fsldma: improved DMA_SLAVE support
[deliverable/linux.git] / include / linux / dmaengine.h
1 /*
2 * Copyright(c) 2004 - 2006 Intel Corporation. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms of the GNU General Public License as published by the Free
6 * Software Foundation; either version 2 of the License, or (at your option)
7 * any later version.
8 *
9 * This program is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
13 *
14 * You should have received a copy of the GNU General Public License along with
15 * this program; if not, write to the Free Software Foundation, Inc., 59
16 * Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17 *
18 * The full GNU General Public License is included in this distribution in the
19 * file called COPYING.
20 */
21 #ifndef DMAENGINE_H
22 #define DMAENGINE_H
23
24 #include <linux/device.h>
25 #include <linux/uio.h>
26 #include <linux/dma-mapping.h>
27
28 /**
29 * typedef dma_cookie_t - an opaque DMA cookie
30 *
31 * if dma_cookie_t is >0 it's a DMA request cookie, <0 it's an error code
32 */
33 typedef s32 dma_cookie_t;
34 #define DMA_MIN_COOKIE 1
35 #define DMA_MAX_COOKIE INT_MAX
36
37 #define dma_submit_error(cookie) ((cookie) < 0 ? 1 : 0)
38
39 /**
40 * enum dma_status - DMA transaction status
41 * @DMA_SUCCESS: transaction completed successfully
42 * @DMA_IN_PROGRESS: transaction not yet processed
43 * @DMA_PAUSED: transaction is paused
44 * @DMA_ERROR: transaction failed
45 */
46 enum dma_status {
47 DMA_SUCCESS,
48 DMA_IN_PROGRESS,
49 DMA_PAUSED,
50 DMA_ERROR,
51 };
52
53 /**
54 * enum dma_transaction_type - DMA transaction types/indexes
55 *
56 * Note: The DMA_ASYNC_TX capability is not to be set by drivers. It is
57 * automatically set as dma devices are registered.
58 */
59 enum dma_transaction_type {
60 DMA_MEMCPY,
61 DMA_XOR,
62 DMA_PQ,
63 DMA_XOR_VAL,
64 DMA_PQ_VAL,
65 DMA_MEMSET,
66 DMA_INTERRUPT,
67 DMA_SG,
68 DMA_PRIVATE,
69 DMA_ASYNC_TX,
70 DMA_SLAVE,
71 };
72
73 /* last transaction type for creation of the capabilities mask */
74 #define DMA_TX_TYPE_END (DMA_SLAVE + 1)
75
76
77 /**
78 * enum dma_ctrl_flags - DMA flags to augment operation preparation,
79 * control completion, and communicate status.
80 * @DMA_PREP_INTERRUPT - trigger an interrupt (callback) upon completion of
81 * this transaction
82 * @DMA_CTRL_ACK - if clear, the descriptor cannot be reused until the client
83 * acknowledges receipt, i.e. has has a chance to establish any dependency
84 * chains
85 * @DMA_COMPL_SKIP_SRC_UNMAP - set to disable dma-unmapping the source buffer(s)
86 * @DMA_COMPL_SKIP_DEST_UNMAP - set to disable dma-unmapping the destination(s)
87 * @DMA_COMPL_SRC_UNMAP_SINGLE - set to do the source dma-unmapping as single
88 * (if not set, do the source dma-unmapping as page)
89 * @DMA_COMPL_DEST_UNMAP_SINGLE - set to do the destination dma-unmapping as single
90 * (if not set, do the destination dma-unmapping as page)
91 * @DMA_PREP_PQ_DISABLE_P - prevent generation of P while generating Q
92 * @DMA_PREP_PQ_DISABLE_Q - prevent generation of Q while generating P
93 * @DMA_PREP_CONTINUE - indicate to a driver that it is reusing buffers as
94 * sources that were the result of a previous operation, in the case of a PQ
95 * operation it continues the calculation with new sources
96 * @DMA_PREP_FENCE - tell the driver that subsequent operations depend
97 * on the result of this operation
98 */
99 enum dma_ctrl_flags {
100 DMA_PREP_INTERRUPT = (1 << 0),
101 DMA_CTRL_ACK = (1 << 1),
102 DMA_COMPL_SKIP_SRC_UNMAP = (1 << 2),
103 DMA_COMPL_SKIP_DEST_UNMAP = (1 << 3),
104 DMA_COMPL_SRC_UNMAP_SINGLE = (1 << 4),
105 DMA_COMPL_DEST_UNMAP_SINGLE = (1 << 5),
106 DMA_PREP_PQ_DISABLE_P = (1 << 6),
107 DMA_PREP_PQ_DISABLE_Q = (1 << 7),
108 DMA_PREP_CONTINUE = (1 << 8),
109 DMA_PREP_FENCE = (1 << 9),
110 };
111
112 /**
113 * enum dma_ctrl_cmd - DMA operations that can optionally be exercised
114 * on a running channel.
115 * @DMA_TERMINATE_ALL: terminate all ongoing transfers
116 * @DMA_PAUSE: pause ongoing transfers
117 * @DMA_RESUME: resume paused transfer
118 * @DMA_SLAVE_CONFIG: this command is only implemented by DMA controllers
119 * that need to runtime reconfigure the slave channels (as opposed to passing
120 * configuration data in statically from the platform). An additional
121 * argument of struct dma_slave_config must be passed in with this
122 * command.
123 * @FSLDMA_EXTERNAL_START: this command will put the Freescale DMA controller
124 * into external start mode.
125 */
126 enum dma_ctrl_cmd {
127 DMA_TERMINATE_ALL,
128 DMA_PAUSE,
129 DMA_RESUME,
130 DMA_SLAVE_CONFIG,
131 FSLDMA_EXTERNAL_START,
132 };
133
134 /**
135 * enum sum_check_bits - bit position of pq_check_flags
136 */
137 enum sum_check_bits {
138 SUM_CHECK_P = 0,
139 SUM_CHECK_Q = 1,
140 };
141
142 /**
143 * enum pq_check_flags - result of async_{xor,pq}_zero_sum operations
144 * @SUM_CHECK_P_RESULT - 1 if xor zero sum error, 0 otherwise
145 * @SUM_CHECK_Q_RESULT - 1 if reed-solomon zero sum error, 0 otherwise
146 */
147 enum sum_check_flags {
148 SUM_CHECK_P_RESULT = (1 << SUM_CHECK_P),
149 SUM_CHECK_Q_RESULT = (1 << SUM_CHECK_Q),
150 };
151
152
153 /**
154 * dma_cap_mask_t - capabilities bitmap modeled after cpumask_t.
155 * See linux/cpumask.h
156 */
157 typedef struct { DECLARE_BITMAP(bits, DMA_TX_TYPE_END); } dma_cap_mask_t;
158
159 /**
160 * struct dma_chan_percpu - the per-CPU part of struct dma_chan
161 * @memcpy_count: transaction counter
162 * @bytes_transferred: byte counter
163 */
164
165 struct dma_chan_percpu {
166 /* stats */
167 unsigned long memcpy_count;
168 unsigned long bytes_transferred;
169 };
170
171 /**
172 * struct dma_chan - devices supply DMA channels, clients use them
173 * @device: ptr to the dma device who supplies this channel, always !%NULL
174 * @cookie: last cookie value returned to client
175 * @chan_id: channel ID for sysfs
176 * @dev: class device for sysfs
177 * @device_node: used to add this to the device chan list
178 * @local: per-cpu pointer to a struct dma_chan_percpu
179 * @client-count: how many clients are using this channel
180 * @table_count: number of appearances in the mem-to-mem allocation table
181 * @private: private data for certain client-channel associations
182 */
183 struct dma_chan {
184 struct dma_device *device;
185 dma_cookie_t cookie;
186
187 /* sysfs */
188 int chan_id;
189 struct dma_chan_dev *dev;
190
191 struct list_head device_node;
192 struct dma_chan_percpu __percpu *local;
193 int client_count;
194 int table_count;
195 void *private;
196 };
197
198 /**
199 * struct dma_chan_dev - relate sysfs device node to backing channel device
200 * @chan - driver channel device
201 * @device - sysfs device
202 * @dev_id - parent dma_device dev_id
203 * @idr_ref - reference count to gate release of dma_device dev_id
204 */
205 struct dma_chan_dev {
206 struct dma_chan *chan;
207 struct device device;
208 int dev_id;
209 atomic_t *idr_ref;
210 };
211
212 /**
213 * enum dma_slave_buswidth - defines bus with of the DMA slave
214 * device, source or target buses
215 */
216 enum dma_slave_buswidth {
217 DMA_SLAVE_BUSWIDTH_UNDEFINED = 0,
218 DMA_SLAVE_BUSWIDTH_1_BYTE = 1,
219 DMA_SLAVE_BUSWIDTH_2_BYTES = 2,
220 DMA_SLAVE_BUSWIDTH_4_BYTES = 4,
221 DMA_SLAVE_BUSWIDTH_8_BYTES = 8,
222 };
223
224 /**
225 * struct dma_slave_config - dma slave channel runtime config
226 * @direction: whether the data shall go in or out on this slave
227 * channel, right now. DMA_TO_DEVICE and DMA_FROM_DEVICE are
228 * legal values, DMA_BIDIRECTIONAL is not acceptable since we
229 * need to differentiate source and target addresses.
230 * @src_addr: this is the physical address where DMA slave data
231 * should be read (RX), if the source is memory this argument is
232 * ignored.
233 * @dst_addr: this is the physical address where DMA slave data
234 * should be written (TX), if the source is memory this argument
235 * is ignored.
236 * @src_addr_width: this is the width in bytes of the source (RX)
237 * register where DMA data shall be read. If the source
238 * is memory this may be ignored depending on architecture.
239 * Legal values: 1, 2, 4, 8.
240 * @dst_addr_width: same as src_addr_width but for destination
241 * target (TX) mutatis mutandis.
242 * @src_maxburst: the maximum number of words (note: words, as in
243 * units of the src_addr_width member, not bytes) that can be sent
244 * in one burst to the device. Typically something like half the
245 * FIFO depth on I/O peripherals so you don't overflow it. This
246 * may or may not be applicable on memory sources.
247 * @dst_maxburst: same as src_maxburst but for destination target
248 * mutatis mutandis.
249 *
250 * This struct is passed in as configuration data to a DMA engine
251 * in order to set up a certain channel for DMA transport at runtime.
252 * The DMA device/engine has to provide support for an additional
253 * command in the channel config interface, DMA_SLAVE_CONFIG
254 * and this struct will then be passed in as an argument to the
255 * DMA engine device_control() function.
256 *
257 * The rationale for adding configuration information to this struct
258 * is as follows: if it is likely that most DMA slave controllers in
259 * the world will support the configuration option, then make it
260 * generic. If not: if it is fixed so that it be sent in static from
261 * the platform data, then prefer to do that. Else, if it is neither
262 * fixed at runtime, nor generic enough (such as bus mastership on
263 * some CPU family and whatnot) then create a custom slave config
264 * struct and pass that, then make this config a member of that
265 * struct, if applicable.
266 */
267 struct dma_slave_config {
268 enum dma_data_direction direction;
269 dma_addr_t src_addr;
270 dma_addr_t dst_addr;
271 enum dma_slave_buswidth src_addr_width;
272 enum dma_slave_buswidth dst_addr_width;
273 u32 src_maxburst;
274 u32 dst_maxburst;
275 };
276
277 static inline const char *dma_chan_name(struct dma_chan *chan)
278 {
279 return dev_name(&chan->dev->device);
280 }
281
282 void dma_chan_cleanup(struct kref *kref);
283
284 /**
285 * typedef dma_filter_fn - callback filter for dma_request_channel
286 * @chan: channel to be reviewed
287 * @filter_param: opaque parameter passed through dma_request_channel
288 *
289 * When this optional parameter is specified in a call to dma_request_channel a
290 * suitable channel is passed to this routine for further dispositioning before
291 * being returned. Where 'suitable' indicates a non-busy channel that
292 * satisfies the given capability mask. It returns 'true' to indicate that the
293 * channel is suitable.
294 */
295 typedef bool (*dma_filter_fn)(struct dma_chan *chan, void *filter_param);
296
297 typedef void (*dma_async_tx_callback)(void *dma_async_param);
298 /**
299 * struct dma_async_tx_descriptor - async transaction descriptor
300 * ---dma generic offload fields---
301 * @cookie: tracking cookie for this transaction, set to -EBUSY if
302 * this tx is sitting on a dependency list
303 * @flags: flags to augment operation preparation, control completion, and
304 * communicate status
305 * @phys: physical address of the descriptor
306 * @chan: target channel for this operation
307 * @tx_submit: set the prepared descriptor(s) to be executed by the engine
308 * @callback: routine to call after this operation is complete
309 * @callback_param: general parameter to pass to the callback routine
310 * ---async_tx api specific fields---
311 * @next: at completion submit this descriptor
312 * @parent: pointer to the next level up in the dependency chain
313 * @lock: protect the parent and next pointers
314 */
315 struct dma_async_tx_descriptor {
316 dma_cookie_t cookie;
317 enum dma_ctrl_flags flags; /* not a 'long' to pack with cookie */
318 dma_addr_t phys;
319 struct dma_chan *chan;
320 dma_cookie_t (*tx_submit)(struct dma_async_tx_descriptor *tx);
321 dma_async_tx_callback callback;
322 void *callback_param;
323 #ifndef CONFIG_ASYNC_TX_DISABLE_CHANNEL_SWITCH
324 struct dma_async_tx_descriptor *next;
325 struct dma_async_tx_descriptor *parent;
326 spinlock_t lock;
327 #endif
328 };
329
330 #ifdef CONFIG_ASYNC_TX_DISABLE_CHANNEL_SWITCH
331 static inline void txd_lock(struct dma_async_tx_descriptor *txd)
332 {
333 }
334 static inline void txd_unlock(struct dma_async_tx_descriptor *txd)
335 {
336 }
337 static inline void txd_chain(struct dma_async_tx_descriptor *txd, struct dma_async_tx_descriptor *next)
338 {
339 BUG();
340 }
341 static inline void txd_clear_parent(struct dma_async_tx_descriptor *txd)
342 {
343 }
344 static inline void txd_clear_next(struct dma_async_tx_descriptor *txd)
345 {
346 }
347 static inline struct dma_async_tx_descriptor *txd_next(struct dma_async_tx_descriptor *txd)
348 {
349 return NULL;
350 }
351 static inline struct dma_async_tx_descriptor *txd_parent(struct dma_async_tx_descriptor *txd)
352 {
353 return NULL;
354 }
355
356 #else
357 static inline void txd_lock(struct dma_async_tx_descriptor *txd)
358 {
359 spin_lock_bh(&txd->lock);
360 }
361 static inline void txd_unlock(struct dma_async_tx_descriptor *txd)
362 {
363 spin_unlock_bh(&txd->lock);
364 }
365 static inline void txd_chain(struct dma_async_tx_descriptor *txd, struct dma_async_tx_descriptor *next)
366 {
367 txd->next = next;
368 next->parent = txd;
369 }
370 static inline void txd_clear_parent(struct dma_async_tx_descriptor *txd)
371 {
372 txd->parent = NULL;
373 }
374 static inline void txd_clear_next(struct dma_async_tx_descriptor *txd)
375 {
376 txd->next = NULL;
377 }
378 static inline struct dma_async_tx_descriptor *txd_parent(struct dma_async_tx_descriptor *txd)
379 {
380 return txd->parent;
381 }
382 static inline struct dma_async_tx_descriptor *txd_next(struct dma_async_tx_descriptor *txd)
383 {
384 return txd->next;
385 }
386 #endif
387
388 /**
389 * struct dma_tx_state - filled in to report the status of
390 * a transfer.
391 * @last: last completed DMA cookie
392 * @used: last issued DMA cookie (i.e. the one in progress)
393 * @residue: the remaining number of bytes left to transmit
394 * on the selected transfer for states DMA_IN_PROGRESS and
395 * DMA_PAUSED if this is implemented in the driver, else 0
396 */
397 struct dma_tx_state {
398 dma_cookie_t last;
399 dma_cookie_t used;
400 u32 residue;
401 };
402
403 /**
404 * struct dma_device - info on the entity supplying DMA services
405 * @chancnt: how many DMA channels are supported
406 * @privatecnt: how many DMA channels are requested by dma_request_channel
407 * @channels: the list of struct dma_chan
408 * @global_node: list_head for global dma_device_list
409 * @cap_mask: one or more dma_capability flags
410 * @max_xor: maximum number of xor sources, 0 if no capability
411 * @max_pq: maximum number of PQ sources and PQ-continue capability
412 * @copy_align: alignment shift for memcpy operations
413 * @xor_align: alignment shift for xor operations
414 * @pq_align: alignment shift for pq operations
415 * @fill_align: alignment shift for memset operations
416 * @dev_id: unique device ID
417 * @dev: struct device reference for dma mapping api
418 * @device_alloc_chan_resources: allocate resources and return the
419 * number of allocated descriptors
420 * @device_free_chan_resources: release DMA channel's resources
421 * @device_prep_dma_memcpy: prepares a memcpy operation
422 * @device_prep_dma_xor: prepares a xor operation
423 * @device_prep_dma_xor_val: prepares a xor validation operation
424 * @device_prep_dma_pq: prepares a pq operation
425 * @device_prep_dma_pq_val: prepares a pqzero_sum operation
426 * @device_prep_dma_memset: prepares a memset operation
427 * @device_prep_dma_interrupt: prepares an end of chain interrupt operation
428 * @device_prep_slave_sg: prepares a slave dma operation
429 * @device_control: manipulate all pending operations on a channel, returns
430 * zero or error code
431 * @device_tx_status: poll for transaction completion, the optional
432 * txstate parameter can be supplied with a pointer to get a
433 * struct with auxilary transfer status information, otherwise the call
434 * will just return a simple status code
435 * @device_issue_pending: push pending transactions to hardware
436 */
437 struct dma_device {
438
439 unsigned int chancnt;
440 unsigned int privatecnt;
441 struct list_head channels;
442 struct list_head global_node;
443 dma_cap_mask_t cap_mask;
444 unsigned short max_xor;
445 unsigned short max_pq;
446 u8 copy_align;
447 u8 xor_align;
448 u8 pq_align;
449 u8 fill_align;
450 #define DMA_HAS_PQ_CONTINUE (1 << 15)
451
452 int dev_id;
453 struct device *dev;
454
455 int (*device_alloc_chan_resources)(struct dma_chan *chan);
456 void (*device_free_chan_resources)(struct dma_chan *chan);
457
458 struct dma_async_tx_descriptor *(*device_prep_dma_memcpy)(
459 struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
460 size_t len, unsigned long flags);
461 struct dma_async_tx_descriptor *(*device_prep_dma_xor)(
462 struct dma_chan *chan, dma_addr_t dest, dma_addr_t *src,
463 unsigned int src_cnt, size_t len, unsigned long flags);
464 struct dma_async_tx_descriptor *(*device_prep_dma_xor_val)(
465 struct dma_chan *chan, dma_addr_t *src, unsigned int src_cnt,
466 size_t len, enum sum_check_flags *result, unsigned long flags);
467 struct dma_async_tx_descriptor *(*device_prep_dma_pq)(
468 struct dma_chan *chan, dma_addr_t *dst, dma_addr_t *src,
469 unsigned int src_cnt, const unsigned char *scf,
470 size_t len, unsigned long flags);
471 struct dma_async_tx_descriptor *(*device_prep_dma_pq_val)(
472 struct dma_chan *chan, dma_addr_t *pq, dma_addr_t *src,
473 unsigned int src_cnt, const unsigned char *scf, size_t len,
474 enum sum_check_flags *pqres, unsigned long flags);
475 struct dma_async_tx_descriptor *(*device_prep_dma_memset)(
476 struct dma_chan *chan, dma_addr_t dest, int value, size_t len,
477 unsigned long flags);
478 struct dma_async_tx_descriptor *(*device_prep_dma_interrupt)(
479 struct dma_chan *chan, unsigned long flags);
480 struct dma_async_tx_descriptor *(*device_prep_dma_sg)(
481 struct dma_chan *chan,
482 struct scatterlist *dst_sg, unsigned int dst_nents,
483 struct scatterlist *src_sg, unsigned int src_nents,
484 unsigned long flags);
485
486 struct dma_async_tx_descriptor *(*device_prep_slave_sg)(
487 struct dma_chan *chan, struct scatterlist *sgl,
488 unsigned int sg_len, enum dma_data_direction direction,
489 unsigned long flags);
490 int (*device_control)(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
491 unsigned long arg);
492
493 enum dma_status (*device_tx_status)(struct dma_chan *chan,
494 dma_cookie_t cookie,
495 struct dma_tx_state *txstate);
496 void (*device_issue_pending)(struct dma_chan *chan);
497 };
498
499 static inline bool dmaengine_check_align(u8 align, size_t off1, size_t off2, size_t len)
500 {
501 size_t mask;
502
503 if (!align)
504 return true;
505 mask = (1 << align) - 1;
506 if (mask & (off1 | off2 | len))
507 return false;
508 return true;
509 }
510
511 static inline bool is_dma_copy_aligned(struct dma_device *dev, size_t off1,
512 size_t off2, size_t len)
513 {
514 return dmaengine_check_align(dev->copy_align, off1, off2, len);
515 }
516
517 static inline bool is_dma_xor_aligned(struct dma_device *dev, size_t off1,
518 size_t off2, size_t len)
519 {
520 return dmaengine_check_align(dev->xor_align, off1, off2, len);
521 }
522
523 static inline bool is_dma_pq_aligned(struct dma_device *dev, size_t off1,
524 size_t off2, size_t len)
525 {
526 return dmaengine_check_align(dev->pq_align, off1, off2, len);
527 }
528
529 static inline bool is_dma_fill_aligned(struct dma_device *dev, size_t off1,
530 size_t off2, size_t len)
531 {
532 return dmaengine_check_align(dev->fill_align, off1, off2, len);
533 }
534
535 static inline void
536 dma_set_maxpq(struct dma_device *dma, int maxpq, int has_pq_continue)
537 {
538 dma->max_pq = maxpq;
539 if (has_pq_continue)
540 dma->max_pq |= DMA_HAS_PQ_CONTINUE;
541 }
542
543 static inline bool dmaf_continue(enum dma_ctrl_flags flags)
544 {
545 return (flags & DMA_PREP_CONTINUE) == DMA_PREP_CONTINUE;
546 }
547
548 static inline bool dmaf_p_disabled_continue(enum dma_ctrl_flags flags)
549 {
550 enum dma_ctrl_flags mask = DMA_PREP_CONTINUE | DMA_PREP_PQ_DISABLE_P;
551
552 return (flags & mask) == mask;
553 }
554
555 static inline bool dma_dev_has_pq_continue(struct dma_device *dma)
556 {
557 return (dma->max_pq & DMA_HAS_PQ_CONTINUE) == DMA_HAS_PQ_CONTINUE;
558 }
559
560 static inline unsigned short dma_dev_to_maxpq(struct dma_device *dma)
561 {
562 return dma->max_pq & ~DMA_HAS_PQ_CONTINUE;
563 }
564
565 /* dma_maxpq - reduce maxpq in the face of continued operations
566 * @dma - dma device with PQ capability
567 * @flags - to check if DMA_PREP_CONTINUE and DMA_PREP_PQ_DISABLE_P are set
568 *
569 * When an engine does not support native continuation we need 3 extra
570 * source slots to reuse P and Q with the following coefficients:
571 * 1/ {00} * P : remove P from Q', but use it as a source for P'
572 * 2/ {01} * Q : use Q to continue Q' calculation
573 * 3/ {00} * Q : subtract Q from P' to cancel (2)
574 *
575 * In the case where P is disabled we only need 1 extra source:
576 * 1/ {01} * Q : use Q to continue Q' calculation
577 */
578 static inline int dma_maxpq(struct dma_device *dma, enum dma_ctrl_flags flags)
579 {
580 if (dma_dev_has_pq_continue(dma) || !dmaf_continue(flags))
581 return dma_dev_to_maxpq(dma);
582 else if (dmaf_p_disabled_continue(flags))
583 return dma_dev_to_maxpq(dma) - 1;
584 else if (dmaf_continue(flags))
585 return dma_dev_to_maxpq(dma) - 3;
586 BUG();
587 }
588
589 /* --- public DMA engine API --- */
590
591 #ifdef CONFIG_DMA_ENGINE
592 void dmaengine_get(void);
593 void dmaengine_put(void);
594 #else
595 static inline void dmaengine_get(void)
596 {
597 }
598 static inline void dmaengine_put(void)
599 {
600 }
601 #endif
602
603 #ifdef CONFIG_NET_DMA
604 #define net_dmaengine_get() dmaengine_get()
605 #define net_dmaengine_put() dmaengine_put()
606 #else
607 static inline void net_dmaengine_get(void)
608 {
609 }
610 static inline void net_dmaengine_put(void)
611 {
612 }
613 #endif
614
615 #ifdef CONFIG_ASYNC_TX_DMA
616 #define async_dmaengine_get() dmaengine_get()
617 #define async_dmaengine_put() dmaengine_put()
618 #ifdef CONFIG_ASYNC_TX_DISABLE_CHANNEL_SWITCH
619 #define async_dma_find_channel(type) dma_find_channel(DMA_ASYNC_TX)
620 #else
621 #define async_dma_find_channel(type) dma_find_channel(type)
622 #endif /* CONFIG_ASYNC_TX_DISABLE_CHANNEL_SWITCH */
623 #else
624 static inline void async_dmaengine_get(void)
625 {
626 }
627 static inline void async_dmaengine_put(void)
628 {
629 }
630 static inline struct dma_chan *
631 async_dma_find_channel(enum dma_transaction_type type)
632 {
633 return NULL;
634 }
635 #endif /* CONFIG_ASYNC_TX_DMA */
636
637 dma_cookie_t dma_async_memcpy_buf_to_buf(struct dma_chan *chan,
638 void *dest, void *src, size_t len);
639 dma_cookie_t dma_async_memcpy_buf_to_pg(struct dma_chan *chan,
640 struct page *page, unsigned int offset, void *kdata, size_t len);
641 dma_cookie_t dma_async_memcpy_pg_to_pg(struct dma_chan *chan,
642 struct page *dest_pg, unsigned int dest_off, struct page *src_pg,
643 unsigned int src_off, size_t len);
644 void dma_async_tx_descriptor_init(struct dma_async_tx_descriptor *tx,
645 struct dma_chan *chan);
646
647 static inline void async_tx_ack(struct dma_async_tx_descriptor *tx)
648 {
649 tx->flags |= DMA_CTRL_ACK;
650 }
651
652 static inline void async_tx_clear_ack(struct dma_async_tx_descriptor *tx)
653 {
654 tx->flags &= ~DMA_CTRL_ACK;
655 }
656
657 static inline bool async_tx_test_ack(struct dma_async_tx_descriptor *tx)
658 {
659 return (tx->flags & DMA_CTRL_ACK) == DMA_CTRL_ACK;
660 }
661
662 #define first_dma_cap(mask) __first_dma_cap(&(mask))
663 static inline int __first_dma_cap(const dma_cap_mask_t *srcp)
664 {
665 return min_t(int, DMA_TX_TYPE_END,
666 find_first_bit(srcp->bits, DMA_TX_TYPE_END));
667 }
668
669 #define next_dma_cap(n, mask) __next_dma_cap((n), &(mask))
670 static inline int __next_dma_cap(int n, const dma_cap_mask_t *srcp)
671 {
672 return min_t(int, DMA_TX_TYPE_END,
673 find_next_bit(srcp->bits, DMA_TX_TYPE_END, n+1));
674 }
675
676 #define dma_cap_set(tx, mask) __dma_cap_set((tx), &(mask))
677 static inline void
678 __dma_cap_set(enum dma_transaction_type tx_type, dma_cap_mask_t *dstp)
679 {
680 set_bit(tx_type, dstp->bits);
681 }
682
683 #define dma_cap_clear(tx, mask) __dma_cap_clear((tx), &(mask))
684 static inline void
685 __dma_cap_clear(enum dma_transaction_type tx_type, dma_cap_mask_t *dstp)
686 {
687 clear_bit(tx_type, dstp->bits);
688 }
689
690 #define dma_cap_zero(mask) __dma_cap_zero(&(mask))
691 static inline void __dma_cap_zero(dma_cap_mask_t *dstp)
692 {
693 bitmap_zero(dstp->bits, DMA_TX_TYPE_END);
694 }
695
696 #define dma_has_cap(tx, mask) __dma_has_cap((tx), &(mask))
697 static inline int
698 __dma_has_cap(enum dma_transaction_type tx_type, dma_cap_mask_t *srcp)
699 {
700 return test_bit(tx_type, srcp->bits);
701 }
702
703 #define for_each_dma_cap_mask(cap, mask) \
704 for ((cap) = first_dma_cap(mask); \
705 (cap) < DMA_TX_TYPE_END; \
706 (cap) = next_dma_cap((cap), (mask)))
707
708 /**
709 * dma_async_issue_pending - flush pending transactions to HW
710 * @chan: target DMA channel
711 *
712 * This allows drivers to push copies to HW in batches,
713 * reducing MMIO writes where possible.
714 */
715 static inline void dma_async_issue_pending(struct dma_chan *chan)
716 {
717 chan->device->device_issue_pending(chan);
718 }
719
720 #define dma_async_memcpy_issue_pending(chan) dma_async_issue_pending(chan)
721
722 /**
723 * dma_async_is_tx_complete - poll for transaction completion
724 * @chan: DMA channel
725 * @cookie: transaction identifier to check status of
726 * @last: returns last completed cookie, can be NULL
727 * @used: returns last issued cookie, can be NULL
728 *
729 * If @last and @used are passed in, upon return they reflect the driver
730 * internal state and can be used with dma_async_is_complete() to check
731 * the status of multiple cookies without re-checking hardware state.
732 */
733 static inline enum dma_status dma_async_is_tx_complete(struct dma_chan *chan,
734 dma_cookie_t cookie, dma_cookie_t *last, dma_cookie_t *used)
735 {
736 struct dma_tx_state state;
737 enum dma_status status;
738
739 status = chan->device->device_tx_status(chan, cookie, &state);
740 if (last)
741 *last = state.last;
742 if (used)
743 *used = state.used;
744 return status;
745 }
746
747 #define dma_async_memcpy_complete(chan, cookie, last, used)\
748 dma_async_is_tx_complete(chan, cookie, last, used)
749
750 /**
751 * dma_async_is_complete - test a cookie against chan state
752 * @cookie: transaction identifier to test status of
753 * @last_complete: last know completed transaction
754 * @last_used: last cookie value handed out
755 *
756 * dma_async_is_complete() is used in dma_async_memcpy_complete()
757 * the test logic is separated for lightweight testing of multiple cookies
758 */
759 static inline enum dma_status dma_async_is_complete(dma_cookie_t cookie,
760 dma_cookie_t last_complete, dma_cookie_t last_used)
761 {
762 if (last_complete <= last_used) {
763 if ((cookie <= last_complete) || (cookie > last_used))
764 return DMA_SUCCESS;
765 } else {
766 if ((cookie <= last_complete) && (cookie > last_used))
767 return DMA_SUCCESS;
768 }
769 return DMA_IN_PROGRESS;
770 }
771
772 static inline void
773 dma_set_tx_state(struct dma_tx_state *st, dma_cookie_t last, dma_cookie_t used, u32 residue)
774 {
775 if (st) {
776 st->last = last;
777 st->used = used;
778 st->residue = residue;
779 }
780 }
781
782 enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie);
783 #ifdef CONFIG_DMA_ENGINE
784 enum dma_status dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx);
785 void dma_issue_pending_all(void);
786 #else
787 static inline enum dma_status dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx)
788 {
789 return DMA_SUCCESS;
790 }
791 static inline void dma_issue_pending_all(void)
792 {
793 do { } while (0);
794 }
795 #endif
796
797 /* --- DMA device --- */
798
799 int dma_async_device_register(struct dma_device *device);
800 void dma_async_device_unregister(struct dma_device *device);
801 void dma_run_dependencies(struct dma_async_tx_descriptor *tx);
802 struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type);
803 #define dma_request_channel(mask, x, y) __dma_request_channel(&(mask), x, y)
804 struct dma_chan *__dma_request_channel(dma_cap_mask_t *mask, dma_filter_fn fn, void *fn_param);
805 void dma_release_channel(struct dma_chan *chan);
806
807 /* --- Helper iov-locking functions --- */
808
809 struct dma_page_list {
810 char __user *base_address;
811 int nr_pages;
812 struct page **pages;
813 };
814
815 struct dma_pinned_list {
816 int nr_iovecs;
817 struct dma_page_list page_list[0];
818 };
819
820 struct dma_pinned_list *dma_pin_iovec_pages(struct iovec *iov, size_t len);
821 void dma_unpin_iovec_pages(struct dma_pinned_list* pinned_list);
822
823 dma_cookie_t dma_memcpy_to_iovec(struct dma_chan *chan, struct iovec *iov,
824 struct dma_pinned_list *pinned_list, unsigned char *kdata, size_t len);
825 dma_cookie_t dma_memcpy_pg_to_iovec(struct dma_chan *chan, struct iovec *iov,
826 struct dma_pinned_list *pinned_list, struct page *page,
827 unsigned int offset, size_t len);
828
829 #endif /* DMAENGINE_H */
This page took 0.062748 seconds and 5 git commands to generate.