Merge branch 'next-samsung-devel' into next-samsung-devel-2
[deliverable/linux.git] / include / linux / dmaengine.h
1 /*
2 * Copyright(c) 2004 - 2006 Intel Corporation. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms of the GNU General Public License as published by the Free
6 * Software Foundation; either version 2 of the License, or (at your option)
7 * any later version.
8 *
9 * This program is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
13 *
14 * You should have received a copy of the GNU General Public License along with
15 * this program; if not, write to the Free Software Foundation, Inc., 59
16 * Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17 *
18 * The full GNU General Public License is included in this distribution in the
19 * file called COPYING.
20 */
21 #ifndef DMAENGINE_H
22 #define DMAENGINE_H
23
24 #include <linux/device.h>
25 #include <linux/uio.h>
26 #include <linux/dma-direction.h>
27 #include <linux/scatterlist.h>
28
29 /**
30 * typedef dma_cookie_t - an opaque DMA cookie
31 *
32 * if dma_cookie_t is >0 it's a DMA request cookie, <0 it's an error code
33 */
34 typedef s32 dma_cookie_t;
35 #define DMA_MIN_COOKIE 1
36 #define DMA_MAX_COOKIE INT_MAX
37
38 #define dma_submit_error(cookie) ((cookie) < 0 ? 1 : 0)
39
40 /**
41 * enum dma_status - DMA transaction status
42 * @DMA_SUCCESS: transaction completed successfully
43 * @DMA_IN_PROGRESS: transaction not yet processed
44 * @DMA_PAUSED: transaction is paused
45 * @DMA_ERROR: transaction failed
46 */
47 enum dma_status {
48 DMA_SUCCESS,
49 DMA_IN_PROGRESS,
50 DMA_PAUSED,
51 DMA_ERROR,
52 };
53
54 /**
55 * enum dma_transaction_type - DMA transaction types/indexes
56 *
57 * Note: The DMA_ASYNC_TX capability is not to be set by drivers. It is
58 * automatically set as dma devices are registered.
59 */
60 enum dma_transaction_type {
61 DMA_MEMCPY,
62 DMA_XOR,
63 DMA_PQ,
64 DMA_XOR_VAL,
65 DMA_PQ_VAL,
66 DMA_MEMSET,
67 DMA_INTERRUPT,
68 DMA_SG,
69 DMA_PRIVATE,
70 DMA_ASYNC_TX,
71 DMA_SLAVE,
72 DMA_CYCLIC,
73 };
74
75 /* last transaction type for creation of the capabilities mask */
76 #define DMA_TX_TYPE_END (DMA_CYCLIC + 1)
77
78
79 /**
80 * enum dma_ctrl_flags - DMA flags to augment operation preparation,
81 * control completion, and communicate status.
82 * @DMA_PREP_INTERRUPT - trigger an interrupt (callback) upon completion of
83 * this transaction
84 * @DMA_CTRL_ACK - if clear, the descriptor cannot be reused until the client
85 * acknowledges receipt, i.e. has has a chance to establish any dependency
86 * chains
87 * @DMA_COMPL_SKIP_SRC_UNMAP - set to disable dma-unmapping the source buffer(s)
88 * @DMA_COMPL_SKIP_DEST_UNMAP - set to disable dma-unmapping the destination(s)
89 * @DMA_COMPL_SRC_UNMAP_SINGLE - set to do the source dma-unmapping as single
90 * (if not set, do the source dma-unmapping as page)
91 * @DMA_COMPL_DEST_UNMAP_SINGLE - set to do the destination dma-unmapping as single
92 * (if not set, do the destination dma-unmapping as page)
93 * @DMA_PREP_PQ_DISABLE_P - prevent generation of P while generating Q
94 * @DMA_PREP_PQ_DISABLE_Q - prevent generation of Q while generating P
95 * @DMA_PREP_CONTINUE - indicate to a driver that it is reusing buffers as
96 * sources that were the result of a previous operation, in the case of a PQ
97 * operation it continues the calculation with new sources
98 * @DMA_PREP_FENCE - tell the driver that subsequent operations depend
99 * on the result of this operation
100 */
101 enum dma_ctrl_flags {
102 DMA_PREP_INTERRUPT = (1 << 0),
103 DMA_CTRL_ACK = (1 << 1),
104 DMA_COMPL_SKIP_SRC_UNMAP = (1 << 2),
105 DMA_COMPL_SKIP_DEST_UNMAP = (1 << 3),
106 DMA_COMPL_SRC_UNMAP_SINGLE = (1 << 4),
107 DMA_COMPL_DEST_UNMAP_SINGLE = (1 << 5),
108 DMA_PREP_PQ_DISABLE_P = (1 << 6),
109 DMA_PREP_PQ_DISABLE_Q = (1 << 7),
110 DMA_PREP_CONTINUE = (1 << 8),
111 DMA_PREP_FENCE = (1 << 9),
112 };
113
114 /**
115 * enum dma_ctrl_cmd - DMA operations that can optionally be exercised
116 * on a running channel.
117 * @DMA_TERMINATE_ALL: terminate all ongoing transfers
118 * @DMA_PAUSE: pause ongoing transfers
119 * @DMA_RESUME: resume paused transfer
120 * @DMA_SLAVE_CONFIG: this command is only implemented by DMA controllers
121 * that need to runtime reconfigure the slave channels (as opposed to passing
122 * configuration data in statically from the platform). An additional
123 * argument of struct dma_slave_config must be passed in with this
124 * command.
125 * @FSLDMA_EXTERNAL_START: this command will put the Freescale DMA controller
126 * into external start mode.
127 */
128 enum dma_ctrl_cmd {
129 DMA_TERMINATE_ALL,
130 DMA_PAUSE,
131 DMA_RESUME,
132 DMA_SLAVE_CONFIG,
133 FSLDMA_EXTERNAL_START,
134 };
135
136 /**
137 * enum sum_check_bits - bit position of pq_check_flags
138 */
139 enum sum_check_bits {
140 SUM_CHECK_P = 0,
141 SUM_CHECK_Q = 1,
142 };
143
144 /**
145 * enum pq_check_flags - result of async_{xor,pq}_zero_sum operations
146 * @SUM_CHECK_P_RESULT - 1 if xor zero sum error, 0 otherwise
147 * @SUM_CHECK_Q_RESULT - 1 if reed-solomon zero sum error, 0 otherwise
148 */
149 enum sum_check_flags {
150 SUM_CHECK_P_RESULT = (1 << SUM_CHECK_P),
151 SUM_CHECK_Q_RESULT = (1 << SUM_CHECK_Q),
152 };
153
154
155 /**
156 * dma_cap_mask_t - capabilities bitmap modeled after cpumask_t.
157 * See linux/cpumask.h
158 */
159 typedef struct { DECLARE_BITMAP(bits, DMA_TX_TYPE_END); } dma_cap_mask_t;
160
161 /**
162 * struct dma_chan_percpu - the per-CPU part of struct dma_chan
163 * @memcpy_count: transaction counter
164 * @bytes_transferred: byte counter
165 */
166
167 struct dma_chan_percpu {
168 /* stats */
169 unsigned long memcpy_count;
170 unsigned long bytes_transferred;
171 };
172
173 /**
174 * struct dma_chan - devices supply DMA channels, clients use them
175 * @device: ptr to the dma device who supplies this channel, always !%NULL
176 * @cookie: last cookie value returned to client
177 * @chan_id: channel ID for sysfs
178 * @dev: class device for sysfs
179 * @device_node: used to add this to the device chan list
180 * @local: per-cpu pointer to a struct dma_chan_percpu
181 * @client-count: how many clients are using this channel
182 * @table_count: number of appearances in the mem-to-mem allocation table
183 * @private: private data for certain client-channel associations
184 */
185 struct dma_chan {
186 struct dma_device *device;
187 dma_cookie_t cookie;
188
189 /* sysfs */
190 int chan_id;
191 struct dma_chan_dev *dev;
192
193 struct list_head device_node;
194 struct dma_chan_percpu __percpu *local;
195 int client_count;
196 int table_count;
197 void *private;
198 };
199
200 /**
201 * struct dma_chan_dev - relate sysfs device node to backing channel device
202 * @chan - driver channel device
203 * @device - sysfs device
204 * @dev_id - parent dma_device dev_id
205 * @idr_ref - reference count to gate release of dma_device dev_id
206 */
207 struct dma_chan_dev {
208 struct dma_chan *chan;
209 struct device device;
210 int dev_id;
211 atomic_t *idr_ref;
212 };
213
214 /**
215 * enum dma_slave_buswidth - defines bus with of the DMA slave
216 * device, source or target buses
217 */
218 enum dma_slave_buswidth {
219 DMA_SLAVE_BUSWIDTH_UNDEFINED = 0,
220 DMA_SLAVE_BUSWIDTH_1_BYTE = 1,
221 DMA_SLAVE_BUSWIDTH_2_BYTES = 2,
222 DMA_SLAVE_BUSWIDTH_4_BYTES = 4,
223 DMA_SLAVE_BUSWIDTH_8_BYTES = 8,
224 };
225
226 /**
227 * struct dma_slave_config - dma slave channel runtime config
228 * @direction: whether the data shall go in or out on this slave
229 * channel, right now. DMA_TO_DEVICE and DMA_FROM_DEVICE are
230 * legal values, DMA_BIDIRECTIONAL is not acceptable since we
231 * need to differentiate source and target addresses.
232 * @src_addr: this is the physical address where DMA slave data
233 * should be read (RX), if the source is memory this argument is
234 * ignored.
235 * @dst_addr: this is the physical address where DMA slave data
236 * should be written (TX), if the source is memory this argument
237 * is ignored.
238 * @src_addr_width: this is the width in bytes of the source (RX)
239 * register where DMA data shall be read. If the source
240 * is memory this may be ignored depending on architecture.
241 * Legal values: 1, 2, 4, 8.
242 * @dst_addr_width: same as src_addr_width but for destination
243 * target (TX) mutatis mutandis.
244 * @src_maxburst: the maximum number of words (note: words, as in
245 * units of the src_addr_width member, not bytes) that can be sent
246 * in one burst to the device. Typically something like half the
247 * FIFO depth on I/O peripherals so you don't overflow it. This
248 * may or may not be applicable on memory sources.
249 * @dst_maxburst: same as src_maxburst but for destination target
250 * mutatis mutandis.
251 *
252 * This struct is passed in as configuration data to a DMA engine
253 * in order to set up a certain channel for DMA transport at runtime.
254 * The DMA device/engine has to provide support for an additional
255 * command in the channel config interface, DMA_SLAVE_CONFIG
256 * and this struct will then be passed in as an argument to the
257 * DMA engine device_control() function.
258 *
259 * The rationale for adding configuration information to this struct
260 * is as follows: if it is likely that most DMA slave controllers in
261 * the world will support the configuration option, then make it
262 * generic. If not: if it is fixed so that it be sent in static from
263 * the platform data, then prefer to do that. Else, if it is neither
264 * fixed at runtime, nor generic enough (such as bus mastership on
265 * some CPU family and whatnot) then create a custom slave config
266 * struct and pass that, then make this config a member of that
267 * struct, if applicable.
268 */
269 struct dma_slave_config {
270 enum dma_data_direction direction;
271 dma_addr_t src_addr;
272 dma_addr_t dst_addr;
273 enum dma_slave_buswidth src_addr_width;
274 enum dma_slave_buswidth dst_addr_width;
275 u32 src_maxburst;
276 u32 dst_maxburst;
277 };
278
279 static inline const char *dma_chan_name(struct dma_chan *chan)
280 {
281 return dev_name(&chan->dev->device);
282 }
283
284 void dma_chan_cleanup(struct kref *kref);
285
286 /**
287 * typedef dma_filter_fn - callback filter for dma_request_channel
288 * @chan: channel to be reviewed
289 * @filter_param: opaque parameter passed through dma_request_channel
290 *
291 * When this optional parameter is specified in a call to dma_request_channel a
292 * suitable channel is passed to this routine for further dispositioning before
293 * being returned. Where 'suitable' indicates a non-busy channel that
294 * satisfies the given capability mask. It returns 'true' to indicate that the
295 * channel is suitable.
296 */
297 typedef bool (*dma_filter_fn)(struct dma_chan *chan, void *filter_param);
298
299 typedef void (*dma_async_tx_callback)(void *dma_async_param);
300 /**
301 * struct dma_async_tx_descriptor - async transaction descriptor
302 * ---dma generic offload fields---
303 * @cookie: tracking cookie for this transaction, set to -EBUSY if
304 * this tx is sitting on a dependency list
305 * @flags: flags to augment operation preparation, control completion, and
306 * communicate status
307 * @phys: physical address of the descriptor
308 * @chan: target channel for this operation
309 * @tx_submit: set the prepared descriptor(s) to be executed by the engine
310 * @callback: routine to call after this operation is complete
311 * @callback_param: general parameter to pass to the callback routine
312 * ---async_tx api specific fields---
313 * @next: at completion submit this descriptor
314 * @parent: pointer to the next level up in the dependency chain
315 * @lock: protect the parent and next pointers
316 */
317 struct dma_async_tx_descriptor {
318 dma_cookie_t cookie;
319 enum dma_ctrl_flags flags; /* not a 'long' to pack with cookie */
320 dma_addr_t phys;
321 struct dma_chan *chan;
322 dma_cookie_t (*tx_submit)(struct dma_async_tx_descriptor *tx);
323 dma_async_tx_callback callback;
324 void *callback_param;
325 #ifdef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
326 struct dma_async_tx_descriptor *next;
327 struct dma_async_tx_descriptor *parent;
328 spinlock_t lock;
329 #endif
330 };
331
332 #ifndef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
333 static inline void txd_lock(struct dma_async_tx_descriptor *txd)
334 {
335 }
336 static inline void txd_unlock(struct dma_async_tx_descriptor *txd)
337 {
338 }
339 static inline void txd_chain(struct dma_async_tx_descriptor *txd, struct dma_async_tx_descriptor *next)
340 {
341 BUG();
342 }
343 static inline void txd_clear_parent(struct dma_async_tx_descriptor *txd)
344 {
345 }
346 static inline void txd_clear_next(struct dma_async_tx_descriptor *txd)
347 {
348 }
349 static inline struct dma_async_tx_descriptor *txd_next(struct dma_async_tx_descriptor *txd)
350 {
351 return NULL;
352 }
353 static inline struct dma_async_tx_descriptor *txd_parent(struct dma_async_tx_descriptor *txd)
354 {
355 return NULL;
356 }
357
358 #else
359 static inline void txd_lock(struct dma_async_tx_descriptor *txd)
360 {
361 spin_lock_bh(&txd->lock);
362 }
363 static inline void txd_unlock(struct dma_async_tx_descriptor *txd)
364 {
365 spin_unlock_bh(&txd->lock);
366 }
367 static inline void txd_chain(struct dma_async_tx_descriptor *txd, struct dma_async_tx_descriptor *next)
368 {
369 txd->next = next;
370 next->parent = txd;
371 }
372 static inline void txd_clear_parent(struct dma_async_tx_descriptor *txd)
373 {
374 txd->parent = NULL;
375 }
376 static inline void txd_clear_next(struct dma_async_tx_descriptor *txd)
377 {
378 txd->next = NULL;
379 }
380 static inline struct dma_async_tx_descriptor *txd_parent(struct dma_async_tx_descriptor *txd)
381 {
382 return txd->parent;
383 }
384 static inline struct dma_async_tx_descriptor *txd_next(struct dma_async_tx_descriptor *txd)
385 {
386 return txd->next;
387 }
388 #endif
389
390 /**
391 * struct dma_tx_state - filled in to report the status of
392 * a transfer.
393 * @last: last completed DMA cookie
394 * @used: last issued DMA cookie (i.e. the one in progress)
395 * @residue: the remaining number of bytes left to transmit
396 * on the selected transfer for states DMA_IN_PROGRESS and
397 * DMA_PAUSED if this is implemented in the driver, else 0
398 */
399 struct dma_tx_state {
400 dma_cookie_t last;
401 dma_cookie_t used;
402 u32 residue;
403 };
404
405 /**
406 * struct dma_device - info on the entity supplying DMA services
407 * @chancnt: how many DMA channels are supported
408 * @privatecnt: how many DMA channels are requested by dma_request_channel
409 * @channels: the list of struct dma_chan
410 * @global_node: list_head for global dma_device_list
411 * @cap_mask: one or more dma_capability flags
412 * @max_xor: maximum number of xor sources, 0 if no capability
413 * @max_pq: maximum number of PQ sources and PQ-continue capability
414 * @copy_align: alignment shift for memcpy operations
415 * @xor_align: alignment shift for xor operations
416 * @pq_align: alignment shift for pq operations
417 * @fill_align: alignment shift for memset operations
418 * @dev_id: unique device ID
419 * @dev: struct device reference for dma mapping api
420 * @device_alloc_chan_resources: allocate resources and return the
421 * number of allocated descriptors
422 * @device_free_chan_resources: release DMA channel's resources
423 * @device_prep_dma_memcpy: prepares a memcpy operation
424 * @device_prep_dma_xor: prepares a xor operation
425 * @device_prep_dma_xor_val: prepares a xor validation operation
426 * @device_prep_dma_pq: prepares a pq operation
427 * @device_prep_dma_pq_val: prepares a pqzero_sum operation
428 * @device_prep_dma_memset: prepares a memset operation
429 * @device_prep_dma_interrupt: prepares an end of chain interrupt operation
430 * @device_prep_slave_sg: prepares a slave dma operation
431 * @device_prep_dma_cyclic: prepare a cyclic dma operation suitable for audio.
432 * The function takes a buffer of size buf_len. The callback function will
433 * be called after period_len bytes have been transferred.
434 * @device_control: manipulate all pending operations on a channel, returns
435 * zero or error code
436 * @device_tx_status: poll for transaction completion, the optional
437 * txstate parameter can be supplied with a pointer to get a
438 * struct with auxiliary transfer status information, otherwise the call
439 * will just return a simple status code
440 * @device_issue_pending: push pending transactions to hardware
441 */
442 struct dma_device {
443
444 unsigned int chancnt;
445 unsigned int privatecnt;
446 struct list_head channels;
447 struct list_head global_node;
448 dma_cap_mask_t cap_mask;
449 unsigned short max_xor;
450 unsigned short max_pq;
451 u8 copy_align;
452 u8 xor_align;
453 u8 pq_align;
454 u8 fill_align;
455 #define DMA_HAS_PQ_CONTINUE (1 << 15)
456
457 int dev_id;
458 struct device *dev;
459
460 int (*device_alloc_chan_resources)(struct dma_chan *chan);
461 void (*device_free_chan_resources)(struct dma_chan *chan);
462
463 struct dma_async_tx_descriptor *(*device_prep_dma_memcpy)(
464 struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
465 size_t len, unsigned long flags);
466 struct dma_async_tx_descriptor *(*device_prep_dma_xor)(
467 struct dma_chan *chan, dma_addr_t dest, dma_addr_t *src,
468 unsigned int src_cnt, size_t len, unsigned long flags);
469 struct dma_async_tx_descriptor *(*device_prep_dma_xor_val)(
470 struct dma_chan *chan, dma_addr_t *src, unsigned int src_cnt,
471 size_t len, enum sum_check_flags *result, unsigned long flags);
472 struct dma_async_tx_descriptor *(*device_prep_dma_pq)(
473 struct dma_chan *chan, dma_addr_t *dst, dma_addr_t *src,
474 unsigned int src_cnt, const unsigned char *scf,
475 size_t len, unsigned long flags);
476 struct dma_async_tx_descriptor *(*device_prep_dma_pq_val)(
477 struct dma_chan *chan, dma_addr_t *pq, dma_addr_t *src,
478 unsigned int src_cnt, const unsigned char *scf, size_t len,
479 enum sum_check_flags *pqres, unsigned long flags);
480 struct dma_async_tx_descriptor *(*device_prep_dma_memset)(
481 struct dma_chan *chan, dma_addr_t dest, int value, size_t len,
482 unsigned long flags);
483 struct dma_async_tx_descriptor *(*device_prep_dma_interrupt)(
484 struct dma_chan *chan, unsigned long flags);
485 struct dma_async_tx_descriptor *(*device_prep_dma_sg)(
486 struct dma_chan *chan,
487 struct scatterlist *dst_sg, unsigned int dst_nents,
488 struct scatterlist *src_sg, unsigned int src_nents,
489 unsigned long flags);
490
491 struct dma_async_tx_descriptor *(*device_prep_slave_sg)(
492 struct dma_chan *chan, struct scatterlist *sgl,
493 unsigned int sg_len, enum dma_data_direction direction,
494 unsigned long flags);
495 struct dma_async_tx_descriptor *(*device_prep_dma_cyclic)(
496 struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
497 size_t period_len, enum dma_data_direction direction);
498 int (*device_control)(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
499 unsigned long arg);
500
501 enum dma_status (*device_tx_status)(struct dma_chan *chan,
502 dma_cookie_t cookie,
503 struct dma_tx_state *txstate);
504 void (*device_issue_pending)(struct dma_chan *chan);
505 };
506
507 static inline int dmaengine_device_control(struct dma_chan *chan,
508 enum dma_ctrl_cmd cmd,
509 unsigned long arg)
510 {
511 return chan->device->device_control(chan, cmd, arg);
512 }
513
514 static inline int dmaengine_slave_config(struct dma_chan *chan,
515 struct dma_slave_config *config)
516 {
517 return dmaengine_device_control(chan, DMA_SLAVE_CONFIG,
518 (unsigned long)config);
519 }
520
521 static inline struct dma_async_tx_descriptor *dmaengine_prep_slave_single(
522 struct dma_chan *chan, void *buf, size_t len,
523 enum dma_data_direction dir, unsigned long flags)
524 {
525 struct scatterlist sg;
526 sg_init_one(&sg, buf, len);
527
528 return chan->device->device_prep_slave_sg(chan, &sg, 1, dir, flags);
529 }
530
531 static inline int dmaengine_terminate_all(struct dma_chan *chan)
532 {
533 return dmaengine_device_control(chan, DMA_TERMINATE_ALL, 0);
534 }
535
536 static inline int dmaengine_pause(struct dma_chan *chan)
537 {
538 return dmaengine_device_control(chan, DMA_PAUSE, 0);
539 }
540
541 static inline int dmaengine_resume(struct dma_chan *chan)
542 {
543 return dmaengine_device_control(chan, DMA_RESUME, 0);
544 }
545
546 static inline dma_cookie_t dmaengine_submit(struct dma_async_tx_descriptor *desc)
547 {
548 return desc->tx_submit(desc);
549 }
550
551 static inline bool dmaengine_check_align(u8 align, size_t off1, size_t off2, size_t len)
552 {
553 size_t mask;
554
555 if (!align)
556 return true;
557 mask = (1 << align) - 1;
558 if (mask & (off1 | off2 | len))
559 return false;
560 return true;
561 }
562
563 static inline bool is_dma_copy_aligned(struct dma_device *dev, size_t off1,
564 size_t off2, size_t len)
565 {
566 return dmaengine_check_align(dev->copy_align, off1, off2, len);
567 }
568
569 static inline bool is_dma_xor_aligned(struct dma_device *dev, size_t off1,
570 size_t off2, size_t len)
571 {
572 return dmaengine_check_align(dev->xor_align, off1, off2, len);
573 }
574
575 static inline bool is_dma_pq_aligned(struct dma_device *dev, size_t off1,
576 size_t off2, size_t len)
577 {
578 return dmaengine_check_align(dev->pq_align, off1, off2, len);
579 }
580
581 static inline bool is_dma_fill_aligned(struct dma_device *dev, size_t off1,
582 size_t off2, size_t len)
583 {
584 return dmaengine_check_align(dev->fill_align, off1, off2, len);
585 }
586
587 static inline void
588 dma_set_maxpq(struct dma_device *dma, int maxpq, int has_pq_continue)
589 {
590 dma->max_pq = maxpq;
591 if (has_pq_continue)
592 dma->max_pq |= DMA_HAS_PQ_CONTINUE;
593 }
594
595 static inline bool dmaf_continue(enum dma_ctrl_flags flags)
596 {
597 return (flags & DMA_PREP_CONTINUE) == DMA_PREP_CONTINUE;
598 }
599
600 static inline bool dmaf_p_disabled_continue(enum dma_ctrl_flags flags)
601 {
602 enum dma_ctrl_flags mask = DMA_PREP_CONTINUE | DMA_PREP_PQ_DISABLE_P;
603
604 return (flags & mask) == mask;
605 }
606
607 static inline bool dma_dev_has_pq_continue(struct dma_device *dma)
608 {
609 return (dma->max_pq & DMA_HAS_PQ_CONTINUE) == DMA_HAS_PQ_CONTINUE;
610 }
611
612 static inline unsigned short dma_dev_to_maxpq(struct dma_device *dma)
613 {
614 return dma->max_pq & ~DMA_HAS_PQ_CONTINUE;
615 }
616
617 /* dma_maxpq - reduce maxpq in the face of continued operations
618 * @dma - dma device with PQ capability
619 * @flags - to check if DMA_PREP_CONTINUE and DMA_PREP_PQ_DISABLE_P are set
620 *
621 * When an engine does not support native continuation we need 3 extra
622 * source slots to reuse P and Q with the following coefficients:
623 * 1/ {00} * P : remove P from Q', but use it as a source for P'
624 * 2/ {01} * Q : use Q to continue Q' calculation
625 * 3/ {00} * Q : subtract Q from P' to cancel (2)
626 *
627 * In the case where P is disabled we only need 1 extra source:
628 * 1/ {01} * Q : use Q to continue Q' calculation
629 */
630 static inline int dma_maxpq(struct dma_device *dma, enum dma_ctrl_flags flags)
631 {
632 if (dma_dev_has_pq_continue(dma) || !dmaf_continue(flags))
633 return dma_dev_to_maxpq(dma);
634 else if (dmaf_p_disabled_continue(flags))
635 return dma_dev_to_maxpq(dma) - 1;
636 else if (dmaf_continue(flags))
637 return dma_dev_to_maxpq(dma) - 3;
638 BUG();
639 }
640
641 /* --- public DMA engine API --- */
642
643 #ifdef CONFIG_DMA_ENGINE
644 void dmaengine_get(void);
645 void dmaengine_put(void);
646 #else
647 static inline void dmaengine_get(void)
648 {
649 }
650 static inline void dmaengine_put(void)
651 {
652 }
653 #endif
654
655 #ifdef CONFIG_NET_DMA
656 #define net_dmaengine_get() dmaengine_get()
657 #define net_dmaengine_put() dmaengine_put()
658 #else
659 static inline void net_dmaengine_get(void)
660 {
661 }
662 static inline void net_dmaengine_put(void)
663 {
664 }
665 #endif
666
667 #ifdef CONFIG_ASYNC_TX_DMA
668 #define async_dmaengine_get() dmaengine_get()
669 #define async_dmaengine_put() dmaengine_put()
670 #ifndef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
671 #define async_dma_find_channel(type) dma_find_channel(DMA_ASYNC_TX)
672 #else
673 #define async_dma_find_channel(type) dma_find_channel(type)
674 #endif /* CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH */
675 #else
676 static inline void async_dmaengine_get(void)
677 {
678 }
679 static inline void async_dmaengine_put(void)
680 {
681 }
682 static inline struct dma_chan *
683 async_dma_find_channel(enum dma_transaction_type type)
684 {
685 return NULL;
686 }
687 #endif /* CONFIG_ASYNC_TX_DMA */
688
689 dma_cookie_t dma_async_memcpy_buf_to_buf(struct dma_chan *chan,
690 void *dest, void *src, size_t len);
691 dma_cookie_t dma_async_memcpy_buf_to_pg(struct dma_chan *chan,
692 struct page *page, unsigned int offset, void *kdata, size_t len);
693 dma_cookie_t dma_async_memcpy_pg_to_pg(struct dma_chan *chan,
694 struct page *dest_pg, unsigned int dest_off, struct page *src_pg,
695 unsigned int src_off, size_t len);
696 void dma_async_tx_descriptor_init(struct dma_async_tx_descriptor *tx,
697 struct dma_chan *chan);
698
699 static inline void async_tx_ack(struct dma_async_tx_descriptor *tx)
700 {
701 tx->flags |= DMA_CTRL_ACK;
702 }
703
704 static inline void async_tx_clear_ack(struct dma_async_tx_descriptor *tx)
705 {
706 tx->flags &= ~DMA_CTRL_ACK;
707 }
708
709 static inline bool async_tx_test_ack(struct dma_async_tx_descriptor *tx)
710 {
711 return (tx->flags & DMA_CTRL_ACK) == DMA_CTRL_ACK;
712 }
713
714 #define first_dma_cap(mask) __first_dma_cap(&(mask))
715 static inline int __first_dma_cap(const dma_cap_mask_t *srcp)
716 {
717 return min_t(int, DMA_TX_TYPE_END,
718 find_first_bit(srcp->bits, DMA_TX_TYPE_END));
719 }
720
721 #define next_dma_cap(n, mask) __next_dma_cap((n), &(mask))
722 static inline int __next_dma_cap(int n, const dma_cap_mask_t *srcp)
723 {
724 return min_t(int, DMA_TX_TYPE_END,
725 find_next_bit(srcp->bits, DMA_TX_TYPE_END, n+1));
726 }
727
728 #define dma_cap_set(tx, mask) __dma_cap_set((tx), &(mask))
729 static inline void
730 __dma_cap_set(enum dma_transaction_type tx_type, dma_cap_mask_t *dstp)
731 {
732 set_bit(tx_type, dstp->bits);
733 }
734
735 #define dma_cap_clear(tx, mask) __dma_cap_clear((tx), &(mask))
736 static inline void
737 __dma_cap_clear(enum dma_transaction_type tx_type, dma_cap_mask_t *dstp)
738 {
739 clear_bit(tx_type, dstp->bits);
740 }
741
742 #define dma_cap_zero(mask) __dma_cap_zero(&(mask))
743 static inline void __dma_cap_zero(dma_cap_mask_t *dstp)
744 {
745 bitmap_zero(dstp->bits, DMA_TX_TYPE_END);
746 }
747
748 #define dma_has_cap(tx, mask) __dma_has_cap((tx), &(mask))
749 static inline int
750 __dma_has_cap(enum dma_transaction_type tx_type, dma_cap_mask_t *srcp)
751 {
752 return test_bit(tx_type, srcp->bits);
753 }
754
755 #define for_each_dma_cap_mask(cap, mask) \
756 for ((cap) = first_dma_cap(mask); \
757 (cap) < DMA_TX_TYPE_END; \
758 (cap) = next_dma_cap((cap), (mask)))
759
760 /**
761 * dma_async_issue_pending - flush pending transactions to HW
762 * @chan: target DMA channel
763 *
764 * This allows drivers to push copies to HW in batches,
765 * reducing MMIO writes where possible.
766 */
767 static inline void dma_async_issue_pending(struct dma_chan *chan)
768 {
769 chan->device->device_issue_pending(chan);
770 }
771
772 #define dma_async_memcpy_issue_pending(chan) dma_async_issue_pending(chan)
773
774 /**
775 * dma_async_is_tx_complete - poll for transaction completion
776 * @chan: DMA channel
777 * @cookie: transaction identifier to check status of
778 * @last: returns last completed cookie, can be NULL
779 * @used: returns last issued cookie, can be NULL
780 *
781 * If @last and @used are passed in, upon return they reflect the driver
782 * internal state and can be used with dma_async_is_complete() to check
783 * the status of multiple cookies without re-checking hardware state.
784 */
785 static inline enum dma_status dma_async_is_tx_complete(struct dma_chan *chan,
786 dma_cookie_t cookie, dma_cookie_t *last, dma_cookie_t *used)
787 {
788 struct dma_tx_state state;
789 enum dma_status status;
790
791 status = chan->device->device_tx_status(chan, cookie, &state);
792 if (last)
793 *last = state.last;
794 if (used)
795 *used = state.used;
796 return status;
797 }
798
799 #define dma_async_memcpy_complete(chan, cookie, last, used)\
800 dma_async_is_tx_complete(chan, cookie, last, used)
801
802 /**
803 * dma_async_is_complete - test a cookie against chan state
804 * @cookie: transaction identifier to test status of
805 * @last_complete: last know completed transaction
806 * @last_used: last cookie value handed out
807 *
808 * dma_async_is_complete() is used in dma_async_memcpy_complete()
809 * the test logic is separated for lightweight testing of multiple cookies
810 */
811 static inline enum dma_status dma_async_is_complete(dma_cookie_t cookie,
812 dma_cookie_t last_complete, dma_cookie_t last_used)
813 {
814 if (last_complete <= last_used) {
815 if ((cookie <= last_complete) || (cookie > last_used))
816 return DMA_SUCCESS;
817 } else {
818 if ((cookie <= last_complete) && (cookie > last_used))
819 return DMA_SUCCESS;
820 }
821 return DMA_IN_PROGRESS;
822 }
823
824 static inline void
825 dma_set_tx_state(struct dma_tx_state *st, dma_cookie_t last, dma_cookie_t used, u32 residue)
826 {
827 if (st) {
828 st->last = last;
829 st->used = used;
830 st->residue = residue;
831 }
832 }
833
834 enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie);
835 #ifdef CONFIG_DMA_ENGINE
836 enum dma_status dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx);
837 void dma_issue_pending_all(void);
838 struct dma_chan *__dma_request_channel(dma_cap_mask_t *mask, dma_filter_fn fn, void *fn_param);
839 void dma_release_channel(struct dma_chan *chan);
840 #else
841 static inline enum dma_status dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx)
842 {
843 return DMA_SUCCESS;
844 }
845 static inline void dma_issue_pending_all(void)
846 {
847 }
848 static inline struct dma_chan *__dma_request_channel(dma_cap_mask_t *mask,
849 dma_filter_fn fn, void *fn_param)
850 {
851 return NULL;
852 }
853 static inline void dma_release_channel(struct dma_chan *chan)
854 {
855 }
856 #endif
857
858 /* --- DMA device --- */
859
860 int dma_async_device_register(struct dma_device *device);
861 void dma_async_device_unregister(struct dma_device *device);
862 void dma_run_dependencies(struct dma_async_tx_descriptor *tx);
863 struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type);
864 #define dma_request_channel(mask, x, y) __dma_request_channel(&(mask), x, y)
865
866 /* --- Helper iov-locking functions --- */
867
868 struct dma_page_list {
869 char __user *base_address;
870 int nr_pages;
871 struct page **pages;
872 };
873
874 struct dma_pinned_list {
875 int nr_iovecs;
876 struct dma_page_list page_list[0];
877 };
878
879 struct dma_pinned_list *dma_pin_iovec_pages(struct iovec *iov, size_t len);
880 void dma_unpin_iovec_pages(struct dma_pinned_list* pinned_list);
881
882 dma_cookie_t dma_memcpy_to_iovec(struct dma_chan *chan, struct iovec *iov,
883 struct dma_pinned_list *pinned_list, unsigned char *kdata, size_t len);
884 dma_cookie_t dma_memcpy_pg_to_iovec(struct dma_chan *chan, struct iovec *iov,
885 struct dma_pinned_list *pinned_list, struct page *page,
886 unsigned int offset, size_t len);
887
888 #endif /* DMAENGINE_H */
This page took 0.050654 seconds and 5 git commands to generate.