regmap: merge regmap_update_bits_check() into macro
[deliverable/linux.git] / include / linux / dmaengine.h
1 /*
2 * Copyright(c) 2004 - 2006 Intel Corporation. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms of the GNU General Public License as published by the Free
6 * Software Foundation; either version 2 of the License, or (at your option)
7 * any later version.
8 *
9 * This program is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
13 *
14 * The full GNU General Public License is included in this distribution in the
15 * file called COPYING.
16 */
17 #ifndef LINUX_DMAENGINE_H
18 #define LINUX_DMAENGINE_H
19
20 #include <linux/device.h>
21 #include <linux/err.h>
22 #include <linux/uio.h>
23 #include <linux/bug.h>
24 #include <linux/scatterlist.h>
25 #include <linux/bitmap.h>
26 #include <linux/types.h>
27 #include <asm/page.h>
28
29 /**
30 * typedef dma_cookie_t - an opaque DMA cookie
31 *
32 * if dma_cookie_t is >0 it's a DMA request cookie, <0 it's an error code
33 */
34 typedef s32 dma_cookie_t;
35 #define DMA_MIN_COOKIE 1
36
37 static inline int dma_submit_error(dma_cookie_t cookie)
38 {
39 return cookie < 0 ? cookie : 0;
40 }
41
42 /**
43 * enum dma_status - DMA transaction status
44 * @DMA_COMPLETE: transaction completed
45 * @DMA_IN_PROGRESS: transaction not yet processed
46 * @DMA_PAUSED: transaction is paused
47 * @DMA_ERROR: transaction failed
48 */
49 enum dma_status {
50 DMA_COMPLETE,
51 DMA_IN_PROGRESS,
52 DMA_PAUSED,
53 DMA_ERROR,
54 };
55
56 /**
57 * enum dma_transaction_type - DMA transaction types/indexes
58 *
59 * Note: The DMA_ASYNC_TX capability is not to be set by drivers. It is
60 * automatically set as dma devices are registered.
61 */
62 enum dma_transaction_type {
63 DMA_MEMCPY,
64 DMA_XOR,
65 DMA_PQ,
66 DMA_XOR_VAL,
67 DMA_PQ_VAL,
68 DMA_MEMSET,
69 DMA_MEMSET_SG,
70 DMA_INTERRUPT,
71 DMA_SG,
72 DMA_PRIVATE,
73 DMA_ASYNC_TX,
74 DMA_SLAVE,
75 DMA_CYCLIC,
76 DMA_INTERLEAVE,
77 /* last transaction type for creation of the capabilities mask */
78 DMA_TX_TYPE_END,
79 };
80
81 /**
82 * enum dma_transfer_direction - dma transfer mode and direction indicator
83 * @DMA_MEM_TO_MEM: Async/Memcpy mode
84 * @DMA_MEM_TO_DEV: Slave mode & From Memory to Device
85 * @DMA_DEV_TO_MEM: Slave mode & From Device to Memory
86 * @DMA_DEV_TO_DEV: Slave mode & From Device to Device
87 */
88 enum dma_transfer_direction {
89 DMA_MEM_TO_MEM,
90 DMA_MEM_TO_DEV,
91 DMA_DEV_TO_MEM,
92 DMA_DEV_TO_DEV,
93 DMA_TRANS_NONE,
94 };
95
96 /**
97 * Interleaved Transfer Request
98 * ----------------------------
99 * A chunk is collection of contiguous bytes to be transfered.
100 * The gap(in bytes) between two chunks is called inter-chunk-gap(ICG).
101 * ICGs may or maynot change between chunks.
102 * A FRAME is the smallest series of contiguous {chunk,icg} pairs,
103 * that when repeated an integral number of times, specifies the transfer.
104 * A transfer template is specification of a Frame, the number of times
105 * it is to be repeated and other per-transfer attributes.
106 *
107 * Practically, a client driver would have ready a template for each
108 * type of transfer it is going to need during its lifetime and
109 * set only 'src_start' and 'dst_start' before submitting the requests.
110 *
111 *
112 * | Frame-1 | Frame-2 | ~ | Frame-'numf' |
113 * |====....==.===...=...|====....==.===...=...| ~ |====....==.===...=...|
114 *
115 * == Chunk size
116 * ... ICG
117 */
118
119 /**
120 * struct data_chunk - Element of scatter-gather list that makes a frame.
121 * @size: Number of bytes to read from source.
122 * size_dst := fn(op, size_src), so doesn't mean much for destination.
123 * @icg: Number of bytes to jump after last src/dst address of this
124 * chunk and before first src/dst address for next chunk.
125 * Ignored for dst(assumed 0), if dst_inc is true and dst_sgl is false.
126 * Ignored for src(assumed 0), if src_inc is true and src_sgl is false.
127 * @dst_icg: Number of bytes to jump after last dst address of this
128 * chunk and before the first dst address for next chunk.
129 * Ignored if dst_inc is true and dst_sgl is false.
130 * @src_icg: Number of bytes to jump after last src address of this
131 * chunk and before the first src address for next chunk.
132 * Ignored if src_inc is true and src_sgl is false.
133 */
134 struct data_chunk {
135 size_t size;
136 size_t icg;
137 size_t dst_icg;
138 size_t src_icg;
139 };
140
141 /**
142 * struct dma_interleaved_template - Template to convey DMAC the transfer pattern
143 * and attributes.
144 * @src_start: Bus address of source for the first chunk.
145 * @dst_start: Bus address of destination for the first chunk.
146 * @dir: Specifies the type of Source and Destination.
147 * @src_inc: If the source address increments after reading from it.
148 * @dst_inc: If the destination address increments after writing to it.
149 * @src_sgl: If the 'icg' of sgl[] applies to Source (scattered read).
150 * Otherwise, source is read contiguously (icg ignored).
151 * Ignored if src_inc is false.
152 * @dst_sgl: If the 'icg' of sgl[] applies to Destination (scattered write).
153 * Otherwise, destination is filled contiguously (icg ignored).
154 * Ignored if dst_inc is false.
155 * @numf: Number of frames in this template.
156 * @frame_size: Number of chunks in a frame i.e, size of sgl[].
157 * @sgl: Array of {chunk,icg} pairs that make up a frame.
158 */
159 struct dma_interleaved_template {
160 dma_addr_t src_start;
161 dma_addr_t dst_start;
162 enum dma_transfer_direction dir;
163 bool src_inc;
164 bool dst_inc;
165 bool src_sgl;
166 bool dst_sgl;
167 size_t numf;
168 size_t frame_size;
169 struct data_chunk sgl[0];
170 };
171
172 /**
173 * enum dma_ctrl_flags - DMA flags to augment operation preparation,
174 * control completion, and communicate status.
175 * @DMA_PREP_INTERRUPT - trigger an interrupt (callback) upon completion of
176 * this transaction
177 * @DMA_CTRL_ACK - if clear, the descriptor cannot be reused until the client
178 * acknowledges receipt, i.e. has has a chance to establish any dependency
179 * chains
180 * @DMA_PREP_PQ_DISABLE_P - prevent generation of P while generating Q
181 * @DMA_PREP_PQ_DISABLE_Q - prevent generation of Q while generating P
182 * @DMA_PREP_CONTINUE - indicate to a driver that it is reusing buffers as
183 * sources that were the result of a previous operation, in the case of a PQ
184 * operation it continues the calculation with new sources
185 * @DMA_PREP_FENCE - tell the driver that subsequent operations depend
186 * on the result of this operation
187 * @DMA_CTRL_REUSE: client can reuse the descriptor and submit again till
188 * cleared or freed
189 */
190 enum dma_ctrl_flags {
191 DMA_PREP_INTERRUPT = (1 << 0),
192 DMA_CTRL_ACK = (1 << 1),
193 DMA_PREP_PQ_DISABLE_P = (1 << 2),
194 DMA_PREP_PQ_DISABLE_Q = (1 << 3),
195 DMA_PREP_CONTINUE = (1 << 4),
196 DMA_PREP_FENCE = (1 << 5),
197 DMA_CTRL_REUSE = (1 << 6),
198 };
199
200 /**
201 * enum sum_check_bits - bit position of pq_check_flags
202 */
203 enum sum_check_bits {
204 SUM_CHECK_P = 0,
205 SUM_CHECK_Q = 1,
206 };
207
208 /**
209 * enum pq_check_flags - result of async_{xor,pq}_zero_sum operations
210 * @SUM_CHECK_P_RESULT - 1 if xor zero sum error, 0 otherwise
211 * @SUM_CHECK_Q_RESULT - 1 if reed-solomon zero sum error, 0 otherwise
212 */
213 enum sum_check_flags {
214 SUM_CHECK_P_RESULT = (1 << SUM_CHECK_P),
215 SUM_CHECK_Q_RESULT = (1 << SUM_CHECK_Q),
216 };
217
218
219 /**
220 * dma_cap_mask_t - capabilities bitmap modeled after cpumask_t.
221 * See linux/cpumask.h
222 */
223 typedef struct { DECLARE_BITMAP(bits, DMA_TX_TYPE_END); } dma_cap_mask_t;
224
225 /**
226 * struct dma_chan_percpu - the per-CPU part of struct dma_chan
227 * @memcpy_count: transaction counter
228 * @bytes_transferred: byte counter
229 */
230
231 struct dma_chan_percpu {
232 /* stats */
233 unsigned long memcpy_count;
234 unsigned long bytes_transferred;
235 };
236
237 /**
238 * struct dma_router - DMA router structure
239 * @dev: pointer to the DMA router device
240 * @route_free: function to be called when the route can be disconnected
241 */
242 struct dma_router {
243 struct device *dev;
244 void (*route_free)(struct device *dev, void *route_data);
245 };
246
247 /**
248 * struct dma_chan - devices supply DMA channels, clients use them
249 * @device: ptr to the dma device who supplies this channel, always !%NULL
250 * @cookie: last cookie value returned to client
251 * @completed_cookie: last completed cookie for this channel
252 * @chan_id: channel ID for sysfs
253 * @dev: class device for sysfs
254 * @device_node: used to add this to the device chan list
255 * @local: per-cpu pointer to a struct dma_chan_percpu
256 * @client_count: how many clients are using this channel
257 * @table_count: number of appearances in the mem-to-mem allocation table
258 * @router: pointer to the DMA router structure
259 * @route_data: channel specific data for the router
260 * @private: private data for certain client-channel associations
261 */
262 struct dma_chan {
263 struct dma_device *device;
264 dma_cookie_t cookie;
265 dma_cookie_t completed_cookie;
266
267 /* sysfs */
268 int chan_id;
269 struct dma_chan_dev *dev;
270
271 struct list_head device_node;
272 struct dma_chan_percpu __percpu *local;
273 int client_count;
274 int table_count;
275
276 /* DMA router */
277 struct dma_router *router;
278 void *route_data;
279
280 void *private;
281 };
282
283 /**
284 * struct dma_chan_dev - relate sysfs device node to backing channel device
285 * @chan: driver channel device
286 * @device: sysfs device
287 * @dev_id: parent dma_device dev_id
288 * @idr_ref: reference count to gate release of dma_device dev_id
289 */
290 struct dma_chan_dev {
291 struct dma_chan *chan;
292 struct device device;
293 int dev_id;
294 atomic_t *idr_ref;
295 };
296
297 /**
298 * enum dma_slave_buswidth - defines bus width of the DMA slave
299 * device, source or target buses
300 */
301 enum dma_slave_buswidth {
302 DMA_SLAVE_BUSWIDTH_UNDEFINED = 0,
303 DMA_SLAVE_BUSWIDTH_1_BYTE = 1,
304 DMA_SLAVE_BUSWIDTH_2_BYTES = 2,
305 DMA_SLAVE_BUSWIDTH_3_BYTES = 3,
306 DMA_SLAVE_BUSWIDTH_4_BYTES = 4,
307 DMA_SLAVE_BUSWIDTH_8_BYTES = 8,
308 DMA_SLAVE_BUSWIDTH_16_BYTES = 16,
309 DMA_SLAVE_BUSWIDTH_32_BYTES = 32,
310 DMA_SLAVE_BUSWIDTH_64_BYTES = 64,
311 };
312
313 /**
314 * struct dma_slave_config - dma slave channel runtime config
315 * @direction: whether the data shall go in or out on this slave
316 * channel, right now. DMA_MEM_TO_DEV and DMA_DEV_TO_MEM are
317 * legal values. DEPRECATED, drivers should use the direction argument
318 * to the device_prep_slave_sg and device_prep_dma_cyclic functions or
319 * the dir field in the dma_interleaved_template structure.
320 * @src_addr: this is the physical address where DMA slave data
321 * should be read (RX), if the source is memory this argument is
322 * ignored.
323 * @dst_addr: this is the physical address where DMA slave data
324 * should be written (TX), if the source is memory this argument
325 * is ignored.
326 * @src_addr_width: this is the width in bytes of the source (RX)
327 * register where DMA data shall be read. If the source
328 * is memory this may be ignored depending on architecture.
329 * Legal values: 1, 2, 4, 8.
330 * @dst_addr_width: same as src_addr_width but for destination
331 * target (TX) mutatis mutandis.
332 * @src_maxburst: the maximum number of words (note: words, as in
333 * units of the src_addr_width member, not bytes) that can be sent
334 * in one burst to the device. Typically something like half the
335 * FIFO depth on I/O peripherals so you don't overflow it. This
336 * may or may not be applicable on memory sources.
337 * @dst_maxburst: same as src_maxburst but for destination target
338 * mutatis mutandis.
339 * @device_fc: Flow Controller Settings. Only valid for slave channels. Fill
340 * with 'true' if peripheral should be flow controller. Direction will be
341 * selected at Runtime.
342 * @slave_id: Slave requester id. Only valid for slave channels. The dma
343 * slave peripheral will have unique id as dma requester which need to be
344 * pass as slave config.
345 *
346 * This struct is passed in as configuration data to a DMA engine
347 * in order to set up a certain channel for DMA transport at runtime.
348 * The DMA device/engine has to provide support for an additional
349 * callback in the dma_device structure, device_config and this struct
350 * will then be passed in as an argument to the function.
351 *
352 * The rationale for adding configuration information to this struct is as
353 * follows: if it is likely that more than one DMA slave controllers in
354 * the world will support the configuration option, then make it generic.
355 * If not: if it is fixed so that it be sent in static from the platform
356 * data, then prefer to do that.
357 */
358 struct dma_slave_config {
359 enum dma_transfer_direction direction;
360 dma_addr_t src_addr;
361 dma_addr_t dst_addr;
362 enum dma_slave_buswidth src_addr_width;
363 enum dma_slave_buswidth dst_addr_width;
364 u32 src_maxburst;
365 u32 dst_maxburst;
366 bool device_fc;
367 unsigned int slave_id;
368 };
369
370 /**
371 * enum dma_residue_granularity - Granularity of the reported transfer residue
372 * @DMA_RESIDUE_GRANULARITY_DESCRIPTOR: Residue reporting is not support. The
373 * DMA channel is only able to tell whether a descriptor has been completed or
374 * not, which means residue reporting is not supported by this channel. The
375 * residue field of the dma_tx_state field will always be 0.
376 * @DMA_RESIDUE_GRANULARITY_SEGMENT: Residue is updated after each successfully
377 * completed segment of the transfer (For cyclic transfers this is after each
378 * period). This is typically implemented by having the hardware generate an
379 * interrupt after each transferred segment and then the drivers updates the
380 * outstanding residue by the size of the segment. Another possibility is if
381 * the hardware supports scatter-gather and the segment descriptor has a field
382 * which gets set after the segment has been completed. The driver then counts
383 * the number of segments without the flag set to compute the residue.
384 * @DMA_RESIDUE_GRANULARITY_BURST: Residue is updated after each transferred
385 * burst. This is typically only supported if the hardware has a progress
386 * register of some sort (E.g. a register with the current read/write address
387 * or a register with the amount of bursts/beats/bytes that have been
388 * transferred or still need to be transferred).
389 */
390 enum dma_residue_granularity {
391 DMA_RESIDUE_GRANULARITY_DESCRIPTOR = 0,
392 DMA_RESIDUE_GRANULARITY_SEGMENT = 1,
393 DMA_RESIDUE_GRANULARITY_BURST = 2,
394 };
395
396 /* struct dma_slave_caps - expose capabilities of a slave channel only
397 *
398 * @src_addr_widths: bit mask of src addr widths the channel supports
399 * @dst_addr_widths: bit mask of dstn addr widths the channel supports
400 * @directions: bit mask of slave direction the channel supported
401 * since the enum dma_transfer_direction is not defined as bits for each
402 * type of direction, the dma controller should fill (1 << <TYPE>) and same
403 * should be checked by controller as well
404 * @cmd_pause: true, if pause and thereby resume is supported
405 * @cmd_terminate: true, if terminate cmd is supported
406 * @residue_granularity: granularity of the reported transfer residue
407 * @descriptor_reuse: if a descriptor can be reused by client and
408 * resubmitted multiple times
409 */
410 struct dma_slave_caps {
411 u32 src_addr_widths;
412 u32 dst_addr_widths;
413 u32 directions;
414 bool cmd_pause;
415 bool cmd_terminate;
416 enum dma_residue_granularity residue_granularity;
417 bool descriptor_reuse;
418 };
419
420 static inline const char *dma_chan_name(struct dma_chan *chan)
421 {
422 return dev_name(&chan->dev->device);
423 }
424
425 void dma_chan_cleanup(struct kref *kref);
426
427 /**
428 * typedef dma_filter_fn - callback filter for dma_request_channel
429 * @chan: channel to be reviewed
430 * @filter_param: opaque parameter passed through dma_request_channel
431 *
432 * When this optional parameter is specified in a call to dma_request_channel a
433 * suitable channel is passed to this routine for further dispositioning before
434 * being returned. Where 'suitable' indicates a non-busy channel that
435 * satisfies the given capability mask. It returns 'true' to indicate that the
436 * channel is suitable.
437 */
438 typedef bool (*dma_filter_fn)(struct dma_chan *chan, void *filter_param);
439
440 typedef void (*dma_async_tx_callback)(void *dma_async_param);
441
442 struct dmaengine_unmap_data {
443 u8 map_cnt;
444 u8 to_cnt;
445 u8 from_cnt;
446 u8 bidi_cnt;
447 struct device *dev;
448 struct kref kref;
449 size_t len;
450 dma_addr_t addr[0];
451 };
452
453 /**
454 * struct dma_async_tx_descriptor - async transaction descriptor
455 * ---dma generic offload fields---
456 * @cookie: tracking cookie for this transaction, set to -EBUSY if
457 * this tx is sitting on a dependency list
458 * @flags: flags to augment operation preparation, control completion, and
459 * communicate status
460 * @phys: physical address of the descriptor
461 * @chan: target channel for this operation
462 * @tx_submit: accept the descriptor, assign ordered cookie and mark the
463 * descriptor pending. To be pushed on .issue_pending() call
464 * @callback: routine to call after this operation is complete
465 * @callback_param: general parameter to pass to the callback routine
466 * ---async_tx api specific fields---
467 * @next: at completion submit this descriptor
468 * @parent: pointer to the next level up in the dependency chain
469 * @lock: protect the parent and next pointers
470 */
471 struct dma_async_tx_descriptor {
472 dma_cookie_t cookie;
473 enum dma_ctrl_flags flags; /* not a 'long' to pack with cookie */
474 dma_addr_t phys;
475 struct dma_chan *chan;
476 dma_cookie_t (*tx_submit)(struct dma_async_tx_descriptor *tx);
477 int (*desc_free)(struct dma_async_tx_descriptor *tx);
478 dma_async_tx_callback callback;
479 void *callback_param;
480 struct dmaengine_unmap_data *unmap;
481 #ifdef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
482 struct dma_async_tx_descriptor *next;
483 struct dma_async_tx_descriptor *parent;
484 spinlock_t lock;
485 #endif
486 };
487
488 #ifdef CONFIG_DMA_ENGINE
489 static inline void dma_set_unmap(struct dma_async_tx_descriptor *tx,
490 struct dmaengine_unmap_data *unmap)
491 {
492 kref_get(&unmap->kref);
493 tx->unmap = unmap;
494 }
495
496 struct dmaengine_unmap_data *
497 dmaengine_get_unmap_data(struct device *dev, int nr, gfp_t flags);
498 void dmaengine_unmap_put(struct dmaengine_unmap_data *unmap);
499 #else
500 static inline void dma_set_unmap(struct dma_async_tx_descriptor *tx,
501 struct dmaengine_unmap_data *unmap)
502 {
503 }
504 static inline struct dmaengine_unmap_data *
505 dmaengine_get_unmap_data(struct device *dev, int nr, gfp_t flags)
506 {
507 return NULL;
508 }
509 static inline void dmaengine_unmap_put(struct dmaengine_unmap_data *unmap)
510 {
511 }
512 #endif
513
514 static inline void dma_descriptor_unmap(struct dma_async_tx_descriptor *tx)
515 {
516 if (tx->unmap) {
517 dmaengine_unmap_put(tx->unmap);
518 tx->unmap = NULL;
519 }
520 }
521
522 #ifndef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
523 static inline void txd_lock(struct dma_async_tx_descriptor *txd)
524 {
525 }
526 static inline void txd_unlock(struct dma_async_tx_descriptor *txd)
527 {
528 }
529 static inline void txd_chain(struct dma_async_tx_descriptor *txd, struct dma_async_tx_descriptor *next)
530 {
531 BUG();
532 }
533 static inline void txd_clear_parent(struct dma_async_tx_descriptor *txd)
534 {
535 }
536 static inline void txd_clear_next(struct dma_async_tx_descriptor *txd)
537 {
538 }
539 static inline struct dma_async_tx_descriptor *txd_next(struct dma_async_tx_descriptor *txd)
540 {
541 return NULL;
542 }
543 static inline struct dma_async_tx_descriptor *txd_parent(struct dma_async_tx_descriptor *txd)
544 {
545 return NULL;
546 }
547
548 #else
549 static inline void txd_lock(struct dma_async_tx_descriptor *txd)
550 {
551 spin_lock_bh(&txd->lock);
552 }
553 static inline void txd_unlock(struct dma_async_tx_descriptor *txd)
554 {
555 spin_unlock_bh(&txd->lock);
556 }
557 static inline void txd_chain(struct dma_async_tx_descriptor *txd, struct dma_async_tx_descriptor *next)
558 {
559 txd->next = next;
560 next->parent = txd;
561 }
562 static inline void txd_clear_parent(struct dma_async_tx_descriptor *txd)
563 {
564 txd->parent = NULL;
565 }
566 static inline void txd_clear_next(struct dma_async_tx_descriptor *txd)
567 {
568 txd->next = NULL;
569 }
570 static inline struct dma_async_tx_descriptor *txd_parent(struct dma_async_tx_descriptor *txd)
571 {
572 return txd->parent;
573 }
574 static inline struct dma_async_tx_descriptor *txd_next(struct dma_async_tx_descriptor *txd)
575 {
576 return txd->next;
577 }
578 #endif
579
580 /**
581 * struct dma_tx_state - filled in to report the status of
582 * a transfer.
583 * @last: last completed DMA cookie
584 * @used: last issued DMA cookie (i.e. the one in progress)
585 * @residue: the remaining number of bytes left to transmit
586 * on the selected transfer for states DMA_IN_PROGRESS and
587 * DMA_PAUSED if this is implemented in the driver, else 0
588 */
589 struct dma_tx_state {
590 dma_cookie_t last;
591 dma_cookie_t used;
592 u32 residue;
593 };
594
595 /**
596 * enum dmaengine_alignment - defines alignment of the DMA async tx
597 * buffers
598 */
599 enum dmaengine_alignment {
600 DMAENGINE_ALIGN_1_BYTE = 0,
601 DMAENGINE_ALIGN_2_BYTES = 1,
602 DMAENGINE_ALIGN_4_BYTES = 2,
603 DMAENGINE_ALIGN_8_BYTES = 3,
604 DMAENGINE_ALIGN_16_BYTES = 4,
605 DMAENGINE_ALIGN_32_BYTES = 5,
606 DMAENGINE_ALIGN_64_BYTES = 6,
607 };
608
609 /**
610 * struct dma_slave_map - associates slave device and it's slave channel with
611 * parameter to be used by a filter function
612 * @devname: name of the device
613 * @slave: slave channel name
614 * @param: opaque parameter to pass to struct dma_filter.fn
615 */
616 struct dma_slave_map {
617 const char *devname;
618 const char *slave;
619 void *param;
620 };
621
622 /**
623 * struct dma_filter - information for slave device/channel to filter_fn/param
624 * mapping
625 * @fn: filter function callback
626 * @mapcnt: number of slave device/channel in the map
627 * @map: array of channel to filter mapping data
628 */
629 struct dma_filter {
630 dma_filter_fn fn;
631 int mapcnt;
632 const struct dma_slave_map *map;
633 };
634
635 /**
636 * struct dma_device - info on the entity supplying DMA services
637 * @chancnt: how many DMA channels are supported
638 * @privatecnt: how many DMA channels are requested by dma_request_channel
639 * @channels: the list of struct dma_chan
640 * @global_node: list_head for global dma_device_list
641 * @filter: information for device/slave to filter function/param mapping
642 * @cap_mask: one or more dma_capability flags
643 * @max_xor: maximum number of xor sources, 0 if no capability
644 * @max_pq: maximum number of PQ sources and PQ-continue capability
645 * @copy_align: alignment shift for memcpy operations
646 * @xor_align: alignment shift for xor operations
647 * @pq_align: alignment shift for pq operations
648 * @fill_align: alignment shift for memset operations
649 * @dev_id: unique device ID
650 * @dev: struct device reference for dma mapping api
651 * @src_addr_widths: bit mask of src addr widths the device supports
652 * @dst_addr_widths: bit mask of dst addr widths the device supports
653 * @directions: bit mask of slave direction the device supports since
654 * the enum dma_transfer_direction is not defined as bits for
655 * each type of direction, the dma controller should fill (1 <<
656 * <TYPE>) and same should be checked by controller as well
657 * @residue_granularity: granularity of the transfer residue reported
658 * by tx_status
659 * @device_alloc_chan_resources: allocate resources and return the
660 * number of allocated descriptors
661 * @device_free_chan_resources: release DMA channel's resources
662 * @device_prep_dma_memcpy: prepares a memcpy operation
663 * @device_prep_dma_xor: prepares a xor operation
664 * @device_prep_dma_xor_val: prepares a xor validation operation
665 * @device_prep_dma_pq: prepares a pq operation
666 * @device_prep_dma_pq_val: prepares a pqzero_sum operation
667 * @device_prep_dma_memset: prepares a memset operation
668 * @device_prep_dma_memset_sg: prepares a memset operation over a scatter list
669 * @device_prep_dma_interrupt: prepares an end of chain interrupt operation
670 * @device_prep_slave_sg: prepares a slave dma operation
671 * @device_prep_dma_cyclic: prepare a cyclic dma operation suitable for audio.
672 * The function takes a buffer of size buf_len. The callback function will
673 * be called after period_len bytes have been transferred.
674 * @device_prep_interleaved_dma: Transfer expression in a generic way.
675 * @device_prep_dma_imm_data: DMA's 8 byte immediate data to the dst address
676 * @device_config: Pushes a new configuration to a channel, return 0 or an error
677 * code
678 * @device_pause: Pauses any transfer happening on a channel. Returns
679 * 0 or an error code
680 * @device_resume: Resumes any transfer on a channel previously
681 * paused. Returns 0 or an error code
682 * @device_terminate_all: Aborts all transfers on a channel. Returns 0
683 * or an error code
684 * @device_synchronize: Synchronizes the termination of a transfers to the
685 * current context.
686 * @device_tx_status: poll for transaction completion, the optional
687 * txstate parameter can be supplied with a pointer to get a
688 * struct with auxiliary transfer status information, otherwise the call
689 * will just return a simple status code
690 * @device_issue_pending: push pending transactions to hardware
691 * @descriptor_reuse: a submitted transfer can be resubmitted after completion
692 */
693 struct dma_device {
694
695 unsigned int chancnt;
696 unsigned int privatecnt;
697 struct list_head channels;
698 struct list_head global_node;
699 struct dma_filter filter;
700 dma_cap_mask_t cap_mask;
701 unsigned short max_xor;
702 unsigned short max_pq;
703 enum dmaengine_alignment copy_align;
704 enum dmaengine_alignment xor_align;
705 enum dmaengine_alignment pq_align;
706 enum dmaengine_alignment fill_align;
707 #define DMA_HAS_PQ_CONTINUE (1 << 15)
708
709 int dev_id;
710 struct device *dev;
711
712 u32 src_addr_widths;
713 u32 dst_addr_widths;
714 u32 directions;
715 bool descriptor_reuse;
716 enum dma_residue_granularity residue_granularity;
717
718 int (*device_alloc_chan_resources)(struct dma_chan *chan);
719 void (*device_free_chan_resources)(struct dma_chan *chan);
720
721 struct dma_async_tx_descriptor *(*device_prep_dma_memcpy)(
722 struct dma_chan *chan, dma_addr_t dst, dma_addr_t src,
723 size_t len, unsigned long flags);
724 struct dma_async_tx_descriptor *(*device_prep_dma_xor)(
725 struct dma_chan *chan, dma_addr_t dst, dma_addr_t *src,
726 unsigned int src_cnt, size_t len, unsigned long flags);
727 struct dma_async_tx_descriptor *(*device_prep_dma_xor_val)(
728 struct dma_chan *chan, dma_addr_t *src, unsigned int src_cnt,
729 size_t len, enum sum_check_flags *result, unsigned long flags);
730 struct dma_async_tx_descriptor *(*device_prep_dma_pq)(
731 struct dma_chan *chan, dma_addr_t *dst, dma_addr_t *src,
732 unsigned int src_cnt, const unsigned char *scf,
733 size_t len, unsigned long flags);
734 struct dma_async_tx_descriptor *(*device_prep_dma_pq_val)(
735 struct dma_chan *chan, dma_addr_t *pq, dma_addr_t *src,
736 unsigned int src_cnt, const unsigned char *scf, size_t len,
737 enum sum_check_flags *pqres, unsigned long flags);
738 struct dma_async_tx_descriptor *(*device_prep_dma_memset)(
739 struct dma_chan *chan, dma_addr_t dest, int value, size_t len,
740 unsigned long flags);
741 struct dma_async_tx_descriptor *(*device_prep_dma_memset_sg)(
742 struct dma_chan *chan, struct scatterlist *sg,
743 unsigned int nents, int value, unsigned long flags);
744 struct dma_async_tx_descriptor *(*device_prep_dma_interrupt)(
745 struct dma_chan *chan, unsigned long flags);
746 struct dma_async_tx_descriptor *(*device_prep_dma_sg)(
747 struct dma_chan *chan,
748 struct scatterlist *dst_sg, unsigned int dst_nents,
749 struct scatterlist *src_sg, unsigned int src_nents,
750 unsigned long flags);
751
752 struct dma_async_tx_descriptor *(*device_prep_slave_sg)(
753 struct dma_chan *chan, struct scatterlist *sgl,
754 unsigned int sg_len, enum dma_transfer_direction direction,
755 unsigned long flags, void *context);
756 struct dma_async_tx_descriptor *(*device_prep_dma_cyclic)(
757 struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
758 size_t period_len, enum dma_transfer_direction direction,
759 unsigned long flags);
760 struct dma_async_tx_descriptor *(*device_prep_interleaved_dma)(
761 struct dma_chan *chan, struct dma_interleaved_template *xt,
762 unsigned long flags);
763 struct dma_async_tx_descriptor *(*device_prep_dma_imm_data)(
764 struct dma_chan *chan, dma_addr_t dst, u64 data,
765 unsigned long flags);
766
767 int (*device_config)(struct dma_chan *chan,
768 struct dma_slave_config *config);
769 int (*device_pause)(struct dma_chan *chan);
770 int (*device_resume)(struct dma_chan *chan);
771 int (*device_terminate_all)(struct dma_chan *chan);
772 void (*device_synchronize)(struct dma_chan *chan);
773
774 enum dma_status (*device_tx_status)(struct dma_chan *chan,
775 dma_cookie_t cookie,
776 struct dma_tx_state *txstate);
777 void (*device_issue_pending)(struct dma_chan *chan);
778 };
779
780 static inline int dmaengine_slave_config(struct dma_chan *chan,
781 struct dma_slave_config *config)
782 {
783 if (chan->device->device_config)
784 return chan->device->device_config(chan, config);
785
786 return -ENOSYS;
787 }
788
789 static inline bool is_slave_direction(enum dma_transfer_direction direction)
790 {
791 return (direction == DMA_MEM_TO_DEV) || (direction == DMA_DEV_TO_MEM);
792 }
793
794 static inline struct dma_async_tx_descriptor *dmaengine_prep_slave_single(
795 struct dma_chan *chan, dma_addr_t buf, size_t len,
796 enum dma_transfer_direction dir, unsigned long flags)
797 {
798 struct scatterlist sg;
799 sg_init_table(&sg, 1);
800 sg_dma_address(&sg) = buf;
801 sg_dma_len(&sg) = len;
802
803 return chan->device->device_prep_slave_sg(chan, &sg, 1,
804 dir, flags, NULL);
805 }
806
807 static inline struct dma_async_tx_descriptor *dmaengine_prep_slave_sg(
808 struct dma_chan *chan, struct scatterlist *sgl, unsigned int sg_len,
809 enum dma_transfer_direction dir, unsigned long flags)
810 {
811 return chan->device->device_prep_slave_sg(chan, sgl, sg_len,
812 dir, flags, NULL);
813 }
814
815 #ifdef CONFIG_RAPIDIO_DMA_ENGINE
816 struct rio_dma_ext;
817 static inline struct dma_async_tx_descriptor *dmaengine_prep_rio_sg(
818 struct dma_chan *chan, struct scatterlist *sgl, unsigned int sg_len,
819 enum dma_transfer_direction dir, unsigned long flags,
820 struct rio_dma_ext *rio_ext)
821 {
822 return chan->device->device_prep_slave_sg(chan, sgl, sg_len,
823 dir, flags, rio_ext);
824 }
825 #endif
826
827 static inline struct dma_async_tx_descriptor *dmaengine_prep_dma_cyclic(
828 struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
829 size_t period_len, enum dma_transfer_direction dir,
830 unsigned long flags)
831 {
832 return chan->device->device_prep_dma_cyclic(chan, buf_addr, buf_len,
833 period_len, dir, flags);
834 }
835
836 static inline struct dma_async_tx_descriptor *dmaengine_prep_interleaved_dma(
837 struct dma_chan *chan, struct dma_interleaved_template *xt,
838 unsigned long flags)
839 {
840 return chan->device->device_prep_interleaved_dma(chan, xt, flags);
841 }
842
843 static inline struct dma_async_tx_descriptor *dmaengine_prep_dma_memset(
844 struct dma_chan *chan, dma_addr_t dest, int value, size_t len,
845 unsigned long flags)
846 {
847 if (!chan || !chan->device)
848 return NULL;
849
850 return chan->device->device_prep_dma_memset(chan, dest, value,
851 len, flags);
852 }
853
854 static inline struct dma_async_tx_descriptor *dmaengine_prep_dma_sg(
855 struct dma_chan *chan,
856 struct scatterlist *dst_sg, unsigned int dst_nents,
857 struct scatterlist *src_sg, unsigned int src_nents,
858 unsigned long flags)
859 {
860 return chan->device->device_prep_dma_sg(chan, dst_sg, dst_nents,
861 src_sg, src_nents, flags);
862 }
863
864 /**
865 * dmaengine_terminate_all() - Terminate all active DMA transfers
866 * @chan: The channel for which to terminate the transfers
867 *
868 * This function is DEPRECATED use either dmaengine_terminate_sync() or
869 * dmaengine_terminate_async() instead.
870 */
871 static inline int dmaengine_terminate_all(struct dma_chan *chan)
872 {
873 if (chan->device->device_terminate_all)
874 return chan->device->device_terminate_all(chan);
875
876 return -ENOSYS;
877 }
878
879 /**
880 * dmaengine_terminate_async() - Terminate all active DMA transfers
881 * @chan: The channel for which to terminate the transfers
882 *
883 * Calling this function will terminate all active and pending descriptors
884 * that have previously been submitted to the channel. It is not guaranteed
885 * though that the transfer for the active descriptor has stopped when the
886 * function returns. Furthermore it is possible the complete callback of a
887 * submitted transfer is still running when this function returns.
888 *
889 * dmaengine_synchronize() needs to be called before it is safe to free
890 * any memory that is accessed by previously submitted descriptors or before
891 * freeing any resources accessed from within the completion callback of any
892 * perviously submitted descriptors.
893 *
894 * This function can be called from atomic context as well as from within a
895 * complete callback of a descriptor submitted on the same channel.
896 *
897 * If none of the two conditions above apply consider using
898 * dmaengine_terminate_sync() instead.
899 */
900 static inline int dmaengine_terminate_async(struct dma_chan *chan)
901 {
902 if (chan->device->device_terminate_all)
903 return chan->device->device_terminate_all(chan);
904
905 return -EINVAL;
906 }
907
908 /**
909 * dmaengine_synchronize() - Synchronize DMA channel termination
910 * @chan: The channel to synchronize
911 *
912 * Synchronizes to the DMA channel termination to the current context. When this
913 * function returns it is guaranteed that all transfers for previously issued
914 * descriptors have stopped and and it is safe to free the memory assoicated
915 * with them. Furthermore it is guaranteed that all complete callback functions
916 * for a previously submitted descriptor have finished running and it is safe to
917 * free resources accessed from within the complete callbacks.
918 *
919 * The behavior of this function is undefined if dma_async_issue_pending() has
920 * been called between dmaengine_terminate_async() and this function.
921 *
922 * This function must only be called from non-atomic context and must not be
923 * called from within a complete callback of a descriptor submitted on the same
924 * channel.
925 */
926 static inline void dmaengine_synchronize(struct dma_chan *chan)
927 {
928 might_sleep();
929
930 if (chan->device->device_synchronize)
931 chan->device->device_synchronize(chan);
932 }
933
934 /**
935 * dmaengine_terminate_sync() - Terminate all active DMA transfers
936 * @chan: The channel for which to terminate the transfers
937 *
938 * Calling this function will terminate all active and pending transfers
939 * that have previously been submitted to the channel. It is similar to
940 * dmaengine_terminate_async() but guarantees that the DMA transfer has actually
941 * stopped and that all complete callbacks have finished running when the
942 * function returns.
943 *
944 * This function must only be called from non-atomic context and must not be
945 * called from within a complete callback of a descriptor submitted on the same
946 * channel.
947 */
948 static inline int dmaengine_terminate_sync(struct dma_chan *chan)
949 {
950 int ret;
951
952 ret = dmaengine_terminate_async(chan);
953 if (ret)
954 return ret;
955
956 dmaengine_synchronize(chan);
957
958 return 0;
959 }
960
961 static inline int dmaengine_pause(struct dma_chan *chan)
962 {
963 if (chan->device->device_pause)
964 return chan->device->device_pause(chan);
965
966 return -ENOSYS;
967 }
968
969 static inline int dmaengine_resume(struct dma_chan *chan)
970 {
971 if (chan->device->device_resume)
972 return chan->device->device_resume(chan);
973
974 return -ENOSYS;
975 }
976
977 static inline enum dma_status dmaengine_tx_status(struct dma_chan *chan,
978 dma_cookie_t cookie, struct dma_tx_state *state)
979 {
980 return chan->device->device_tx_status(chan, cookie, state);
981 }
982
983 static inline dma_cookie_t dmaengine_submit(struct dma_async_tx_descriptor *desc)
984 {
985 return desc->tx_submit(desc);
986 }
987
988 static inline bool dmaengine_check_align(enum dmaengine_alignment align,
989 size_t off1, size_t off2, size_t len)
990 {
991 size_t mask;
992
993 if (!align)
994 return true;
995 mask = (1 << align) - 1;
996 if (mask & (off1 | off2 | len))
997 return false;
998 return true;
999 }
1000
1001 static inline bool is_dma_copy_aligned(struct dma_device *dev, size_t off1,
1002 size_t off2, size_t len)
1003 {
1004 return dmaengine_check_align(dev->copy_align, off1, off2, len);
1005 }
1006
1007 static inline bool is_dma_xor_aligned(struct dma_device *dev, size_t off1,
1008 size_t off2, size_t len)
1009 {
1010 return dmaengine_check_align(dev->xor_align, off1, off2, len);
1011 }
1012
1013 static inline bool is_dma_pq_aligned(struct dma_device *dev, size_t off1,
1014 size_t off2, size_t len)
1015 {
1016 return dmaengine_check_align(dev->pq_align, off1, off2, len);
1017 }
1018
1019 static inline bool is_dma_fill_aligned(struct dma_device *dev, size_t off1,
1020 size_t off2, size_t len)
1021 {
1022 return dmaengine_check_align(dev->fill_align, off1, off2, len);
1023 }
1024
1025 static inline void
1026 dma_set_maxpq(struct dma_device *dma, int maxpq, int has_pq_continue)
1027 {
1028 dma->max_pq = maxpq;
1029 if (has_pq_continue)
1030 dma->max_pq |= DMA_HAS_PQ_CONTINUE;
1031 }
1032
1033 static inline bool dmaf_continue(enum dma_ctrl_flags flags)
1034 {
1035 return (flags & DMA_PREP_CONTINUE) == DMA_PREP_CONTINUE;
1036 }
1037
1038 static inline bool dmaf_p_disabled_continue(enum dma_ctrl_flags flags)
1039 {
1040 enum dma_ctrl_flags mask = DMA_PREP_CONTINUE | DMA_PREP_PQ_DISABLE_P;
1041
1042 return (flags & mask) == mask;
1043 }
1044
1045 static inline bool dma_dev_has_pq_continue(struct dma_device *dma)
1046 {
1047 return (dma->max_pq & DMA_HAS_PQ_CONTINUE) == DMA_HAS_PQ_CONTINUE;
1048 }
1049
1050 static inline unsigned short dma_dev_to_maxpq(struct dma_device *dma)
1051 {
1052 return dma->max_pq & ~DMA_HAS_PQ_CONTINUE;
1053 }
1054
1055 /* dma_maxpq - reduce maxpq in the face of continued operations
1056 * @dma - dma device with PQ capability
1057 * @flags - to check if DMA_PREP_CONTINUE and DMA_PREP_PQ_DISABLE_P are set
1058 *
1059 * When an engine does not support native continuation we need 3 extra
1060 * source slots to reuse P and Q with the following coefficients:
1061 * 1/ {00} * P : remove P from Q', but use it as a source for P'
1062 * 2/ {01} * Q : use Q to continue Q' calculation
1063 * 3/ {00} * Q : subtract Q from P' to cancel (2)
1064 *
1065 * In the case where P is disabled we only need 1 extra source:
1066 * 1/ {01} * Q : use Q to continue Q' calculation
1067 */
1068 static inline int dma_maxpq(struct dma_device *dma, enum dma_ctrl_flags flags)
1069 {
1070 if (dma_dev_has_pq_continue(dma) || !dmaf_continue(flags))
1071 return dma_dev_to_maxpq(dma);
1072 else if (dmaf_p_disabled_continue(flags))
1073 return dma_dev_to_maxpq(dma) - 1;
1074 else if (dmaf_continue(flags))
1075 return dma_dev_to_maxpq(dma) - 3;
1076 BUG();
1077 }
1078
1079 static inline size_t dmaengine_get_icg(bool inc, bool sgl, size_t icg,
1080 size_t dir_icg)
1081 {
1082 if (inc) {
1083 if (dir_icg)
1084 return dir_icg;
1085 else if (sgl)
1086 return icg;
1087 }
1088
1089 return 0;
1090 }
1091
1092 static inline size_t dmaengine_get_dst_icg(struct dma_interleaved_template *xt,
1093 struct data_chunk *chunk)
1094 {
1095 return dmaengine_get_icg(xt->dst_inc, xt->dst_sgl,
1096 chunk->icg, chunk->dst_icg);
1097 }
1098
1099 static inline size_t dmaengine_get_src_icg(struct dma_interleaved_template *xt,
1100 struct data_chunk *chunk)
1101 {
1102 return dmaengine_get_icg(xt->src_inc, xt->src_sgl,
1103 chunk->icg, chunk->src_icg);
1104 }
1105
1106 /* --- public DMA engine API --- */
1107
1108 #ifdef CONFIG_DMA_ENGINE
1109 void dmaengine_get(void);
1110 void dmaengine_put(void);
1111 #else
1112 static inline void dmaengine_get(void)
1113 {
1114 }
1115 static inline void dmaengine_put(void)
1116 {
1117 }
1118 #endif
1119
1120 #ifdef CONFIG_ASYNC_TX_DMA
1121 #define async_dmaengine_get() dmaengine_get()
1122 #define async_dmaengine_put() dmaengine_put()
1123 #ifndef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
1124 #define async_dma_find_channel(type) dma_find_channel(DMA_ASYNC_TX)
1125 #else
1126 #define async_dma_find_channel(type) dma_find_channel(type)
1127 #endif /* CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH */
1128 #else
1129 static inline void async_dmaengine_get(void)
1130 {
1131 }
1132 static inline void async_dmaengine_put(void)
1133 {
1134 }
1135 static inline struct dma_chan *
1136 async_dma_find_channel(enum dma_transaction_type type)
1137 {
1138 return NULL;
1139 }
1140 #endif /* CONFIG_ASYNC_TX_DMA */
1141 void dma_async_tx_descriptor_init(struct dma_async_tx_descriptor *tx,
1142 struct dma_chan *chan);
1143
1144 static inline void async_tx_ack(struct dma_async_tx_descriptor *tx)
1145 {
1146 tx->flags |= DMA_CTRL_ACK;
1147 }
1148
1149 static inline void async_tx_clear_ack(struct dma_async_tx_descriptor *tx)
1150 {
1151 tx->flags &= ~DMA_CTRL_ACK;
1152 }
1153
1154 static inline bool async_tx_test_ack(struct dma_async_tx_descriptor *tx)
1155 {
1156 return (tx->flags & DMA_CTRL_ACK) == DMA_CTRL_ACK;
1157 }
1158
1159 #define dma_cap_set(tx, mask) __dma_cap_set((tx), &(mask))
1160 static inline void
1161 __dma_cap_set(enum dma_transaction_type tx_type, dma_cap_mask_t *dstp)
1162 {
1163 set_bit(tx_type, dstp->bits);
1164 }
1165
1166 #define dma_cap_clear(tx, mask) __dma_cap_clear((tx), &(mask))
1167 static inline void
1168 __dma_cap_clear(enum dma_transaction_type tx_type, dma_cap_mask_t *dstp)
1169 {
1170 clear_bit(tx_type, dstp->bits);
1171 }
1172
1173 #define dma_cap_zero(mask) __dma_cap_zero(&(mask))
1174 static inline void __dma_cap_zero(dma_cap_mask_t *dstp)
1175 {
1176 bitmap_zero(dstp->bits, DMA_TX_TYPE_END);
1177 }
1178
1179 #define dma_has_cap(tx, mask) __dma_has_cap((tx), &(mask))
1180 static inline int
1181 __dma_has_cap(enum dma_transaction_type tx_type, dma_cap_mask_t *srcp)
1182 {
1183 return test_bit(tx_type, srcp->bits);
1184 }
1185
1186 #define for_each_dma_cap_mask(cap, mask) \
1187 for_each_set_bit(cap, mask.bits, DMA_TX_TYPE_END)
1188
1189 /**
1190 * dma_async_issue_pending - flush pending transactions to HW
1191 * @chan: target DMA channel
1192 *
1193 * This allows drivers to push copies to HW in batches,
1194 * reducing MMIO writes where possible.
1195 */
1196 static inline void dma_async_issue_pending(struct dma_chan *chan)
1197 {
1198 chan->device->device_issue_pending(chan);
1199 }
1200
1201 /**
1202 * dma_async_is_tx_complete - poll for transaction completion
1203 * @chan: DMA channel
1204 * @cookie: transaction identifier to check status of
1205 * @last: returns last completed cookie, can be NULL
1206 * @used: returns last issued cookie, can be NULL
1207 *
1208 * If @last and @used are passed in, upon return they reflect the driver
1209 * internal state and can be used with dma_async_is_complete() to check
1210 * the status of multiple cookies without re-checking hardware state.
1211 */
1212 static inline enum dma_status dma_async_is_tx_complete(struct dma_chan *chan,
1213 dma_cookie_t cookie, dma_cookie_t *last, dma_cookie_t *used)
1214 {
1215 struct dma_tx_state state;
1216 enum dma_status status;
1217
1218 status = chan->device->device_tx_status(chan, cookie, &state);
1219 if (last)
1220 *last = state.last;
1221 if (used)
1222 *used = state.used;
1223 return status;
1224 }
1225
1226 /**
1227 * dma_async_is_complete - test a cookie against chan state
1228 * @cookie: transaction identifier to test status of
1229 * @last_complete: last know completed transaction
1230 * @last_used: last cookie value handed out
1231 *
1232 * dma_async_is_complete() is used in dma_async_is_tx_complete()
1233 * the test logic is separated for lightweight testing of multiple cookies
1234 */
1235 static inline enum dma_status dma_async_is_complete(dma_cookie_t cookie,
1236 dma_cookie_t last_complete, dma_cookie_t last_used)
1237 {
1238 if (last_complete <= last_used) {
1239 if ((cookie <= last_complete) || (cookie > last_used))
1240 return DMA_COMPLETE;
1241 } else {
1242 if ((cookie <= last_complete) && (cookie > last_used))
1243 return DMA_COMPLETE;
1244 }
1245 return DMA_IN_PROGRESS;
1246 }
1247
1248 static inline void
1249 dma_set_tx_state(struct dma_tx_state *st, dma_cookie_t last, dma_cookie_t used, u32 residue)
1250 {
1251 if (st) {
1252 st->last = last;
1253 st->used = used;
1254 st->residue = residue;
1255 }
1256 }
1257
1258 #ifdef CONFIG_DMA_ENGINE
1259 struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type);
1260 enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie);
1261 enum dma_status dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx);
1262 void dma_issue_pending_all(void);
1263 struct dma_chan *__dma_request_channel(const dma_cap_mask_t *mask,
1264 dma_filter_fn fn, void *fn_param);
1265 struct dma_chan *dma_request_slave_channel(struct device *dev, const char *name);
1266
1267 struct dma_chan *dma_request_chan(struct device *dev, const char *name);
1268 struct dma_chan *dma_request_chan_by_mask(const dma_cap_mask_t *mask);
1269
1270 void dma_release_channel(struct dma_chan *chan);
1271 int dma_get_slave_caps(struct dma_chan *chan, struct dma_slave_caps *caps);
1272 #else
1273 static inline struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type)
1274 {
1275 return NULL;
1276 }
1277 static inline enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie)
1278 {
1279 return DMA_COMPLETE;
1280 }
1281 static inline enum dma_status dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx)
1282 {
1283 return DMA_COMPLETE;
1284 }
1285 static inline void dma_issue_pending_all(void)
1286 {
1287 }
1288 static inline struct dma_chan *__dma_request_channel(const dma_cap_mask_t *mask,
1289 dma_filter_fn fn, void *fn_param)
1290 {
1291 return NULL;
1292 }
1293 static inline struct dma_chan *dma_request_slave_channel(struct device *dev,
1294 const char *name)
1295 {
1296 return NULL;
1297 }
1298 static inline struct dma_chan *dma_request_chan(struct device *dev,
1299 const char *name)
1300 {
1301 return ERR_PTR(-ENODEV);
1302 }
1303 static inline struct dma_chan *dma_request_chan_by_mask(
1304 const dma_cap_mask_t *mask)
1305 {
1306 return ERR_PTR(-ENODEV);
1307 }
1308 static inline void dma_release_channel(struct dma_chan *chan)
1309 {
1310 }
1311 static inline int dma_get_slave_caps(struct dma_chan *chan,
1312 struct dma_slave_caps *caps)
1313 {
1314 return -ENXIO;
1315 }
1316 #endif
1317
1318 #define dma_request_slave_channel_reason(dev, name) dma_request_chan(dev, name)
1319
1320 static inline int dmaengine_desc_set_reuse(struct dma_async_tx_descriptor *tx)
1321 {
1322 struct dma_slave_caps caps;
1323
1324 dma_get_slave_caps(tx->chan, &caps);
1325
1326 if (caps.descriptor_reuse) {
1327 tx->flags |= DMA_CTRL_REUSE;
1328 return 0;
1329 } else {
1330 return -EPERM;
1331 }
1332 }
1333
1334 static inline void dmaengine_desc_clear_reuse(struct dma_async_tx_descriptor *tx)
1335 {
1336 tx->flags &= ~DMA_CTRL_REUSE;
1337 }
1338
1339 static inline bool dmaengine_desc_test_reuse(struct dma_async_tx_descriptor *tx)
1340 {
1341 return (tx->flags & DMA_CTRL_REUSE) == DMA_CTRL_REUSE;
1342 }
1343
1344 static inline int dmaengine_desc_free(struct dma_async_tx_descriptor *desc)
1345 {
1346 /* this is supported for reusable desc, so check that */
1347 if (dmaengine_desc_test_reuse(desc))
1348 return desc->desc_free(desc);
1349 else
1350 return -EPERM;
1351 }
1352
1353 /* --- DMA device --- */
1354
1355 int dma_async_device_register(struct dma_device *device);
1356 void dma_async_device_unregister(struct dma_device *device);
1357 void dma_run_dependencies(struct dma_async_tx_descriptor *tx);
1358 struct dma_chan *dma_get_slave_channel(struct dma_chan *chan);
1359 struct dma_chan *dma_get_any_slave_channel(struct dma_device *device);
1360 #define dma_request_channel(mask, x, y) __dma_request_channel(&(mask), x, y)
1361 #define dma_request_slave_channel_compat(mask, x, y, dev, name) \
1362 __dma_request_slave_channel_compat(&(mask), x, y, dev, name)
1363
1364 static inline struct dma_chan
1365 *__dma_request_slave_channel_compat(const dma_cap_mask_t *mask,
1366 dma_filter_fn fn, void *fn_param,
1367 struct device *dev, const char *name)
1368 {
1369 struct dma_chan *chan;
1370
1371 chan = dma_request_slave_channel(dev, name);
1372 if (chan)
1373 return chan;
1374
1375 if (!fn || !fn_param)
1376 return NULL;
1377
1378 return __dma_request_channel(mask, fn, fn_param);
1379 }
1380 #endif /* DMAENGINE_H */
This page took 0.127668 seconds and 5 git commands to generate.