crypto: kpp - Key-agreement Protocol Primitives API (KPP)
[deliverable/linux.git] / include / linux / crypto.h
1 /*
2 * Scatterlist Cryptographic API.
3 *
4 * Copyright (c) 2002 James Morris <jmorris@intercode.com.au>
5 * Copyright (c) 2002 David S. Miller (davem@redhat.com)
6 * Copyright (c) 2005 Herbert Xu <herbert@gondor.apana.org.au>
7 *
8 * Portions derived from Cryptoapi, by Alexander Kjeldaas <astor@fast.no>
9 * and Nettle, by Niels Möller.
10 *
11 * This program is free software; you can redistribute it and/or modify it
12 * under the terms of the GNU General Public License as published by the Free
13 * Software Foundation; either version 2 of the License, or (at your option)
14 * any later version.
15 *
16 */
17 #ifndef _LINUX_CRYPTO_H
18 #define _LINUX_CRYPTO_H
19
20 #include <linux/atomic.h>
21 #include <linux/kernel.h>
22 #include <linux/list.h>
23 #include <linux/bug.h>
24 #include <linux/slab.h>
25 #include <linux/string.h>
26 #include <linux/uaccess.h>
27
28 /*
29 * Autoloaded crypto modules should only use a prefixed name to avoid allowing
30 * arbitrary modules to be loaded. Loading from userspace may still need the
31 * unprefixed names, so retains those aliases as well.
32 * This uses __MODULE_INFO directly instead of MODULE_ALIAS because pre-4.3
33 * gcc (e.g. avr32 toolchain) uses __LINE__ for uniqueness, and this macro
34 * expands twice on the same line. Instead, use a separate base name for the
35 * alias.
36 */
37 #define MODULE_ALIAS_CRYPTO(name) \
38 __MODULE_INFO(alias, alias_userspace, name); \
39 __MODULE_INFO(alias, alias_crypto, "crypto-" name)
40
41 /*
42 * Algorithm masks and types.
43 */
44 #define CRYPTO_ALG_TYPE_MASK 0x0000000f
45 #define CRYPTO_ALG_TYPE_CIPHER 0x00000001
46 #define CRYPTO_ALG_TYPE_COMPRESS 0x00000002
47 #define CRYPTO_ALG_TYPE_AEAD 0x00000003
48 #define CRYPTO_ALG_TYPE_BLKCIPHER 0x00000004
49 #define CRYPTO_ALG_TYPE_ABLKCIPHER 0x00000005
50 #define CRYPTO_ALG_TYPE_GIVCIPHER 0x00000006
51 #define CRYPTO_ALG_TYPE_KPP 0x00000008
52 #define CRYPTO_ALG_TYPE_RNG 0x0000000c
53 #define CRYPTO_ALG_TYPE_AKCIPHER 0x0000000d
54 #define CRYPTO_ALG_TYPE_DIGEST 0x0000000e
55 #define CRYPTO_ALG_TYPE_HASH 0x0000000e
56 #define CRYPTO_ALG_TYPE_SHASH 0x0000000e
57 #define CRYPTO_ALG_TYPE_AHASH 0x0000000f
58
59 #define CRYPTO_ALG_TYPE_HASH_MASK 0x0000000e
60 #define CRYPTO_ALG_TYPE_AHASH_MASK 0x0000000e
61 #define CRYPTO_ALG_TYPE_BLKCIPHER_MASK 0x0000000c
62
63 #define CRYPTO_ALG_LARVAL 0x00000010
64 #define CRYPTO_ALG_DEAD 0x00000020
65 #define CRYPTO_ALG_DYING 0x00000040
66 #define CRYPTO_ALG_ASYNC 0x00000080
67
68 /*
69 * Set this bit if and only if the algorithm requires another algorithm of
70 * the same type to handle corner cases.
71 */
72 #define CRYPTO_ALG_NEED_FALLBACK 0x00000100
73
74 /*
75 * This bit is set for symmetric key ciphers that have already been wrapped
76 * with a generic IV generator to prevent them from being wrapped again.
77 */
78 #define CRYPTO_ALG_GENIV 0x00000200
79
80 /*
81 * Set if the algorithm has passed automated run-time testing. Note that
82 * if there is no run-time testing for a given algorithm it is considered
83 * to have passed.
84 */
85
86 #define CRYPTO_ALG_TESTED 0x00000400
87
88 /*
89 * Set if the algorithm is an instance that is build from templates.
90 */
91 #define CRYPTO_ALG_INSTANCE 0x00000800
92
93 /* Set this bit if the algorithm provided is hardware accelerated but
94 * not available to userspace via instruction set or so.
95 */
96 #define CRYPTO_ALG_KERN_DRIVER_ONLY 0x00001000
97
98 /*
99 * Mark a cipher as a service implementation only usable by another
100 * cipher and never by a normal user of the kernel crypto API
101 */
102 #define CRYPTO_ALG_INTERNAL 0x00002000
103
104 /*
105 * Transform masks and values (for crt_flags).
106 */
107 #define CRYPTO_TFM_REQ_MASK 0x000fff00
108 #define CRYPTO_TFM_RES_MASK 0xfff00000
109
110 #define CRYPTO_TFM_REQ_WEAK_KEY 0x00000100
111 #define CRYPTO_TFM_REQ_MAY_SLEEP 0x00000200
112 #define CRYPTO_TFM_REQ_MAY_BACKLOG 0x00000400
113 #define CRYPTO_TFM_RES_WEAK_KEY 0x00100000
114 #define CRYPTO_TFM_RES_BAD_KEY_LEN 0x00200000
115 #define CRYPTO_TFM_RES_BAD_KEY_SCHED 0x00400000
116 #define CRYPTO_TFM_RES_BAD_BLOCK_LEN 0x00800000
117 #define CRYPTO_TFM_RES_BAD_FLAGS 0x01000000
118
119 /*
120 * Miscellaneous stuff.
121 */
122 #define CRYPTO_MAX_ALG_NAME 64
123
124 /*
125 * The macro CRYPTO_MINALIGN_ATTR (along with the void * type in the actual
126 * declaration) is used to ensure that the crypto_tfm context structure is
127 * aligned correctly for the given architecture so that there are no alignment
128 * faults for C data types. In particular, this is required on platforms such
129 * as arm where pointers are 32-bit aligned but there are data types such as
130 * u64 which require 64-bit alignment.
131 */
132 #define CRYPTO_MINALIGN ARCH_KMALLOC_MINALIGN
133
134 #define CRYPTO_MINALIGN_ATTR __attribute__ ((__aligned__(CRYPTO_MINALIGN)))
135
136 struct scatterlist;
137 struct crypto_ablkcipher;
138 struct crypto_async_request;
139 struct crypto_blkcipher;
140 struct crypto_tfm;
141 struct crypto_type;
142 struct skcipher_givcrypt_request;
143
144 typedef void (*crypto_completion_t)(struct crypto_async_request *req, int err);
145
146 /**
147 * DOC: Block Cipher Context Data Structures
148 *
149 * These data structures define the operating context for each block cipher
150 * type.
151 */
152
153 struct crypto_async_request {
154 struct list_head list;
155 crypto_completion_t complete;
156 void *data;
157 struct crypto_tfm *tfm;
158
159 u32 flags;
160 };
161
162 struct ablkcipher_request {
163 struct crypto_async_request base;
164
165 unsigned int nbytes;
166
167 void *info;
168
169 struct scatterlist *src;
170 struct scatterlist *dst;
171
172 void *__ctx[] CRYPTO_MINALIGN_ATTR;
173 };
174
175 struct blkcipher_desc {
176 struct crypto_blkcipher *tfm;
177 void *info;
178 u32 flags;
179 };
180
181 struct cipher_desc {
182 struct crypto_tfm *tfm;
183 void (*crfn)(struct crypto_tfm *tfm, u8 *dst, const u8 *src);
184 unsigned int (*prfn)(const struct cipher_desc *desc, u8 *dst,
185 const u8 *src, unsigned int nbytes);
186 void *info;
187 };
188
189 /**
190 * DOC: Block Cipher Algorithm Definitions
191 *
192 * These data structures define modular crypto algorithm implementations,
193 * managed via crypto_register_alg() and crypto_unregister_alg().
194 */
195
196 /**
197 * struct ablkcipher_alg - asynchronous block cipher definition
198 * @min_keysize: Minimum key size supported by the transformation. This is the
199 * smallest key length supported by this transformation algorithm.
200 * This must be set to one of the pre-defined values as this is
201 * not hardware specific. Possible values for this field can be
202 * found via git grep "_MIN_KEY_SIZE" include/crypto/
203 * @max_keysize: Maximum key size supported by the transformation. This is the
204 * largest key length supported by this transformation algorithm.
205 * This must be set to one of the pre-defined values as this is
206 * not hardware specific. Possible values for this field can be
207 * found via git grep "_MAX_KEY_SIZE" include/crypto/
208 * @setkey: Set key for the transformation. This function is used to either
209 * program a supplied key into the hardware or store the key in the
210 * transformation context for programming it later. Note that this
211 * function does modify the transformation context. This function can
212 * be called multiple times during the existence of the transformation
213 * object, so one must make sure the key is properly reprogrammed into
214 * the hardware. This function is also responsible for checking the key
215 * length for validity. In case a software fallback was put in place in
216 * the @cra_init call, this function might need to use the fallback if
217 * the algorithm doesn't support all of the key sizes.
218 * @encrypt: Encrypt a scatterlist of blocks. This function is used to encrypt
219 * the supplied scatterlist containing the blocks of data. The crypto
220 * API consumer is responsible for aligning the entries of the
221 * scatterlist properly and making sure the chunks are correctly
222 * sized. In case a software fallback was put in place in the
223 * @cra_init call, this function might need to use the fallback if
224 * the algorithm doesn't support all of the key sizes. In case the
225 * key was stored in transformation context, the key might need to be
226 * re-programmed into the hardware in this function. This function
227 * shall not modify the transformation context, as this function may
228 * be called in parallel with the same transformation object.
229 * @decrypt: Decrypt a single block. This is a reverse counterpart to @encrypt
230 * and the conditions are exactly the same.
231 * @givencrypt: Update the IV for encryption. With this function, a cipher
232 * implementation may provide the function on how to update the IV
233 * for encryption.
234 * @givdecrypt: Update the IV for decryption. This is the reverse of
235 * @givencrypt .
236 * @geniv: The transformation implementation may use an "IV generator" provided
237 * by the kernel crypto API. Several use cases have a predefined
238 * approach how IVs are to be updated. For such use cases, the kernel
239 * crypto API provides ready-to-use implementations that can be
240 * referenced with this variable.
241 * @ivsize: IV size applicable for transformation. The consumer must provide an
242 * IV of exactly that size to perform the encrypt or decrypt operation.
243 *
244 * All fields except @givencrypt , @givdecrypt , @geniv and @ivsize are
245 * mandatory and must be filled.
246 */
247 struct ablkcipher_alg {
248 int (*setkey)(struct crypto_ablkcipher *tfm, const u8 *key,
249 unsigned int keylen);
250 int (*encrypt)(struct ablkcipher_request *req);
251 int (*decrypt)(struct ablkcipher_request *req);
252 int (*givencrypt)(struct skcipher_givcrypt_request *req);
253 int (*givdecrypt)(struct skcipher_givcrypt_request *req);
254
255 const char *geniv;
256
257 unsigned int min_keysize;
258 unsigned int max_keysize;
259 unsigned int ivsize;
260 };
261
262 /**
263 * struct blkcipher_alg - synchronous block cipher definition
264 * @min_keysize: see struct ablkcipher_alg
265 * @max_keysize: see struct ablkcipher_alg
266 * @setkey: see struct ablkcipher_alg
267 * @encrypt: see struct ablkcipher_alg
268 * @decrypt: see struct ablkcipher_alg
269 * @geniv: see struct ablkcipher_alg
270 * @ivsize: see struct ablkcipher_alg
271 *
272 * All fields except @geniv and @ivsize are mandatory and must be filled.
273 */
274 struct blkcipher_alg {
275 int (*setkey)(struct crypto_tfm *tfm, const u8 *key,
276 unsigned int keylen);
277 int (*encrypt)(struct blkcipher_desc *desc,
278 struct scatterlist *dst, struct scatterlist *src,
279 unsigned int nbytes);
280 int (*decrypt)(struct blkcipher_desc *desc,
281 struct scatterlist *dst, struct scatterlist *src,
282 unsigned int nbytes);
283
284 const char *geniv;
285
286 unsigned int min_keysize;
287 unsigned int max_keysize;
288 unsigned int ivsize;
289 };
290
291 /**
292 * struct cipher_alg - single-block symmetric ciphers definition
293 * @cia_min_keysize: Minimum key size supported by the transformation. This is
294 * the smallest key length supported by this transformation
295 * algorithm. This must be set to one of the pre-defined
296 * values as this is not hardware specific. Possible values
297 * for this field can be found via git grep "_MIN_KEY_SIZE"
298 * include/crypto/
299 * @cia_max_keysize: Maximum key size supported by the transformation. This is
300 * the largest key length supported by this transformation
301 * algorithm. This must be set to one of the pre-defined values
302 * as this is not hardware specific. Possible values for this
303 * field can be found via git grep "_MAX_KEY_SIZE"
304 * include/crypto/
305 * @cia_setkey: Set key for the transformation. This function is used to either
306 * program a supplied key into the hardware or store the key in the
307 * transformation context for programming it later. Note that this
308 * function does modify the transformation context. This function
309 * can be called multiple times during the existence of the
310 * transformation object, so one must make sure the key is properly
311 * reprogrammed into the hardware. This function is also
312 * responsible for checking the key length for validity.
313 * @cia_encrypt: Encrypt a single block. This function is used to encrypt a
314 * single block of data, which must be @cra_blocksize big. This
315 * always operates on a full @cra_blocksize and it is not possible
316 * to encrypt a block of smaller size. The supplied buffers must
317 * therefore also be at least of @cra_blocksize size. Both the
318 * input and output buffers are always aligned to @cra_alignmask.
319 * In case either of the input or output buffer supplied by user
320 * of the crypto API is not aligned to @cra_alignmask, the crypto
321 * API will re-align the buffers. The re-alignment means that a
322 * new buffer will be allocated, the data will be copied into the
323 * new buffer, then the processing will happen on the new buffer,
324 * then the data will be copied back into the original buffer and
325 * finally the new buffer will be freed. In case a software
326 * fallback was put in place in the @cra_init call, this function
327 * might need to use the fallback if the algorithm doesn't support
328 * all of the key sizes. In case the key was stored in
329 * transformation context, the key might need to be re-programmed
330 * into the hardware in this function. This function shall not
331 * modify the transformation context, as this function may be
332 * called in parallel with the same transformation object.
333 * @cia_decrypt: Decrypt a single block. This is a reverse counterpart to
334 * @cia_encrypt, and the conditions are exactly the same.
335 *
336 * All fields are mandatory and must be filled.
337 */
338 struct cipher_alg {
339 unsigned int cia_min_keysize;
340 unsigned int cia_max_keysize;
341 int (*cia_setkey)(struct crypto_tfm *tfm, const u8 *key,
342 unsigned int keylen);
343 void (*cia_encrypt)(struct crypto_tfm *tfm, u8 *dst, const u8 *src);
344 void (*cia_decrypt)(struct crypto_tfm *tfm, u8 *dst, const u8 *src);
345 };
346
347 struct compress_alg {
348 int (*coa_compress)(struct crypto_tfm *tfm, const u8 *src,
349 unsigned int slen, u8 *dst, unsigned int *dlen);
350 int (*coa_decompress)(struct crypto_tfm *tfm, const u8 *src,
351 unsigned int slen, u8 *dst, unsigned int *dlen);
352 };
353
354
355 #define cra_ablkcipher cra_u.ablkcipher
356 #define cra_blkcipher cra_u.blkcipher
357 #define cra_cipher cra_u.cipher
358 #define cra_compress cra_u.compress
359
360 /**
361 * struct crypto_alg - definition of a cryptograpic cipher algorithm
362 * @cra_flags: Flags describing this transformation. See include/linux/crypto.h
363 * CRYPTO_ALG_* flags for the flags which go in here. Those are
364 * used for fine-tuning the description of the transformation
365 * algorithm.
366 * @cra_blocksize: Minimum block size of this transformation. The size in bytes
367 * of the smallest possible unit which can be transformed with
368 * this algorithm. The users must respect this value.
369 * In case of HASH transformation, it is possible for a smaller
370 * block than @cra_blocksize to be passed to the crypto API for
371 * transformation, in case of any other transformation type, an
372 * error will be returned upon any attempt to transform smaller
373 * than @cra_blocksize chunks.
374 * @cra_ctxsize: Size of the operational context of the transformation. This
375 * value informs the kernel crypto API about the memory size
376 * needed to be allocated for the transformation context.
377 * @cra_alignmask: Alignment mask for the input and output data buffer. The data
378 * buffer containing the input data for the algorithm must be
379 * aligned to this alignment mask. The data buffer for the
380 * output data must be aligned to this alignment mask. Note that
381 * the Crypto API will do the re-alignment in software, but
382 * only under special conditions and there is a performance hit.
383 * The re-alignment happens at these occasions for different
384 * @cra_u types: cipher -- For both input data and output data
385 * buffer; ahash -- For output hash destination buf; shash --
386 * For output hash destination buf.
387 * This is needed on hardware which is flawed by design and
388 * cannot pick data from arbitrary addresses.
389 * @cra_priority: Priority of this transformation implementation. In case
390 * multiple transformations with same @cra_name are available to
391 * the Crypto API, the kernel will use the one with highest
392 * @cra_priority.
393 * @cra_name: Generic name (usable by multiple implementations) of the
394 * transformation algorithm. This is the name of the transformation
395 * itself. This field is used by the kernel when looking up the
396 * providers of particular transformation.
397 * @cra_driver_name: Unique name of the transformation provider. This is the
398 * name of the provider of the transformation. This can be any
399 * arbitrary value, but in the usual case, this contains the
400 * name of the chip or provider and the name of the
401 * transformation algorithm.
402 * @cra_type: Type of the cryptographic transformation. This is a pointer to
403 * struct crypto_type, which implements callbacks common for all
404 * transformation types. There are multiple options:
405 * &crypto_blkcipher_type, &crypto_ablkcipher_type,
406 * &crypto_ahash_type, &crypto_rng_type.
407 * This field might be empty. In that case, there are no common
408 * callbacks. This is the case for: cipher, compress, shash.
409 * @cra_u: Callbacks implementing the transformation. This is a union of
410 * multiple structures. Depending on the type of transformation selected
411 * by @cra_type and @cra_flags above, the associated structure must be
412 * filled with callbacks. This field might be empty. This is the case
413 * for ahash, shash.
414 * @cra_init: Initialize the cryptographic transformation object. This function
415 * is used to initialize the cryptographic transformation object.
416 * This function is called only once at the instantiation time, right
417 * after the transformation context was allocated. In case the
418 * cryptographic hardware has some special requirements which need to
419 * be handled by software, this function shall check for the precise
420 * requirement of the transformation and put any software fallbacks
421 * in place.
422 * @cra_exit: Deinitialize the cryptographic transformation object. This is a
423 * counterpart to @cra_init, used to remove various changes set in
424 * @cra_init.
425 * @cra_module: Owner of this transformation implementation. Set to THIS_MODULE
426 * @cra_list: internally used
427 * @cra_users: internally used
428 * @cra_refcnt: internally used
429 * @cra_destroy: internally used
430 *
431 * The struct crypto_alg describes a generic Crypto API algorithm and is common
432 * for all of the transformations. Any variable not documented here shall not
433 * be used by a cipher implementation as it is internal to the Crypto API.
434 */
435 struct crypto_alg {
436 struct list_head cra_list;
437 struct list_head cra_users;
438
439 u32 cra_flags;
440 unsigned int cra_blocksize;
441 unsigned int cra_ctxsize;
442 unsigned int cra_alignmask;
443
444 int cra_priority;
445 atomic_t cra_refcnt;
446
447 char cra_name[CRYPTO_MAX_ALG_NAME];
448 char cra_driver_name[CRYPTO_MAX_ALG_NAME];
449
450 const struct crypto_type *cra_type;
451
452 union {
453 struct ablkcipher_alg ablkcipher;
454 struct blkcipher_alg blkcipher;
455 struct cipher_alg cipher;
456 struct compress_alg compress;
457 } cra_u;
458
459 int (*cra_init)(struct crypto_tfm *tfm);
460 void (*cra_exit)(struct crypto_tfm *tfm);
461 void (*cra_destroy)(struct crypto_alg *alg);
462
463 struct module *cra_module;
464 } CRYPTO_MINALIGN_ATTR;
465
466 /*
467 * Algorithm registration interface.
468 */
469 int crypto_register_alg(struct crypto_alg *alg);
470 int crypto_unregister_alg(struct crypto_alg *alg);
471 int crypto_register_algs(struct crypto_alg *algs, int count);
472 int crypto_unregister_algs(struct crypto_alg *algs, int count);
473
474 /*
475 * Algorithm query interface.
476 */
477 int crypto_has_alg(const char *name, u32 type, u32 mask);
478
479 /*
480 * Transforms: user-instantiated objects which encapsulate algorithms
481 * and core processing logic. Managed via crypto_alloc_*() and
482 * crypto_free_*(), as well as the various helpers below.
483 */
484
485 struct ablkcipher_tfm {
486 int (*setkey)(struct crypto_ablkcipher *tfm, const u8 *key,
487 unsigned int keylen);
488 int (*encrypt)(struct ablkcipher_request *req);
489 int (*decrypt)(struct ablkcipher_request *req);
490 int (*givencrypt)(struct skcipher_givcrypt_request *req);
491 int (*givdecrypt)(struct skcipher_givcrypt_request *req);
492
493 struct crypto_ablkcipher *base;
494
495 unsigned int ivsize;
496 unsigned int reqsize;
497 };
498
499 struct blkcipher_tfm {
500 void *iv;
501 int (*setkey)(struct crypto_tfm *tfm, const u8 *key,
502 unsigned int keylen);
503 int (*encrypt)(struct blkcipher_desc *desc, struct scatterlist *dst,
504 struct scatterlist *src, unsigned int nbytes);
505 int (*decrypt)(struct blkcipher_desc *desc, struct scatterlist *dst,
506 struct scatterlist *src, unsigned int nbytes);
507 };
508
509 struct cipher_tfm {
510 int (*cit_setkey)(struct crypto_tfm *tfm,
511 const u8 *key, unsigned int keylen);
512 void (*cit_encrypt_one)(struct crypto_tfm *tfm, u8 *dst, const u8 *src);
513 void (*cit_decrypt_one)(struct crypto_tfm *tfm, u8 *dst, const u8 *src);
514 };
515
516 struct compress_tfm {
517 int (*cot_compress)(struct crypto_tfm *tfm,
518 const u8 *src, unsigned int slen,
519 u8 *dst, unsigned int *dlen);
520 int (*cot_decompress)(struct crypto_tfm *tfm,
521 const u8 *src, unsigned int slen,
522 u8 *dst, unsigned int *dlen);
523 };
524
525 #define crt_ablkcipher crt_u.ablkcipher
526 #define crt_blkcipher crt_u.blkcipher
527 #define crt_cipher crt_u.cipher
528 #define crt_compress crt_u.compress
529
530 struct crypto_tfm {
531
532 u32 crt_flags;
533
534 union {
535 struct ablkcipher_tfm ablkcipher;
536 struct blkcipher_tfm blkcipher;
537 struct cipher_tfm cipher;
538 struct compress_tfm compress;
539 } crt_u;
540
541 void (*exit)(struct crypto_tfm *tfm);
542
543 struct crypto_alg *__crt_alg;
544
545 void *__crt_ctx[] CRYPTO_MINALIGN_ATTR;
546 };
547
548 struct crypto_ablkcipher {
549 struct crypto_tfm base;
550 };
551
552 struct crypto_blkcipher {
553 struct crypto_tfm base;
554 };
555
556 struct crypto_cipher {
557 struct crypto_tfm base;
558 };
559
560 struct crypto_comp {
561 struct crypto_tfm base;
562 };
563
564 enum {
565 CRYPTOA_UNSPEC,
566 CRYPTOA_ALG,
567 CRYPTOA_TYPE,
568 CRYPTOA_U32,
569 __CRYPTOA_MAX,
570 };
571
572 #define CRYPTOA_MAX (__CRYPTOA_MAX - 1)
573
574 /* Maximum number of (rtattr) parameters for each template. */
575 #define CRYPTO_MAX_ATTRS 32
576
577 struct crypto_attr_alg {
578 char name[CRYPTO_MAX_ALG_NAME];
579 };
580
581 struct crypto_attr_type {
582 u32 type;
583 u32 mask;
584 };
585
586 struct crypto_attr_u32 {
587 u32 num;
588 };
589
590 /*
591 * Transform user interface.
592 */
593
594 struct crypto_tfm *crypto_alloc_base(const char *alg_name, u32 type, u32 mask);
595 void crypto_destroy_tfm(void *mem, struct crypto_tfm *tfm);
596
597 static inline void crypto_free_tfm(struct crypto_tfm *tfm)
598 {
599 return crypto_destroy_tfm(tfm, tfm);
600 }
601
602 int alg_test(const char *driver, const char *alg, u32 type, u32 mask);
603
604 /*
605 * Transform helpers which query the underlying algorithm.
606 */
607 static inline const char *crypto_tfm_alg_name(struct crypto_tfm *tfm)
608 {
609 return tfm->__crt_alg->cra_name;
610 }
611
612 static inline const char *crypto_tfm_alg_driver_name(struct crypto_tfm *tfm)
613 {
614 return tfm->__crt_alg->cra_driver_name;
615 }
616
617 static inline int crypto_tfm_alg_priority(struct crypto_tfm *tfm)
618 {
619 return tfm->__crt_alg->cra_priority;
620 }
621
622 static inline u32 crypto_tfm_alg_type(struct crypto_tfm *tfm)
623 {
624 return tfm->__crt_alg->cra_flags & CRYPTO_ALG_TYPE_MASK;
625 }
626
627 static inline unsigned int crypto_tfm_alg_blocksize(struct crypto_tfm *tfm)
628 {
629 return tfm->__crt_alg->cra_blocksize;
630 }
631
632 static inline unsigned int crypto_tfm_alg_alignmask(struct crypto_tfm *tfm)
633 {
634 return tfm->__crt_alg->cra_alignmask;
635 }
636
637 static inline u32 crypto_tfm_get_flags(struct crypto_tfm *tfm)
638 {
639 return tfm->crt_flags;
640 }
641
642 static inline void crypto_tfm_set_flags(struct crypto_tfm *tfm, u32 flags)
643 {
644 tfm->crt_flags |= flags;
645 }
646
647 static inline void crypto_tfm_clear_flags(struct crypto_tfm *tfm, u32 flags)
648 {
649 tfm->crt_flags &= ~flags;
650 }
651
652 static inline void *crypto_tfm_ctx(struct crypto_tfm *tfm)
653 {
654 return tfm->__crt_ctx;
655 }
656
657 static inline unsigned int crypto_tfm_ctx_alignment(void)
658 {
659 struct crypto_tfm *tfm;
660 return __alignof__(tfm->__crt_ctx);
661 }
662
663 /*
664 * API wrappers.
665 */
666 static inline struct crypto_ablkcipher *__crypto_ablkcipher_cast(
667 struct crypto_tfm *tfm)
668 {
669 return (struct crypto_ablkcipher *)tfm;
670 }
671
672 static inline u32 crypto_skcipher_type(u32 type)
673 {
674 type &= ~(CRYPTO_ALG_TYPE_MASK | CRYPTO_ALG_GENIV);
675 type |= CRYPTO_ALG_TYPE_BLKCIPHER;
676 return type;
677 }
678
679 static inline u32 crypto_skcipher_mask(u32 mask)
680 {
681 mask &= ~(CRYPTO_ALG_TYPE_MASK | CRYPTO_ALG_GENIV);
682 mask |= CRYPTO_ALG_TYPE_BLKCIPHER_MASK;
683 return mask;
684 }
685
686 /**
687 * DOC: Asynchronous Block Cipher API
688 *
689 * Asynchronous block cipher API is used with the ciphers of type
690 * CRYPTO_ALG_TYPE_ABLKCIPHER (listed as type "ablkcipher" in /proc/crypto).
691 *
692 * Asynchronous cipher operations imply that the function invocation for a
693 * cipher request returns immediately before the completion of the operation.
694 * The cipher request is scheduled as a separate kernel thread and therefore
695 * load-balanced on the different CPUs via the process scheduler. To allow
696 * the kernel crypto API to inform the caller about the completion of a cipher
697 * request, the caller must provide a callback function. That function is
698 * invoked with the cipher handle when the request completes.
699 *
700 * To support the asynchronous operation, additional information than just the
701 * cipher handle must be supplied to the kernel crypto API. That additional
702 * information is given by filling in the ablkcipher_request data structure.
703 *
704 * For the asynchronous block cipher API, the state is maintained with the tfm
705 * cipher handle. A single tfm can be used across multiple calls and in
706 * parallel. For asynchronous block cipher calls, context data supplied and
707 * only used by the caller can be referenced the request data structure in
708 * addition to the IV used for the cipher request. The maintenance of such
709 * state information would be important for a crypto driver implementer to
710 * have, because when calling the callback function upon completion of the
711 * cipher operation, that callback function may need some information about
712 * which operation just finished if it invoked multiple in parallel. This
713 * state information is unused by the kernel crypto API.
714 */
715
716 /**
717 * crypto_alloc_ablkcipher() - allocate asynchronous block cipher handle
718 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
719 * ablkcipher cipher
720 * @type: specifies the type of the cipher
721 * @mask: specifies the mask for the cipher
722 *
723 * Allocate a cipher handle for an ablkcipher. The returned struct
724 * crypto_ablkcipher is the cipher handle that is required for any subsequent
725 * API invocation for that ablkcipher.
726 *
727 * Return: allocated cipher handle in case of success; IS_ERR() is true in case
728 * of an error, PTR_ERR() returns the error code.
729 */
730 struct crypto_ablkcipher *crypto_alloc_ablkcipher(const char *alg_name,
731 u32 type, u32 mask);
732
733 static inline struct crypto_tfm *crypto_ablkcipher_tfm(
734 struct crypto_ablkcipher *tfm)
735 {
736 return &tfm->base;
737 }
738
739 /**
740 * crypto_free_ablkcipher() - zeroize and free cipher handle
741 * @tfm: cipher handle to be freed
742 */
743 static inline void crypto_free_ablkcipher(struct crypto_ablkcipher *tfm)
744 {
745 crypto_free_tfm(crypto_ablkcipher_tfm(tfm));
746 }
747
748 /**
749 * crypto_has_ablkcipher() - Search for the availability of an ablkcipher.
750 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
751 * ablkcipher
752 * @type: specifies the type of the cipher
753 * @mask: specifies the mask for the cipher
754 *
755 * Return: true when the ablkcipher is known to the kernel crypto API; false
756 * otherwise
757 */
758 static inline int crypto_has_ablkcipher(const char *alg_name, u32 type,
759 u32 mask)
760 {
761 return crypto_has_alg(alg_name, crypto_skcipher_type(type),
762 crypto_skcipher_mask(mask));
763 }
764
765 static inline struct ablkcipher_tfm *crypto_ablkcipher_crt(
766 struct crypto_ablkcipher *tfm)
767 {
768 return &crypto_ablkcipher_tfm(tfm)->crt_ablkcipher;
769 }
770
771 /**
772 * crypto_ablkcipher_ivsize() - obtain IV size
773 * @tfm: cipher handle
774 *
775 * The size of the IV for the ablkcipher referenced by the cipher handle is
776 * returned. This IV size may be zero if the cipher does not need an IV.
777 *
778 * Return: IV size in bytes
779 */
780 static inline unsigned int crypto_ablkcipher_ivsize(
781 struct crypto_ablkcipher *tfm)
782 {
783 return crypto_ablkcipher_crt(tfm)->ivsize;
784 }
785
786 /**
787 * crypto_ablkcipher_blocksize() - obtain block size of cipher
788 * @tfm: cipher handle
789 *
790 * The block size for the ablkcipher referenced with the cipher handle is
791 * returned. The caller may use that information to allocate appropriate
792 * memory for the data returned by the encryption or decryption operation
793 *
794 * Return: block size of cipher
795 */
796 static inline unsigned int crypto_ablkcipher_blocksize(
797 struct crypto_ablkcipher *tfm)
798 {
799 return crypto_tfm_alg_blocksize(crypto_ablkcipher_tfm(tfm));
800 }
801
802 static inline unsigned int crypto_ablkcipher_alignmask(
803 struct crypto_ablkcipher *tfm)
804 {
805 return crypto_tfm_alg_alignmask(crypto_ablkcipher_tfm(tfm));
806 }
807
808 static inline u32 crypto_ablkcipher_get_flags(struct crypto_ablkcipher *tfm)
809 {
810 return crypto_tfm_get_flags(crypto_ablkcipher_tfm(tfm));
811 }
812
813 static inline void crypto_ablkcipher_set_flags(struct crypto_ablkcipher *tfm,
814 u32 flags)
815 {
816 crypto_tfm_set_flags(crypto_ablkcipher_tfm(tfm), flags);
817 }
818
819 static inline void crypto_ablkcipher_clear_flags(struct crypto_ablkcipher *tfm,
820 u32 flags)
821 {
822 crypto_tfm_clear_flags(crypto_ablkcipher_tfm(tfm), flags);
823 }
824
825 /**
826 * crypto_ablkcipher_setkey() - set key for cipher
827 * @tfm: cipher handle
828 * @key: buffer holding the key
829 * @keylen: length of the key in bytes
830 *
831 * The caller provided key is set for the ablkcipher referenced by the cipher
832 * handle.
833 *
834 * Note, the key length determines the cipher type. Many block ciphers implement
835 * different cipher modes depending on the key size, such as AES-128 vs AES-192
836 * vs. AES-256. When providing a 16 byte key for an AES cipher handle, AES-128
837 * is performed.
838 *
839 * Return: 0 if the setting of the key was successful; < 0 if an error occurred
840 */
841 static inline int crypto_ablkcipher_setkey(struct crypto_ablkcipher *tfm,
842 const u8 *key, unsigned int keylen)
843 {
844 struct ablkcipher_tfm *crt = crypto_ablkcipher_crt(tfm);
845
846 return crt->setkey(crt->base, key, keylen);
847 }
848
849 /**
850 * crypto_ablkcipher_reqtfm() - obtain cipher handle from request
851 * @req: ablkcipher_request out of which the cipher handle is to be obtained
852 *
853 * Return the crypto_ablkcipher handle when furnishing an ablkcipher_request
854 * data structure.
855 *
856 * Return: crypto_ablkcipher handle
857 */
858 static inline struct crypto_ablkcipher *crypto_ablkcipher_reqtfm(
859 struct ablkcipher_request *req)
860 {
861 return __crypto_ablkcipher_cast(req->base.tfm);
862 }
863
864 /**
865 * crypto_ablkcipher_encrypt() - encrypt plaintext
866 * @req: reference to the ablkcipher_request handle that holds all information
867 * needed to perform the cipher operation
868 *
869 * Encrypt plaintext data using the ablkcipher_request handle. That data
870 * structure and how it is filled with data is discussed with the
871 * ablkcipher_request_* functions.
872 *
873 * Return: 0 if the cipher operation was successful; < 0 if an error occurred
874 */
875 static inline int crypto_ablkcipher_encrypt(struct ablkcipher_request *req)
876 {
877 struct ablkcipher_tfm *crt =
878 crypto_ablkcipher_crt(crypto_ablkcipher_reqtfm(req));
879 return crt->encrypt(req);
880 }
881
882 /**
883 * crypto_ablkcipher_decrypt() - decrypt ciphertext
884 * @req: reference to the ablkcipher_request handle that holds all information
885 * needed to perform the cipher operation
886 *
887 * Decrypt ciphertext data using the ablkcipher_request handle. That data
888 * structure and how it is filled with data is discussed with the
889 * ablkcipher_request_* functions.
890 *
891 * Return: 0 if the cipher operation was successful; < 0 if an error occurred
892 */
893 static inline int crypto_ablkcipher_decrypt(struct ablkcipher_request *req)
894 {
895 struct ablkcipher_tfm *crt =
896 crypto_ablkcipher_crt(crypto_ablkcipher_reqtfm(req));
897 return crt->decrypt(req);
898 }
899
900 /**
901 * DOC: Asynchronous Cipher Request Handle
902 *
903 * The ablkcipher_request data structure contains all pointers to data
904 * required for the asynchronous cipher operation. This includes the cipher
905 * handle (which can be used by multiple ablkcipher_request instances), pointer
906 * to plaintext and ciphertext, asynchronous callback function, etc. It acts
907 * as a handle to the ablkcipher_request_* API calls in a similar way as
908 * ablkcipher handle to the crypto_ablkcipher_* API calls.
909 */
910
911 /**
912 * crypto_ablkcipher_reqsize() - obtain size of the request data structure
913 * @tfm: cipher handle
914 *
915 * Return: number of bytes
916 */
917 static inline unsigned int crypto_ablkcipher_reqsize(
918 struct crypto_ablkcipher *tfm)
919 {
920 return crypto_ablkcipher_crt(tfm)->reqsize;
921 }
922
923 /**
924 * ablkcipher_request_set_tfm() - update cipher handle reference in request
925 * @req: request handle to be modified
926 * @tfm: cipher handle that shall be added to the request handle
927 *
928 * Allow the caller to replace the existing ablkcipher handle in the request
929 * data structure with a different one.
930 */
931 static inline void ablkcipher_request_set_tfm(
932 struct ablkcipher_request *req, struct crypto_ablkcipher *tfm)
933 {
934 req->base.tfm = crypto_ablkcipher_tfm(crypto_ablkcipher_crt(tfm)->base);
935 }
936
937 static inline struct ablkcipher_request *ablkcipher_request_cast(
938 struct crypto_async_request *req)
939 {
940 return container_of(req, struct ablkcipher_request, base);
941 }
942
943 /**
944 * ablkcipher_request_alloc() - allocate request data structure
945 * @tfm: cipher handle to be registered with the request
946 * @gfp: memory allocation flag that is handed to kmalloc by the API call.
947 *
948 * Allocate the request data structure that must be used with the ablkcipher
949 * encrypt and decrypt API calls. During the allocation, the provided ablkcipher
950 * handle is registered in the request data structure.
951 *
952 * Return: allocated request handle in case of success, or NULL if out of memory
953 */
954 static inline struct ablkcipher_request *ablkcipher_request_alloc(
955 struct crypto_ablkcipher *tfm, gfp_t gfp)
956 {
957 struct ablkcipher_request *req;
958
959 req = kmalloc(sizeof(struct ablkcipher_request) +
960 crypto_ablkcipher_reqsize(tfm), gfp);
961
962 if (likely(req))
963 ablkcipher_request_set_tfm(req, tfm);
964
965 return req;
966 }
967
968 /**
969 * ablkcipher_request_free() - zeroize and free request data structure
970 * @req: request data structure cipher handle to be freed
971 */
972 static inline void ablkcipher_request_free(struct ablkcipher_request *req)
973 {
974 kzfree(req);
975 }
976
977 /**
978 * ablkcipher_request_set_callback() - set asynchronous callback function
979 * @req: request handle
980 * @flags: specify zero or an ORing of the flags
981 * CRYPTO_TFM_REQ_MAY_BACKLOG the request queue may back log and
982 * increase the wait queue beyond the initial maximum size;
983 * CRYPTO_TFM_REQ_MAY_SLEEP the request processing may sleep
984 * @compl: callback function pointer to be registered with the request handle
985 * @data: The data pointer refers to memory that is not used by the kernel
986 * crypto API, but provided to the callback function for it to use. Here,
987 * the caller can provide a reference to memory the callback function can
988 * operate on. As the callback function is invoked asynchronously to the
989 * related functionality, it may need to access data structures of the
990 * related functionality which can be referenced using this pointer. The
991 * callback function can access the memory via the "data" field in the
992 * crypto_async_request data structure provided to the callback function.
993 *
994 * This function allows setting the callback function that is triggered once the
995 * cipher operation completes.
996 *
997 * The callback function is registered with the ablkcipher_request handle and
998 * must comply with the following template
999 *
1000 * void callback_function(struct crypto_async_request *req, int error)
1001 */
1002 static inline void ablkcipher_request_set_callback(
1003 struct ablkcipher_request *req,
1004 u32 flags, crypto_completion_t compl, void *data)
1005 {
1006 req->base.complete = compl;
1007 req->base.data = data;
1008 req->base.flags = flags;
1009 }
1010
1011 /**
1012 * ablkcipher_request_set_crypt() - set data buffers
1013 * @req: request handle
1014 * @src: source scatter / gather list
1015 * @dst: destination scatter / gather list
1016 * @nbytes: number of bytes to process from @src
1017 * @iv: IV for the cipher operation which must comply with the IV size defined
1018 * by crypto_ablkcipher_ivsize
1019 *
1020 * This function allows setting of the source data and destination data
1021 * scatter / gather lists.
1022 *
1023 * For encryption, the source is treated as the plaintext and the
1024 * destination is the ciphertext. For a decryption operation, the use is
1025 * reversed - the source is the ciphertext and the destination is the plaintext.
1026 */
1027 static inline void ablkcipher_request_set_crypt(
1028 struct ablkcipher_request *req,
1029 struct scatterlist *src, struct scatterlist *dst,
1030 unsigned int nbytes, void *iv)
1031 {
1032 req->src = src;
1033 req->dst = dst;
1034 req->nbytes = nbytes;
1035 req->info = iv;
1036 }
1037
1038 /**
1039 * DOC: Synchronous Block Cipher API
1040 *
1041 * The synchronous block cipher API is used with the ciphers of type
1042 * CRYPTO_ALG_TYPE_BLKCIPHER (listed as type "blkcipher" in /proc/crypto)
1043 *
1044 * Synchronous calls, have a context in the tfm. But since a single tfm can be
1045 * used in multiple calls and in parallel, this info should not be changeable
1046 * (unless a lock is used). This applies, for example, to the symmetric key.
1047 * However, the IV is changeable, so there is an iv field in blkcipher_tfm
1048 * structure for synchronous blkcipher api. So, its the only state info that can
1049 * be kept for synchronous calls without using a big lock across a tfm.
1050 *
1051 * The block cipher API allows the use of a complete cipher, i.e. a cipher
1052 * consisting of a template (a block chaining mode) and a single block cipher
1053 * primitive (e.g. AES).
1054 *
1055 * The plaintext data buffer and the ciphertext data buffer are pointed to
1056 * by using scatter/gather lists. The cipher operation is performed
1057 * on all segments of the provided scatter/gather lists.
1058 *
1059 * The kernel crypto API supports a cipher operation "in-place" which means that
1060 * the caller may provide the same scatter/gather list for the plaintext and
1061 * cipher text. After the completion of the cipher operation, the plaintext
1062 * data is replaced with the ciphertext data in case of an encryption and vice
1063 * versa for a decryption. The caller must ensure that the scatter/gather lists
1064 * for the output data point to sufficiently large buffers, i.e. multiples of
1065 * the block size of the cipher.
1066 */
1067
1068 static inline struct crypto_blkcipher *__crypto_blkcipher_cast(
1069 struct crypto_tfm *tfm)
1070 {
1071 return (struct crypto_blkcipher *)tfm;
1072 }
1073
1074 static inline struct crypto_blkcipher *crypto_blkcipher_cast(
1075 struct crypto_tfm *tfm)
1076 {
1077 BUG_ON(crypto_tfm_alg_type(tfm) != CRYPTO_ALG_TYPE_BLKCIPHER);
1078 return __crypto_blkcipher_cast(tfm);
1079 }
1080
1081 /**
1082 * crypto_alloc_blkcipher() - allocate synchronous block cipher handle
1083 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
1084 * blkcipher cipher
1085 * @type: specifies the type of the cipher
1086 * @mask: specifies the mask for the cipher
1087 *
1088 * Allocate a cipher handle for a block cipher. The returned struct
1089 * crypto_blkcipher is the cipher handle that is required for any subsequent
1090 * API invocation for that block cipher.
1091 *
1092 * Return: allocated cipher handle in case of success; IS_ERR() is true in case
1093 * of an error, PTR_ERR() returns the error code.
1094 */
1095 static inline struct crypto_blkcipher *crypto_alloc_blkcipher(
1096 const char *alg_name, u32 type, u32 mask)
1097 {
1098 type &= ~CRYPTO_ALG_TYPE_MASK;
1099 type |= CRYPTO_ALG_TYPE_BLKCIPHER;
1100 mask |= CRYPTO_ALG_TYPE_MASK;
1101
1102 return __crypto_blkcipher_cast(crypto_alloc_base(alg_name, type, mask));
1103 }
1104
1105 static inline struct crypto_tfm *crypto_blkcipher_tfm(
1106 struct crypto_blkcipher *tfm)
1107 {
1108 return &tfm->base;
1109 }
1110
1111 /**
1112 * crypto_free_blkcipher() - zeroize and free the block cipher handle
1113 * @tfm: cipher handle to be freed
1114 */
1115 static inline void crypto_free_blkcipher(struct crypto_blkcipher *tfm)
1116 {
1117 crypto_free_tfm(crypto_blkcipher_tfm(tfm));
1118 }
1119
1120 /**
1121 * crypto_has_blkcipher() - Search for the availability of a block cipher
1122 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
1123 * block cipher
1124 * @type: specifies the type of the cipher
1125 * @mask: specifies the mask for the cipher
1126 *
1127 * Return: true when the block cipher is known to the kernel crypto API; false
1128 * otherwise
1129 */
1130 static inline int crypto_has_blkcipher(const char *alg_name, u32 type, u32 mask)
1131 {
1132 type &= ~CRYPTO_ALG_TYPE_MASK;
1133 type |= CRYPTO_ALG_TYPE_BLKCIPHER;
1134 mask |= CRYPTO_ALG_TYPE_MASK;
1135
1136 return crypto_has_alg(alg_name, type, mask);
1137 }
1138
1139 /**
1140 * crypto_blkcipher_name() - return the name / cra_name from the cipher handle
1141 * @tfm: cipher handle
1142 *
1143 * Return: The character string holding the name of the cipher
1144 */
1145 static inline const char *crypto_blkcipher_name(struct crypto_blkcipher *tfm)
1146 {
1147 return crypto_tfm_alg_name(crypto_blkcipher_tfm(tfm));
1148 }
1149
1150 static inline struct blkcipher_tfm *crypto_blkcipher_crt(
1151 struct crypto_blkcipher *tfm)
1152 {
1153 return &crypto_blkcipher_tfm(tfm)->crt_blkcipher;
1154 }
1155
1156 static inline struct blkcipher_alg *crypto_blkcipher_alg(
1157 struct crypto_blkcipher *tfm)
1158 {
1159 return &crypto_blkcipher_tfm(tfm)->__crt_alg->cra_blkcipher;
1160 }
1161
1162 /**
1163 * crypto_blkcipher_ivsize() - obtain IV size
1164 * @tfm: cipher handle
1165 *
1166 * The size of the IV for the block cipher referenced by the cipher handle is
1167 * returned. This IV size may be zero if the cipher does not need an IV.
1168 *
1169 * Return: IV size in bytes
1170 */
1171 static inline unsigned int crypto_blkcipher_ivsize(struct crypto_blkcipher *tfm)
1172 {
1173 return crypto_blkcipher_alg(tfm)->ivsize;
1174 }
1175
1176 /**
1177 * crypto_blkcipher_blocksize() - obtain block size of cipher
1178 * @tfm: cipher handle
1179 *
1180 * The block size for the block cipher referenced with the cipher handle is
1181 * returned. The caller may use that information to allocate appropriate
1182 * memory for the data returned by the encryption or decryption operation.
1183 *
1184 * Return: block size of cipher
1185 */
1186 static inline unsigned int crypto_blkcipher_blocksize(
1187 struct crypto_blkcipher *tfm)
1188 {
1189 return crypto_tfm_alg_blocksize(crypto_blkcipher_tfm(tfm));
1190 }
1191
1192 static inline unsigned int crypto_blkcipher_alignmask(
1193 struct crypto_blkcipher *tfm)
1194 {
1195 return crypto_tfm_alg_alignmask(crypto_blkcipher_tfm(tfm));
1196 }
1197
1198 static inline u32 crypto_blkcipher_get_flags(struct crypto_blkcipher *tfm)
1199 {
1200 return crypto_tfm_get_flags(crypto_blkcipher_tfm(tfm));
1201 }
1202
1203 static inline void crypto_blkcipher_set_flags(struct crypto_blkcipher *tfm,
1204 u32 flags)
1205 {
1206 crypto_tfm_set_flags(crypto_blkcipher_tfm(tfm), flags);
1207 }
1208
1209 static inline void crypto_blkcipher_clear_flags(struct crypto_blkcipher *tfm,
1210 u32 flags)
1211 {
1212 crypto_tfm_clear_flags(crypto_blkcipher_tfm(tfm), flags);
1213 }
1214
1215 /**
1216 * crypto_blkcipher_setkey() - set key for cipher
1217 * @tfm: cipher handle
1218 * @key: buffer holding the key
1219 * @keylen: length of the key in bytes
1220 *
1221 * The caller provided key is set for the block cipher referenced by the cipher
1222 * handle.
1223 *
1224 * Note, the key length determines the cipher type. Many block ciphers implement
1225 * different cipher modes depending on the key size, such as AES-128 vs AES-192
1226 * vs. AES-256. When providing a 16 byte key for an AES cipher handle, AES-128
1227 * is performed.
1228 *
1229 * Return: 0 if the setting of the key was successful; < 0 if an error occurred
1230 */
1231 static inline int crypto_blkcipher_setkey(struct crypto_blkcipher *tfm,
1232 const u8 *key, unsigned int keylen)
1233 {
1234 return crypto_blkcipher_crt(tfm)->setkey(crypto_blkcipher_tfm(tfm),
1235 key, keylen);
1236 }
1237
1238 /**
1239 * crypto_blkcipher_encrypt() - encrypt plaintext
1240 * @desc: reference to the block cipher handle with meta data
1241 * @dst: scatter/gather list that is filled by the cipher operation with the
1242 * ciphertext
1243 * @src: scatter/gather list that holds the plaintext
1244 * @nbytes: number of bytes of the plaintext to encrypt.
1245 *
1246 * Encrypt plaintext data using the IV set by the caller with a preceding
1247 * call of crypto_blkcipher_set_iv.
1248 *
1249 * The blkcipher_desc data structure must be filled by the caller and can
1250 * reside on the stack. The caller must fill desc as follows: desc.tfm is filled
1251 * with the block cipher handle; desc.flags is filled with either
1252 * CRYPTO_TFM_REQ_MAY_SLEEP or 0.
1253 *
1254 * Return: 0 if the cipher operation was successful; < 0 if an error occurred
1255 */
1256 static inline int crypto_blkcipher_encrypt(struct blkcipher_desc *desc,
1257 struct scatterlist *dst,
1258 struct scatterlist *src,
1259 unsigned int nbytes)
1260 {
1261 desc->info = crypto_blkcipher_crt(desc->tfm)->iv;
1262 return crypto_blkcipher_crt(desc->tfm)->encrypt(desc, dst, src, nbytes);
1263 }
1264
1265 /**
1266 * crypto_blkcipher_encrypt_iv() - encrypt plaintext with dedicated IV
1267 * @desc: reference to the block cipher handle with meta data
1268 * @dst: scatter/gather list that is filled by the cipher operation with the
1269 * ciphertext
1270 * @src: scatter/gather list that holds the plaintext
1271 * @nbytes: number of bytes of the plaintext to encrypt.
1272 *
1273 * Encrypt plaintext data with the use of an IV that is solely used for this
1274 * cipher operation. Any previously set IV is not used.
1275 *
1276 * The blkcipher_desc data structure must be filled by the caller and can
1277 * reside on the stack. The caller must fill desc as follows: desc.tfm is filled
1278 * with the block cipher handle; desc.info is filled with the IV to be used for
1279 * the current operation; desc.flags is filled with either
1280 * CRYPTO_TFM_REQ_MAY_SLEEP or 0.
1281 *
1282 * Return: 0 if the cipher operation was successful; < 0 if an error occurred
1283 */
1284 static inline int crypto_blkcipher_encrypt_iv(struct blkcipher_desc *desc,
1285 struct scatterlist *dst,
1286 struct scatterlist *src,
1287 unsigned int nbytes)
1288 {
1289 return crypto_blkcipher_crt(desc->tfm)->encrypt(desc, dst, src, nbytes);
1290 }
1291
1292 /**
1293 * crypto_blkcipher_decrypt() - decrypt ciphertext
1294 * @desc: reference to the block cipher handle with meta data
1295 * @dst: scatter/gather list that is filled by the cipher operation with the
1296 * plaintext
1297 * @src: scatter/gather list that holds the ciphertext
1298 * @nbytes: number of bytes of the ciphertext to decrypt.
1299 *
1300 * Decrypt ciphertext data using the IV set by the caller with a preceding
1301 * call of crypto_blkcipher_set_iv.
1302 *
1303 * The blkcipher_desc data structure must be filled by the caller as documented
1304 * for the crypto_blkcipher_encrypt call above.
1305 *
1306 * Return: 0 if the cipher operation was successful; < 0 if an error occurred
1307 *
1308 */
1309 static inline int crypto_blkcipher_decrypt(struct blkcipher_desc *desc,
1310 struct scatterlist *dst,
1311 struct scatterlist *src,
1312 unsigned int nbytes)
1313 {
1314 desc->info = crypto_blkcipher_crt(desc->tfm)->iv;
1315 return crypto_blkcipher_crt(desc->tfm)->decrypt(desc, dst, src, nbytes);
1316 }
1317
1318 /**
1319 * crypto_blkcipher_decrypt_iv() - decrypt ciphertext with dedicated IV
1320 * @desc: reference to the block cipher handle with meta data
1321 * @dst: scatter/gather list that is filled by the cipher operation with the
1322 * plaintext
1323 * @src: scatter/gather list that holds the ciphertext
1324 * @nbytes: number of bytes of the ciphertext to decrypt.
1325 *
1326 * Decrypt ciphertext data with the use of an IV that is solely used for this
1327 * cipher operation. Any previously set IV is not used.
1328 *
1329 * The blkcipher_desc data structure must be filled by the caller as documented
1330 * for the crypto_blkcipher_encrypt_iv call above.
1331 *
1332 * Return: 0 if the cipher operation was successful; < 0 if an error occurred
1333 */
1334 static inline int crypto_blkcipher_decrypt_iv(struct blkcipher_desc *desc,
1335 struct scatterlist *dst,
1336 struct scatterlist *src,
1337 unsigned int nbytes)
1338 {
1339 return crypto_blkcipher_crt(desc->tfm)->decrypt(desc, dst, src, nbytes);
1340 }
1341
1342 /**
1343 * crypto_blkcipher_set_iv() - set IV for cipher
1344 * @tfm: cipher handle
1345 * @src: buffer holding the IV
1346 * @len: length of the IV in bytes
1347 *
1348 * The caller provided IV is set for the block cipher referenced by the cipher
1349 * handle.
1350 */
1351 static inline void crypto_blkcipher_set_iv(struct crypto_blkcipher *tfm,
1352 const u8 *src, unsigned int len)
1353 {
1354 memcpy(crypto_blkcipher_crt(tfm)->iv, src, len);
1355 }
1356
1357 /**
1358 * crypto_blkcipher_get_iv() - obtain IV from cipher
1359 * @tfm: cipher handle
1360 * @dst: buffer filled with the IV
1361 * @len: length of the buffer dst
1362 *
1363 * The caller can obtain the IV set for the block cipher referenced by the
1364 * cipher handle and store it into the user-provided buffer. If the buffer
1365 * has an insufficient space, the IV is truncated to fit the buffer.
1366 */
1367 static inline void crypto_blkcipher_get_iv(struct crypto_blkcipher *tfm,
1368 u8 *dst, unsigned int len)
1369 {
1370 memcpy(dst, crypto_blkcipher_crt(tfm)->iv, len);
1371 }
1372
1373 /**
1374 * DOC: Single Block Cipher API
1375 *
1376 * The single block cipher API is used with the ciphers of type
1377 * CRYPTO_ALG_TYPE_CIPHER (listed as type "cipher" in /proc/crypto).
1378 *
1379 * Using the single block cipher API calls, operations with the basic cipher
1380 * primitive can be implemented. These cipher primitives exclude any block
1381 * chaining operations including IV handling.
1382 *
1383 * The purpose of this single block cipher API is to support the implementation
1384 * of templates or other concepts that only need to perform the cipher operation
1385 * on one block at a time. Templates invoke the underlying cipher primitive
1386 * block-wise and process either the input or the output data of these cipher
1387 * operations.
1388 */
1389
1390 static inline struct crypto_cipher *__crypto_cipher_cast(struct crypto_tfm *tfm)
1391 {
1392 return (struct crypto_cipher *)tfm;
1393 }
1394
1395 static inline struct crypto_cipher *crypto_cipher_cast(struct crypto_tfm *tfm)
1396 {
1397 BUG_ON(crypto_tfm_alg_type(tfm) != CRYPTO_ALG_TYPE_CIPHER);
1398 return __crypto_cipher_cast(tfm);
1399 }
1400
1401 /**
1402 * crypto_alloc_cipher() - allocate single block cipher handle
1403 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
1404 * single block cipher
1405 * @type: specifies the type of the cipher
1406 * @mask: specifies the mask for the cipher
1407 *
1408 * Allocate a cipher handle for a single block cipher. The returned struct
1409 * crypto_cipher is the cipher handle that is required for any subsequent API
1410 * invocation for that single block cipher.
1411 *
1412 * Return: allocated cipher handle in case of success; IS_ERR() is true in case
1413 * of an error, PTR_ERR() returns the error code.
1414 */
1415 static inline struct crypto_cipher *crypto_alloc_cipher(const char *alg_name,
1416 u32 type, u32 mask)
1417 {
1418 type &= ~CRYPTO_ALG_TYPE_MASK;
1419 type |= CRYPTO_ALG_TYPE_CIPHER;
1420 mask |= CRYPTO_ALG_TYPE_MASK;
1421
1422 return __crypto_cipher_cast(crypto_alloc_base(alg_name, type, mask));
1423 }
1424
1425 static inline struct crypto_tfm *crypto_cipher_tfm(struct crypto_cipher *tfm)
1426 {
1427 return &tfm->base;
1428 }
1429
1430 /**
1431 * crypto_free_cipher() - zeroize and free the single block cipher handle
1432 * @tfm: cipher handle to be freed
1433 */
1434 static inline void crypto_free_cipher(struct crypto_cipher *tfm)
1435 {
1436 crypto_free_tfm(crypto_cipher_tfm(tfm));
1437 }
1438
1439 /**
1440 * crypto_has_cipher() - Search for the availability of a single block cipher
1441 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
1442 * single block cipher
1443 * @type: specifies the type of the cipher
1444 * @mask: specifies the mask for the cipher
1445 *
1446 * Return: true when the single block cipher is known to the kernel crypto API;
1447 * false otherwise
1448 */
1449 static inline int crypto_has_cipher(const char *alg_name, u32 type, u32 mask)
1450 {
1451 type &= ~CRYPTO_ALG_TYPE_MASK;
1452 type |= CRYPTO_ALG_TYPE_CIPHER;
1453 mask |= CRYPTO_ALG_TYPE_MASK;
1454
1455 return crypto_has_alg(alg_name, type, mask);
1456 }
1457
1458 static inline struct cipher_tfm *crypto_cipher_crt(struct crypto_cipher *tfm)
1459 {
1460 return &crypto_cipher_tfm(tfm)->crt_cipher;
1461 }
1462
1463 /**
1464 * crypto_cipher_blocksize() - obtain block size for cipher
1465 * @tfm: cipher handle
1466 *
1467 * The block size for the single block cipher referenced with the cipher handle
1468 * tfm is returned. The caller may use that information to allocate appropriate
1469 * memory for the data returned by the encryption or decryption operation
1470 *
1471 * Return: block size of cipher
1472 */
1473 static inline unsigned int crypto_cipher_blocksize(struct crypto_cipher *tfm)
1474 {
1475 return crypto_tfm_alg_blocksize(crypto_cipher_tfm(tfm));
1476 }
1477
1478 static inline unsigned int crypto_cipher_alignmask(struct crypto_cipher *tfm)
1479 {
1480 return crypto_tfm_alg_alignmask(crypto_cipher_tfm(tfm));
1481 }
1482
1483 static inline u32 crypto_cipher_get_flags(struct crypto_cipher *tfm)
1484 {
1485 return crypto_tfm_get_flags(crypto_cipher_tfm(tfm));
1486 }
1487
1488 static inline void crypto_cipher_set_flags(struct crypto_cipher *tfm,
1489 u32 flags)
1490 {
1491 crypto_tfm_set_flags(crypto_cipher_tfm(tfm), flags);
1492 }
1493
1494 static inline void crypto_cipher_clear_flags(struct crypto_cipher *tfm,
1495 u32 flags)
1496 {
1497 crypto_tfm_clear_flags(crypto_cipher_tfm(tfm), flags);
1498 }
1499
1500 /**
1501 * crypto_cipher_setkey() - set key for cipher
1502 * @tfm: cipher handle
1503 * @key: buffer holding the key
1504 * @keylen: length of the key in bytes
1505 *
1506 * The caller provided key is set for the single block cipher referenced by the
1507 * cipher handle.
1508 *
1509 * Note, the key length determines the cipher type. Many block ciphers implement
1510 * different cipher modes depending on the key size, such as AES-128 vs AES-192
1511 * vs. AES-256. When providing a 16 byte key for an AES cipher handle, AES-128
1512 * is performed.
1513 *
1514 * Return: 0 if the setting of the key was successful; < 0 if an error occurred
1515 */
1516 static inline int crypto_cipher_setkey(struct crypto_cipher *tfm,
1517 const u8 *key, unsigned int keylen)
1518 {
1519 return crypto_cipher_crt(tfm)->cit_setkey(crypto_cipher_tfm(tfm),
1520 key, keylen);
1521 }
1522
1523 /**
1524 * crypto_cipher_encrypt_one() - encrypt one block of plaintext
1525 * @tfm: cipher handle
1526 * @dst: points to the buffer that will be filled with the ciphertext
1527 * @src: buffer holding the plaintext to be encrypted
1528 *
1529 * Invoke the encryption operation of one block. The caller must ensure that
1530 * the plaintext and ciphertext buffers are at least one block in size.
1531 */
1532 static inline void crypto_cipher_encrypt_one(struct crypto_cipher *tfm,
1533 u8 *dst, const u8 *src)
1534 {
1535 crypto_cipher_crt(tfm)->cit_encrypt_one(crypto_cipher_tfm(tfm),
1536 dst, src);
1537 }
1538
1539 /**
1540 * crypto_cipher_decrypt_one() - decrypt one block of ciphertext
1541 * @tfm: cipher handle
1542 * @dst: points to the buffer that will be filled with the plaintext
1543 * @src: buffer holding the ciphertext to be decrypted
1544 *
1545 * Invoke the decryption operation of one block. The caller must ensure that
1546 * the plaintext and ciphertext buffers are at least one block in size.
1547 */
1548 static inline void crypto_cipher_decrypt_one(struct crypto_cipher *tfm,
1549 u8 *dst, const u8 *src)
1550 {
1551 crypto_cipher_crt(tfm)->cit_decrypt_one(crypto_cipher_tfm(tfm),
1552 dst, src);
1553 }
1554
1555 static inline struct crypto_comp *__crypto_comp_cast(struct crypto_tfm *tfm)
1556 {
1557 return (struct crypto_comp *)tfm;
1558 }
1559
1560 static inline struct crypto_comp *crypto_comp_cast(struct crypto_tfm *tfm)
1561 {
1562 BUG_ON((crypto_tfm_alg_type(tfm) ^ CRYPTO_ALG_TYPE_COMPRESS) &
1563 CRYPTO_ALG_TYPE_MASK);
1564 return __crypto_comp_cast(tfm);
1565 }
1566
1567 static inline struct crypto_comp *crypto_alloc_comp(const char *alg_name,
1568 u32 type, u32 mask)
1569 {
1570 type &= ~CRYPTO_ALG_TYPE_MASK;
1571 type |= CRYPTO_ALG_TYPE_COMPRESS;
1572 mask |= CRYPTO_ALG_TYPE_MASK;
1573
1574 return __crypto_comp_cast(crypto_alloc_base(alg_name, type, mask));
1575 }
1576
1577 static inline struct crypto_tfm *crypto_comp_tfm(struct crypto_comp *tfm)
1578 {
1579 return &tfm->base;
1580 }
1581
1582 static inline void crypto_free_comp(struct crypto_comp *tfm)
1583 {
1584 crypto_free_tfm(crypto_comp_tfm(tfm));
1585 }
1586
1587 static inline int crypto_has_comp(const char *alg_name, u32 type, u32 mask)
1588 {
1589 type &= ~CRYPTO_ALG_TYPE_MASK;
1590 type |= CRYPTO_ALG_TYPE_COMPRESS;
1591 mask |= CRYPTO_ALG_TYPE_MASK;
1592
1593 return crypto_has_alg(alg_name, type, mask);
1594 }
1595
1596 static inline const char *crypto_comp_name(struct crypto_comp *tfm)
1597 {
1598 return crypto_tfm_alg_name(crypto_comp_tfm(tfm));
1599 }
1600
1601 static inline struct compress_tfm *crypto_comp_crt(struct crypto_comp *tfm)
1602 {
1603 return &crypto_comp_tfm(tfm)->crt_compress;
1604 }
1605
1606 static inline int crypto_comp_compress(struct crypto_comp *tfm,
1607 const u8 *src, unsigned int slen,
1608 u8 *dst, unsigned int *dlen)
1609 {
1610 return crypto_comp_crt(tfm)->cot_compress(crypto_comp_tfm(tfm),
1611 src, slen, dst, dlen);
1612 }
1613
1614 static inline int crypto_comp_decompress(struct crypto_comp *tfm,
1615 const u8 *src, unsigned int slen,
1616 u8 *dst, unsigned int *dlen)
1617 {
1618 return crypto_comp_crt(tfm)->cot_decompress(crypto_comp_tfm(tfm),
1619 src, slen, dst, dlen);
1620 }
1621
1622 #endif /* _LINUX_CRYPTO_H */
1623
This page took 0.063545 seconds and 5 git commands to generate.