_set_cpu(cpu, &cpu_active_map);
1097 else
1098 cpumask_clear_cpu(cpu, &cpu_active_map);
1099 }
1100
1101 static inline void init_cpu_present(const struct cpumask *src)
1102 {
1103 cpumask_copy(&cpu_present_map, src);
1104 }
1105
1106 static inline void init_cpu_possible(const struct cpumask *src)
1107 {
1108 cpumask_copy(&cpu_possible_map, src);
1109 }
1110
1111 static inline void init_cpu_online(const struct cpumask *src)
1112 {
1113 cpumask_copy(&cpu_online_map, src);
1114 }
1115 #endif /* __LINUX_CPUMASK_H */
This page took 0.081039 seconds and 6 git commands to generate.