7e640bf27d2d86cf65c08946988519505d3a6896
[deliverable/linux.git] / include / linux / dmaengine.h
1 /*
2 * Copyright(c) 2004 - 2006 Intel Corporation. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms of the GNU General Public License as published by the Free
6 * Software Foundation; either version 2 of the License, or (at your option)
7 * any later version.
8 *
9 * This program is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
13 *
14 * You should have received a copy of the GNU General Public License along with
15 * this program; if not, write to the Free Software Foundation, Inc., 59
16 * Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17 *
18 * The full GNU General Public License is included in this distribution in the
19 * file called COPYING.
20 */
21 #ifndef DMAENGINE_H
22 #define DMAENGINE_H
23
24 #include <linux/device.h>
25 #include <linux/uio.h>
26 #include <linux/scatterlist.h>
27 #include <linux/bitmap.h>
28 #include <linux/types.h>
29 #include <asm/page.h>
30
31 /**
32 * typedef dma_cookie_t - an opaque DMA cookie
33 *
34 * if dma_cookie_t is >0 it's a DMA request cookie, <0 it's an error code
35 */
36 typedef s32 dma_cookie_t;
37 #define DMA_MIN_COOKIE 1
38 #define DMA_MAX_COOKIE INT_MAX
39
40 #define dma_submit_error(cookie) ((cookie) < 0 ? 1 : 0)
41
42 /**
43 * enum dma_status - DMA transaction status
44 * @DMA_SUCCESS: transaction completed successfully
45 * @DMA_IN_PROGRESS: transaction not yet processed
46 * @DMA_PAUSED: transaction is paused
47 * @DMA_ERROR: transaction failed
48 */
49 enum dma_status {
50 DMA_SUCCESS,
51 DMA_IN_PROGRESS,
52 DMA_PAUSED,
53 DMA_ERROR,
54 };
55
56 /**
57 * enum dma_transaction_type - DMA transaction types/indexes
58 *
59 * Note: The DMA_ASYNC_TX capability is not to be set by drivers. It is
60 * automatically set as dma devices are registered.
61 */
62 enum dma_transaction_type {
63 DMA_MEMCPY,
64 DMA_XOR,
65 DMA_PQ,
66 DMA_XOR_VAL,
67 DMA_PQ_VAL,
68 DMA_MEMSET,
69 DMA_INTERRUPT,
70 DMA_SG,
71 DMA_PRIVATE,
72 DMA_ASYNC_TX,
73 DMA_SLAVE,
74 DMA_CYCLIC,
75 DMA_INTERLEAVE,
76 /* last transaction type for creation of the capabilities mask */
77 DMA_TX_TYPE_END,
78 };
79
80 /**
81 * enum dma_transfer_direction - dma transfer mode and direction indicator
82 * @DMA_MEM_TO_MEM: Async/Memcpy mode
83 * @DMA_MEM_TO_DEV: Slave mode & From Memory to Device
84 * @DMA_DEV_TO_MEM: Slave mode & From Device to Memory
85 * @DMA_DEV_TO_DEV: Slave mode & From Device to Device
86 */
87 enum dma_transfer_direction {
88 DMA_MEM_TO_MEM,
89 DMA_MEM_TO_DEV,
90 DMA_DEV_TO_MEM,
91 DMA_DEV_TO_DEV,
92 DMA_TRANS_NONE,
93 };
94
95 /**
96 * Interleaved Transfer Request
97 * ----------------------------
98 * A chunk is collection of contiguous bytes to be transfered.
99 * The gap(in bytes) between two chunks is called inter-chunk-gap(ICG).
100 * ICGs may or maynot change between chunks.
101 * A FRAME is the smallest series of contiguous {chunk,icg} pairs,
102 * that when repeated an integral number of times, specifies the transfer.
103 * A transfer template is specification of a Frame, the number of times
104 * it is to be repeated and other per-transfer attributes.
105 *
106 * Practically, a client driver would have ready a template for each
107 * type of transfer it is going to need during its lifetime and
108 * set only 'src_start' and 'dst_start' before submitting the requests.
109 *
110 *
111 * | Frame-1 | Frame-2 | ~ | Frame-'numf' |
112 * |====....==.===...=...|====....==.===...=...| ~ |====....==.===...=...|
113 *
114 * == Chunk size
115 * ... ICG
116 */
117
118 /**
119 * struct data_chunk - Element of scatter-gather list that makes a frame.
120 * @size: Number of bytes to read from source.
121 * size_dst := fn(op, size_src), so doesn't mean much for destination.
122 * @icg: Number of bytes to jump after last src/dst address of this
123 * chunk and before first src/dst address for next chunk.
124 * Ignored for dst(assumed 0), if dst_inc is true and dst_sgl is false.
125 * Ignored for src(assumed 0), if src_inc is true and src_sgl is false.
126 */
127 struct data_chunk {
128 size_t size;
129 size_t icg;
130 };
131
132 /**
133 * struct dma_interleaved_template - Template to convey DMAC the transfer pattern
134 * and attributes.
135 * @src_start: Bus address of source for the first chunk.
136 * @dst_start: Bus address of destination for the first chunk.
137 * @dir: Specifies the type of Source and Destination.
138 * @src_inc: If the source address increments after reading from it.
139 * @dst_inc: If the destination address increments after writing to it.
140 * @src_sgl: If the 'icg' of sgl[] applies to Source (scattered read).
141 * Otherwise, source is read contiguously (icg ignored).
142 * Ignored if src_inc is false.
143 * @dst_sgl: If the 'icg' of sgl[] applies to Destination (scattered write).
144 * Otherwise, destination is filled contiguously (icg ignored).
145 * Ignored if dst_inc is false.
146 * @numf: Number of frames in this template.
147 * @frame_size: Number of chunks in a frame i.e, size of sgl[].
148 * @sgl: Array of {chunk,icg} pairs that make up a frame.
149 */
150 struct dma_interleaved_template {
151 dma_addr_t src_start;
152 dma_addr_t dst_start;
153 enum dma_transfer_direction dir;
154 bool src_inc;
155 bool dst_inc;
156 bool src_sgl;
157 bool dst_sgl;
158 size_t numf;
159 size_t frame_size;
160 struct data_chunk sgl[0];
161 };
162
163 /**
164 * enum dma_ctrl_flags - DMA flags to augment operation preparation,
165 * control completion, and communicate status.
166 * @DMA_PREP_INTERRUPT - trigger an interrupt (callback) upon completion of
167 * this transaction
168 * @DMA_CTRL_ACK - if clear, the descriptor cannot be reused until the client
169 * acknowledges receipt, i.e. has has a chance to establish any dependency
170 * chains
171 * @DMA_COMPL_SKIP_SRC_UNMAP - set to disable dma-unmapping the source buffer(s)
172 * @DMA_COMPL_SKIP_DEST_UNMAP - set to disable dma-unmapping the destination(s)
173 * @DMA_COMPL_SRC_UNMAP_SINGLE - set to do the source dma-unmapping as single
174 * (if not set, do the source dma-unmapping as page)
175 * @DMA_COMPL_DEST_UNMAP_SINGLE - set to do the destination dma-unmapping as single
176 * (if not set, do the destination dma-unmapping as page)
177 * @DMA_PREP_PQ_DISABLE_P - prevent generation of P while generating Q
178 * @DMA_PREP_PQ_DISABLE_Q - prevent generation of Q while generating P
179 * @DMA_PREP_CONTINUE - indicate to a driver that it is reusing buffers as
180 * sources that were the result of a previous operation, in the case of a PQ
181 * operation it continues the calculation with new sources
182 * @DMA_PREP_FENCE - tell the driver that subsequent operations depend
183 * on the result of this operation
184 */
185 enum dma_ctrl_flags {
186 DMA_PREP_INTERRUPT = (1 << 0),
187 DMA_CTRL_ACK = (1 << 1),
188 DMA_COMPL_SKIP_SRC_UNMAP = (1 << 2),
189 DMA_COMPL_SKIP_DEST_UNMAP = (1 << 3),
190 DMA_COMPL_SRC_UNMAP_SINGLE = (1 << 4),
191 DMA_COMPL_DEST_UNMAP_SINGLE = (1 << 5),
192 DMA_PREP_PQ_DISABLE_P = (1 << 6),
193 DMA_PREP_PQ_DISABLE_Q = (1 << 7),
194 DMA_PREP_CONTINUE = (1 << 8),
195 DMA_PREP_FENCE = (1 << 9),
196 };
197
198 /**
199 * enum dma_ctrl_cmd - DMA operations that can optionally be exercised
200 * on a running channel.
201 * @DMA_TERMINATE_ALL: terminate all ongoing transfers
202 * @DMA_PAUSE: pause ongoing transfers
203 * @DMA_RESUME: resume paused transfer
204 * @DMA_SLAVE_CONFIG: this command is only implemented by DMA controllers
205 * that need to runtime reconfigure the slave channels (as opposed to passing
206 * configuration data in statically from the platform). An additional
207 * argument of struct dma_slave_config must be passed in with this
208 * command.
209 * @FSLDMA_EXTERNAL_START: this command will put the Freescale DMA controller
210 * into external start mode.
211 */
212 enum dma_ctrl_cmd {
213 DMA_TERMINATE_ALL,
214 DMA_PAUSE,
215 DMA_RESUME,
216 DMA_SLAVE_CONFIG,
217 FSLDMA_EXTERNAL_START,
218 };
219
220 /**
221 * enum sum_check_bits - bit position of pq_check_flags
222 */
223 enum sum_check_bits {
224 SUM_CHECK_P = 0,
225 SUM_CHECK_Q = 1,
226 };
227
228 /**
229 * enum pq_check_flags - result of async_{xor,pq}_zero_sum operations
230 * @SUM_CHECK_P_RESULT - 1 if xor zero sum error, 0 otherwise
231 * @SUM_CHECK_Q_RESULT - 1 if reed-solomon zero sum error, 0 otherwise
232 */
233 enum sum_check_flags {
234 SUM_CHECK_P_RESULT = (1 << SUM_CHECK_P),
235 SUM_CHECK_Q_RESULT = (1 << SUM_CHECK_Q),
236 };
237
238
239 /**
240 * dma_cap_mask_t - capabilities bitmap modeled after cpumask_t.
241 * See linux/cpumask.h
242 */
243 typedef struct { DECLARE_BITMAP(bits, DMA_TX_TYPE_END); } dma_cap_mask_t;
244
245 /**
246 * struct dma_chan_percpu - the per-CPU part of struct dma_chan
247 * @memcpy_count: transaction counter
248 * @bytes_transferred: byte counter
249 */
250
251 struct dma_chan_percpu {
252 /* stats */
253 unsigned long memcpy_count;
254 unsigned long bytes_transferred;
255 };
256
257 /**
258 * struct dma_chan - devices supply DMA channels, clients use them
259 * @device: ptr to the dma device who supplies this channel, always !%NULL
260 * @cookie: last cookie value returned to client
261 * @chan_id: channel ID for sysfs
262 * @dev: class device for sysfs
263 * @device_node: used to add this to the device chan list
264 * @local: per-cpu pointer to a struct dma_chan_percpu
265 * @client-count: how many clients are using this channel
266 * @table_count: number of appearances in the mem-to-mem allocation table
267 * @private: private data for certain client-channel associations
268 */
269 struct dma_chan {
270 struct dma_device *device;
271 dma_cookie_t cookie;
272
273 /* sysfs */
274 int chan_id;
275 struct dma_chan_dev *dev;
276
277 struct list_head device_node;
278 struct dma_chan_percpu __percpu *local;
279 int client_count;
280 int table_count;
281 void *private;
282 };
283
284 /**
285 * struct dma_chan_dev - relate sysfs device node to backing channel device
286 * @chan - driver channel device
287 * @device - sysfs device
288 * @dev_id - parent dma_device dev_id
289 * @idr_ref - reference count to gate release of dma_device dev_id
290 */
291 struct dma_chan_dev {
292 struct dma_chan *chan;
293 struct device device;
294 int dev_id;
295 atomic_t *idr_ref;
296 };
297
298 /**
299 * enum dma_slave_buswidth - defines bus with of the DMA slave
300 * device, source or target buses
301 */
302 enum dma_slave_buswidth {
303 DMA_SLAVE_BUSWIDTH_UNDEFINED = 0,
304 DMA_SLAVE_BUSWIDTH_1_BYTE = 1,
305 DMA_SLAVE_BUSWIDTH_2_BYTES = 2,
306 DMA_SLAVE_BUSWIDTH_4_BYTES = 4,
307 DMA_SLAVE_BUSWIDTH_8_BYTES = 8,
308 };
309
310 /**
311 * struct dma_slave_config - dma slave channel runtime config
312 * @direction: whether the data shall go in or out on this slave
313 * channel, right now. DMA_TO_DEVICE and DMA_FROM_DEVICE are
314 * legal values, DMA_BIDIRECTIONAL is not acceptable since we
315 * need to differentiate source and target addresses.
316 * @src_addr: this is the physical address where DMA slave data
317 * should be read (RX), if the source is memory this argument is
318 * ignored.
319 * @dst_addr: this is the physical address where DMA slave data
320 * should be written (TX), if the source is memory this argument
321 * is ignored.
322 * @src_addr_width: this is the width in bytes of the source (RX)
323 * register where DMA data shall be read. If the source
324 * is memory this may be ignored depending on architecture.
325 * Legal values: 1, 2, 4, 8.
326 * @dst_addr_width: same as src_addr_width but for destination
327 * target (TX) mutatis mutandis.
328 * @src_maxburst: the maximum number of words (note: words, as in
329 * units of the src_addr_width member, not bytes) that can be sent
330 * in one burst to the device. Typically something like half the
331 * FIFO depth on I/O peripherals so you don't overflow it. This
332 * may or may not be applicable on memory sources.
333 * @dst_maxburst: same as src_maxburst but for destination target
334 * mutatis mutandis.
335 * @device_fc: Flow Controller Settings. Only valid for slave channels. Fill
336 * with 'true' if peripheral should be flow controller. Direction will be
337 * selected at Runtime.
338 *
339 * This struct is passed in as configuration data to a DMA engine
340 * in order to set up a certain channel for DMA transport at runtime.
341 * The DMA device/engine has to provide support for an additional
342 * command in the channel config interface, DMA_SLAVE_CONFIG
343 * and this struct will then be passed in as an argument to the
344 * DMA engine device_control() function.
345 *
346 * The rationale for adding configuration information to this struct
347 * is as follows: if it is likely that most DMA slave controllers in
348 * the world will support the configuration option, then make it
349 * generic. If not: if it is fixed so that it be sent in static from
350 * the platform data, then prefer to do that. Else, if it is neither
351 * fixed at runtime, nor generic enough (such as bus mastership on
352 * some CPU family and whatnot) then create a custom slave config
353 * struct and pass that, then make this config a member of that
354 * struct, if applicable.
355 */
356 struct dma_slave_config {
357 enum dma_transfer_direction direction;
358 dma_addr_t src_addr;
359 dma_addr_t dst_addr;
360 enum dma_slave_buswidth src_addr_width;
361 enum dma_slave_buswidth dst_addr_width;
362 u32 src_maxburst;
363 u32 dst_maxburst;
364 bool device_fc;
365 };
366
367 static inline const char *dma_chan_name(struct dma_chan *chan)
368 {
369 return dev_name(&chan->dev->device);
370 }
371
372 void dma_chan_cleanup(struct kref *kref);
373
374 /**
375 * typedef dma_filter_fn - callback filter for dma_request_channel
376 * @chan: channel to be reviewed
377 * @filter_param: opaque parameter passed through dma_request_channel
378 *
379 * When this optional parameter is specified in a call to dma_request_channel a
380 * suitable channel is passed to this routine for further dispositioning before
381 * being returned. Where 'suitable' indicates a non-busy channel that
382 * satisfies the given capability mask. It returns 'true' to indicate that the
383 * channel is suitable.
384 */
385 typedef bool (*dma_filter_fn)(struct dma_chan *chan, void *filter_param);
386
387 typedef void (*dma_async_tx_callback)(void *dma_async_param);
388 /**
389 * struct dma_async_tx_descriptor - async transaction descriptor
390 * ---dma generic offload fields---
391 * @cookie: tracking cookie for this transaction, set to -EBUSY if
392 * this tx is sitting on a dependency list
393 * @flags: flags to augment operation preparation, control completion, and
394 * communicate status
395 * @phys: physical address of the descriptor
396 * @chan: target channel for this operation
397 * @tx_submit: set the prepared descriptor(s) to be executed by the engine
398 * @callback: routine to call after this operation is complete
399 * @callback_param: general parameter to pass to the callback routine
400 * ---async_tx api specific fields---
401 * @next: at completion submit this descriptor
402 * @parent: pointer to the next level up in the dependency chain
403 * @lock: protect the parent and next pointers
404 */
405 struct dma_async_tx_descriptor {
406 dma_cookie_t cookie;
407 enum dma_ctrl_flags flags; /* not a 'long' to pack with cookie */
408 dma_addr_t phys;
409 struct dma_chan *chan;
410 dma_cookie_t (*tx_submit)(struct dma_async_tx_descriptor *tx);
411 dma_async_tx_callback callback;
412 void *callback_param;
413 #ifdef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
414 struct dma_async_tx_descriptor *next;
415 struct dma_async_tx_descriptor *parent;
416 spinlock_t lock;
417 #endif
418 };
419
420 #ifndef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
421 static inline void txd_lock(struct dma_async_tx_descriptor *txd)
422 {
423 }
424 static inline void txd_unlock(struct dma_async_tx_descriptor *txd)
425 {
426 }
427 static inline void txd_chain(struct dma_async_tx_descriptor *txd, struct dma_async_tx_descriptor *next)
428 {
429 BUG();
430 }
431 static inline void txd_clear_parent(struct dma_async_tx_descriptor *txd)
432 {
433 }
434 static inline void txd_clear_next(struct dma_async_tx_descriptor *txd)
435 {
436 }
437 static inline struct dma_async_tx_descriptor *txd_next(struct dma_async_tx_descriptor *txd)
438 {
439 return NULL;
440 }
441 static inline struct dma_async_tx_descriptor *txd_parent(struct dma_async_tx_descriptor *txd)
442 {
443 return NULL;
444 }
445
446 #else
447 static inline void txd_lock(struct dma_async_tx_descriptor *txd)
448 {
449 spin_lock_bh(&txd->lock);
450 }
451 static inline void txd_unlock(struct dma_async_tx_descriptor *txd)
452 {
453 spin_unlock_bh(&txd->lock);
454 }
455 static inline void txd_chain(struct dma_async_tx_descriptor *txd, struct dma_async_tx_descriptor *next)
456 {
457 txd->next = next;
458 next->parent = txd;
459 }
460 static inline void txd_clear_parent(struct dma_async_tx_descriptor *txd)
461 {
462 txd->parent = NULL;
463 }
464 static inline void txd_clear_next(struct dma_async_tx_descriptor *txd)
465 {
466 txd->next = NULL;
467 }
468 static inline struct dma_async_tx_descriptor *txd_parent(struct dma_async_tx_descriptor *txd)
469 {
470 return txd->parent;
471 }
472 static inline struct dma_async_tx_descriptor *txd_next(struct dma_async_tx_descriptor *txd)
473 {
474 return txd->next;
475 }
476 #endif
477
478 /**
479 * struct dma_tx_state - filled in to report the status of
480 * a transfer.
481 * @last: last completed DMA cookie
482 * @used: last issued DMA cookie (i.e. the one in progress)
483 * @residue: the remaining number of bytes left to transmit
484 * on the selected transfer for states DMA_IN_PROGRESS and
485 * DMA_PAUSED if this is implemented in the driver, else 0
486 */
487 struct dma_tx_state {
488 dma_cookie_t last;
489 dma_cookie_t used;
490 u32 residue;
491 };
492
493 /**
494 * struct dma_device - info on the entity supplying DMA services
495 * @chancnt: how many DMA channels are supported
496 * @privatecnt: how many DMA channels are requested by dma_request_channel
497 * @channels: the list of struct dma_chan
498 * @global_node: list_head for global dma_device_list
499 * @cap_mask: one or more dma_capability flags
500 * @max_xor: maximum number of xor sources, 0 if no capability
501 * @max_pq: maximum number of PQ sources and PQ-continue capability
502 * @copy_align: alignment shift for memcpy operations
503 * @xor_align: alignment shift for xor operations
504 * @pq_align: alignment shift for pq operations
505 * @fill_align: alignment shift for memset operations
506 * @dev_id: unique device ID
507 * @dev: struct device reference for dma mapping api
508 * @device_alloc_chan_resources: allocate resources and return the
509 * number of allocated descriptors
510 * @device_free_chan_resources: release DMA channel's resources
511 * @device_prep_dma_memcpy: prepares a memcpy operation
512 * @device_prep_dma_xor: prepares a xor operation
513 * @device_prep_dma_xor_val: prepares a xor validation operation
514 * @device_prep_dma_pq: prepares a pq operation
515 * @device_prep_dma_pq_val: prepares a pqzero_sum operation
516 * @device_prep_dma_memset: prepares a memset operation
517 * @device_prep_dma_interrupt: prepares an end of chain interrupt operation
518 * @device_prep_slave_sg: prepares a slave dma operation
519 * @device_prep_dma_cyclic: prepare a cyclic dma operation suitable for audio.
520 * The function takes a buffer of size buf_len. The callback function will
521 * be called after period_len bytes have been transferred.
522 * @device_prep_interleaved_dma: Transfer expression in a generic way.
523 * @device_control: manipulate all pending operations on a channel, returns
524 * zero or error code
525 * @device_tx_status: poll for transaction completion, the optional
526 * txstate parameter can be supplied with a pointer to get a
527 * struct with auxiliary transfer status information, otherwise the call
528 * will just return a simple status code
529 * @device_issue_pending: push pending transactions to hardware
530 */
531 struct dma_device {
532
533 unsigned int chancnt;
534 unsigned int privatecnt;
535 struct list_head channels;
536 struct list_head global_node;
537 dma_cap_mask_t cap_mask;
538 unsigned short max_xor;
539 unsigned short max_pq;
540 u8 copy_align;
541 u8 xor_align;
542 u8 pq_align;
543 u8 fill_align;
544 #define DMA_HAS_PQ_CONTINUE (1 << 15)
545
546 int dev_id;
547 struct device *dev;
548
549 int (*device_alloc_chan_resources)(struct dma_chan *chan);
550 void (*device_free_chan_resources)(struct dma_chan *chan);
551
552 struct dma_async_tx_descriptor *(*device_prep_dma_memcpy)(
553 struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
554 size_t len, unsigned long flags);
555 struct dma_async_tx_descriptor *(*device_prep_dma_xor)(
556 struct dma_chan *chan, dma_addr_t dest, dma_addr_t *src,
557 unsigned int src_cnt, size_t len, unsigned long flags);
558 struct dma_async_tx_descriptor *(*device_prep_dma_xor_val)(
559 struct dma_chan *chan, dma_addr_t *src, unsigned int src_cnt,
560 size_t len, enum sum_check_flags *result, unsigned long flags);
561 struct dma_async_tx_descriptor *(*device_prep_dma_pq)(
562 struct dma_chan *chan, dma_addr_t *dst, dma_addr_t *src,
563 unsigned int src_cnt, const unsigned char *scf,
564 size_t len, unsigned long flags);
565 struct dma_async_tx_descriptor *(*device_prep_dma_pq_val)(
566 struct dma_chan *chan, dma_addr_t *pq, dma_addr_t *src,
567 unsigned int src_cnt, const unsigned char *scf, size_t len,
568 enum sum_check_flags *pqres, unsigned long flags);
569 struct dma_async_tx_descriptor *(*device_prep_dma_memset)(
570 struct dma_chan *chan, dma_addr_t dest, int value, size_t len,
571 unsigned long flags);
572 struct dma_async_tx_descriptor *(*device_prep_dma_interrupt)(
573 struct dma_chan *chan, unsigned long flags);
574 struct dma_async_tx_descriptor *(*device_prep_dma_sg)(
575 struct dma_chan *chan,
576 struct scatterlist *dst_sg, unsigned int dst_nents,
577 struct scatterlist *src_sg, unsigned int src_nents,
578 unsigned long flags);
579
580 struct dma_async_tx_descriptor *(*device_prep_slave_sg)(
581 struct dma_chan *chan, struct scatterlist *sgl,
582 unsigned int sg_len, enum dma_transfer_direction direction,
583 unsigned long flags);
584 struct dma_async_tx_descriptor *(*device_prep_dma_cyclic)(
585 struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
586 size_t period_len, enum dma_transfer_direction direction);
587 struct dma_async_tx_descriptor *(*device_prep_interleaved_dma)(
588 struct dma_chan *chan, struct dma_interleaved_template *xt,
589 unsigned long flags);
590 int (*device_control)(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
591 unsigned long arg);
592
593 enum dma_status (*device_tx_status)(struct dma_chan *chan,
594 dma_cookie_t cookie,
595 struct dma_tx_state *txstate);
596 void (*device_issue_pending)(struct dma_chan *chan);
597 };
598
599 static inline int dmaengine_device_control(struct dma_chan *chan,
600 enum dma_ctrl_cmd cmd,
601 unsigned long arg)
602 {
603 return chan->device->device_control(chan, cmd, arg);
604 }
605
606 static inline int dmaengine_slave_config(struct dma_chan *chan,
607 struct dma_slave_config *config)
608 {
609 return dmaengine_device_control(chan, DMA_SLAVE_CONFIG,
610 (unsigned long)config);
611 }
612
613 static inline struct dma_async_tx_descriptor *dmaengine_prep_slave_single(
614 struct dma_chan *chan, void *buf, size_t len,
615 enum dma_transfer_direction dir, unsigned long flags)
616 {
617 struct scatterlist sg;
618 sg_init_one(&sg, buf, len);
619
620 return chan->device->device_prep_slave_sg(chan, &sg, 1, dir, flags);
621 }
622
623 static inline int dmaengine_terminate_all(struct dma_chan *chan)
624 {
625 return dmaengine_device_control(chan, DMA_TERMINATE_ALL, 0);
626 }
627
628 static inline int dmaengine_pause(struct dma_chan *chan)
629 {
630 return dmaengine_device_control(chan, DMA_PAUSE, 0);
631 }
632
633 static inline int dmaengine_resume(struct dma_chan *chan)
634 {
635 return dmaengine_device_control(chan, DMA_RESUME, 0);
636 }
637
638 static inline dma_cookie_t dmaengine_submit(struct dma_async_tx_descriptor *desc)
639 {
640 return desc->tx_submit(desc);
641 }
642
643 static inline bool dmaengine_check_align(u8 align, size_t off1, size_t off2, size_t len)
644 {
645 size_t mask;
646
647 if (!align)
648 return true;
649 mask = (1 << align) - 1;
650 if (mask & (off1 | off2 | len))
651 return false;
652 return true;
653 }
654
655 static inline bool is_dma_copy_aligned(struct dma_device *dev, size_t off1,
656 size_t off2, size_t len)
657 {
658 return dmaengine_check_align(dev->copy_align, off1, off2, len);
659 }
660
661 static inline bool is_dma_xor_aligned(struct dma_device *dev, size_t off1,
662 size_t off2, size_t len)
663 {
664 return dmaengine_check_align(dev->xor_align, off1, off2, len);
665 }
666
667 static inline bool is_dma_pq_aligned(struct dma_device *dev, size_t off1,
668 size_t off2, size_t len)
669 {
670 return dmaengine_check_align(dev->pq_align, off1, off2, len);
671 }
672
673 static inline bool is_dma_fill_aligned(struct dma_device *dev, size_t off1,
674 size_t off2, size_t len)
675 {
676 return dmaengine_check_align(dev->fill_align, off1, off2, len);
677 }
678
679 static inline void
680 dma_set_maxpq(struct dma_device *dma, int maxpq, int has_pq_continue)
681 {
682 dma->max_pq = maxpq;
683 if (has_pq_continue)
684 dma->max_pq |= DMA_HAS_PQ_CONTINUE;
685 }
686
687 static inline bool dmaf_continue(enum dma_ctrl_flags flags)
688 {
689 return (flags & DMA_PREP_CONTINUE) == DMA_PREP_CONTINUE;
690 }
691
692 static inline bool dmaf_p_disabled_continue(enum dma_ctrl_flags flags)
693 {
694 enum dma_ctrl_flags mask = DMA_PREP_CONTINUE | DMA_PREP_PQ_DISABLE_P;
695
696 return (flags & mask) == mask;
697 }
698
699 static inline bool dma_dev_has_pq_continue(struct dma_device *dma)
700 {
701 return (dma->max_pq & DMA_HAS_PQ_CONTINUE) == DMA_HAS_PQ_CONTINUE;
702 }
703
704 static inline unsigned short dma_dev_to_maxpq(struct dma_device *dma)
705 {
706 return dma->max_pq & ~DMA_HAS_PQ_CONTINUE;
707 }
708
709 /* dma_maxpq - reduce maxpq in the face of continued operations
710 * @dma - dma device with PQ capability
711 * @flags - to check if DMA_PREP_CONTINUE and DMA_PREP_PQ_DISABLE_P are set
712 *
713 * When an engine does not support native continuation we need 3 extra
714 * source slots to reuse P and Q with the following coefficients:
715 * 1/ {00} * P : remove P from Q', but use it as a source for P'
716 * 2/ {01} * Q : use Q to continue Q' calculation
717 * 3/ {00} * Q : subtract Q from P' to cancel (2)
718 *
719 * In the case where P is disabled we only need 1 extra source:
720 * 1/ {01} * Q : use Q to continue Q' calculation
721 */
722 static inline int dma_maxpq(struct dma_device *dma, enum dma_ctrl_flags flags)
723 {
724 if (dma_dev_has_pq_continue(dma) || !dmaf_continue(flags))
725 return dma_dev_to_maxpq(dma);
726 else if (dmaf_p_disabled_continue(flags))
727 return dma_dev_to_maxpq(dma) - 1;
728 else if (dmaf_continue(flags))
729 return dma_dev_to_maxpq(dma) - 3;
730 BUG();
731 }
732
733 /* --- public DMA engine API --- */
734
735 #ifdef CONFIG_DMA_ENGINE
736 void dmaengine_get(void);
737 void dmaengine_put(void);
738 #else
739 static inline void dmaengine_get(void)
740 {
741 }
742 static inline void dmaengine_put(void)
743 {
744 }
745 #endif
746
747 #ifdef CONFIG_NET_DMA
748 #define net_dmaengine_get() dmaengine_get()
749 #define net_dmaengine_put() dmaengine_put()
750 #else
751 static inline void net_dmaengine_get(void)
752 {
753 }
754 static inline void net_dmaengine_put(void)
755 {
756 }
757 #endif
758
759 #ifdef CONFIG_ASYNC_TX_DMA
760 #define async_dmaengine_get() dmaengine_get()
761 #define async_dmaengine_put() dmaengine_put()
762 #ifndef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
763 #define async_dma_find_channel(type) dma_find_channel(DMA_ASYNC_TX)
764 #else
765 #define async_dma_find_channel(type) dma_find_channel(type)
766 #endif /* CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH */
767 #else
768 static inline void async_dmaengine_get(void)
769 {
770 }
771 static inline void async_dmaengine_put(void)
772 {
773 }
774 static inline struct dma_chan *
775 async_dma_find_channel(enum dma_transaction_type type)
776 {
777 return NULL;
778 }
779 #endif /* CONFIG_ASYNC_TX_DMA */
780
781 dma_cookie_t dma_async_memcpy_buf_to_buf(struct dma_chan *chan,
782 void *dest, void *src, size_t len);
783 dma_cookie_t dma_async_memcpy_buf_to_pg(struct dma_chan *chan,
784 struct page *page, unsigned int offset, void *kdata, size_t len);
785 dma_cookie_t dma_async_memcpy_pg_to_pg(struct dma_chan *chan,
786 struct page *dest_pg, unsigned int dest_off, struct page *src_pg,
787 unsigned int src_off, size_t len);
788 void dma_async_tx_descriptor_init(struct dma_async_tx_descriptor *tx,
789 struct dma_chan *chan);
790
791 static inline void async_tx_ack(struct dma_async_tx_descriptor *tx)
792 {
793 tx->flags |= DMA_CTRL_ACK;
794 }
795
796 static inline void async_tx_clear_ack(struct dma_async_tx_descriptor *tx)
797 {
798 tx->flags &= ~DMA_CTRL_ACK;
799 }
800
801 static inline bool async_tx_test_ack(struct dma_async_tx_descriptor *tx)
802 {
803 return (tx->flags & DMA_CTRL_ACK) == DMA_CTRL_ACK;
804 }
805
806 #define first_dma_cap(mask) __first_dma_cap(&(mask))
807 static inline int __first_dma_cap(const dma_cap_mask_t *srcp)
808 {
809 return min_t(int, DMA_TX_TYPE_END,
810 find_first_bit(srcp->bits, DMA_TX_TYPE_END));
811 }
812
813 #define next_dma_cap(n, mask) __next_dma_cap((n), &(mask))
814 static inline int __next_dma_cap(int n, const dma_cap_mask_t *srcp)
815 {
816 return min_t(int, DMA_TX_TYPE_END,
817 find_next_bit(srcp->bits, DMA_TX_TYPE_END, n+1));
818 }
819
820 #define dma_cap_set(tx, mask) __dma_cap_set((tx), &(mask))
821 static inline void
822 __dma_cap_set(enum dma_transaction_type tx_type, dma_cap_mask_t *dstp)
823 {
824 set_bit(tx_type, dstp->bits);
825 }
826
827 #define dma_cap_clear(tx, mask) __dma_cap_clear((tx), &(mask))
828 static inline void
829 __dma_cap_clear(enum dma_transaction_type tx_type, dma_cap_mask_t *dstp)
830 {
831 clear_bit(tx_type, dstp->bits);
832 }
833
834 #define dma_cap_zero(mask) __dma_cap_zero(&(mask))
835 static inline void __dma_cap_zero(dma_cap_mask_t *dstp)
836 {
837 bitmap_zero(dstp->bits, DMA_TX_TYPE_END);
838 }
839
840 #define dma_has_cap(tx, mask) __dma_has_cap((tx), &(mask))
841 static inline int
842 __dma_has_cap(enum dma_transaction_type tx_type, dma_cap_mask_t *srcp)
843 {
844 return test_bit(tx_type, srcp->bits);
845 }
846
847 #define for_each_dma_cap_mask(cap, mask) \
848 for ((cap) = first_dma_cap(mask); \
849 (cap) < DMA_TX_TYPE_END; \
850 (cap) = next_dma_cap((cap), (mask)))
851
852 /**
853 * dma_async_issue_pending - flush pending transactions to HW
854 * @chan: target DMA channel
855 *
856 * This allows drivers to push copies to HW in batches,
857 * reducing MMIO writes where possible.
858 */
859 static inline void dma_async_issue_pending(struct dma_chan *chan)
860 {
861 chan->device->device_issue_pending(chan);
862 }
863
864 #define dma_async_memcpy_issue_pending(chan) dma_async_issue_pending(chan)
865
866 /**
867 * dma_async_is_tx_complete - poll for transaction completion
868 * @chan: DMA channel
869 * @cookie: transaction identifier to check status of
870 * @last: returns last completed cookie, can be NULL
871 * @used: returns last issued cookie, can be NULL
872 *
873 * If @last and @used are passed in, upon return they reflect the driver
874 * internal state and can be used with dma_async_is_complete() to check
875 * the status of multiple cookies without re-checking hardware state.
876 */
877 static inline enum dma_status dma_async_is_tx_complete(struct dma_chan *chan,
878 dma_cookie_t cookie, dma_cookie_t *last, dma_cookie_t *used)
879 {
880 struct dma_tx_state state;
881 enum dma_status status;
882
883 status = chan->device->device_tx_status(chan, cookie, &state);
884 if (last)
885 *last = state.last;
886 if (used)
887 *used = state.used;
888 return status;
889 }
890
891 #define dma_async_memcpy_complete(chan, cookie, last, used)\
892 dma_async_is_tx_complete(chan, cookie, last, used)
893
894 /**
895 * dma_async_is_complete - test a cookie against chan state
896 * @cookie: transaction identifier to test status of
897 * @last_complete: last know completed transaction
898 * @last_used: last cookie value handed out
899 *
900 * dma_async_is_complete() is used in dma_async_memcpy_complete()
901 * the test logic is separated for lightweight testing of multiple cookies
902 */
903 static inline enum dma_status dma_async_is_complete(dma_cookie_t cookie,
904 dma_cookie_t last_complete, dma_cookie_t last_used)
905 {
906 if (last_complete <= last_used) {
907 if ((cookie <= last_complete) || (cookie > last_used))
908 return DMA_SUCCESS;
909 } else {
910 if ((cookie <= last_complete) && (cookie > last_used))
911 return DMA_SUCCESS;
912 }
913 return DMA_IN_PROGRESS;
914 }
915
916 static inline void
917 dma_set_tx_state(struct dma_tx_state *st, dma_cookie_t last, dma_cookie_t used, u32 residue)
918 {
919 if (st) {
920 st->last = last;
921 st->used = used;
922 st->residue = residue;
923 }
924 }
925
926 enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie);
927 #ifdef CONFIG_DMA_ENGINE
928 enum dma_status dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx);
929 void dma_issue_pending_all(void);
930 struct dma_chan *__dma_request_channel(dma_cap_mask_t *mask, dma_filter_fn fn, void *fn_param);
931 void dma_release_channel(struct dma_chan *chan);
932 #else
933 static inline enum dma_status dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx)
934 {
935 return DMA_SUCCESS;
936 }
937 static inline void dma_issue_pending_all(void)
938 {
939 }
940 static inline struct dma_chan *__dma_request_channel(dma_cap_mask_t *mask,
941 dma_filter_fn fn, void *fn_param)
942 {
943 return NULL;
944 }
945 static inline void dma_release_channel(struct dma_chan *chan)
946 {
947 }
948 #endif
949
950 /* --- DMA device --- */
951
952 int dma_async_device_register(struct dma_device *device);
953 void dma_async_device_unregister(struct dma_device *device);
954 void dma_run_dependencies(struct dma_async_tx_descriptor *tx);
955 struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type);
956 #define dma_request_channel(mask, x, y) __dma_request_channel(&(mask), x, y)
957
958 /* --- Helper iov-locking functions --- */
959
960 struct dma_page_list {
961 char __user *base_address;
962 int nr_pages;
963 struct page **pages;
964 };
965
966 struct dma_pinned_list {
967 int nr_iovecs;
968 struct dma_page_list page_list[0];
969 };
970
971 struct dma_pinned_list *dma_pin_iovec_pages(struct iovec *iov, size_t len);
972 void dma_unpin_iovec_pages(struct dma_pinned_list* pinned_list);
973
974 dma_cookie_t dma_memcpy_to_iovec(struct dma_chan *chan, struct iovec *iov,
975 struct dma_pinned_list *pinned_list, unsigned char *kdata, size_t len);
976 dma_cookie_t dma_memcpy_pg_to_iovec(struct dma_chan *chan, struct iovec *iov,
977 struct dma_pinned_list *pinned_list, struct page *page,
978 unsigned int offset, size_t len);
979
980 #endif /* DMAENGINE_H */
This page took 0.04916 seconds and 4 git commands to generate.