dmaengine: add new enum dma_transfer_direction
[deliverable/linux.git] / include / linux / dmaengine.h
1 /*
2 * Copyright(c) 2004 - 2006 Intel Corporation. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms of the GNU General Public License as published by the Free
6 * Software Foundation; either version 2 of the License, or (at your option)
7 * any later version.
8 *
9 * This program is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
13 *
14 * You should have received a copy of the GNU General Public License along with
15 * this program; if not, write to the Free Software Foundation, Inc., 59
16 * Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17 *
18 * The full GNU General Public License is included in this distribution in the
19 * file called COPYING.
20 */
21 #ifndef DMAENGINE_H
22 #define DMAENGINE_H
23
24 #include <linux/device.h>
25 #include <linux/uio.h>
26 #include <linux/scatterlist.h>
27
28 /**
29 * typedef dma_cookie_t - an opaque DMA cookie
30 *
31 * if dma_cookie_t is >0 it's a DMA request cookie, <0 it's an error code
32 */
33 typedef s32 dma_cookie_t;
34 #define DMA_MIN_COOKIE 1
35 #define DMA_MAX_COOKIE INT_MAX
36
37 #define dma_submit_error(cookie) ((cookie) < 0 ? 1 : 0)
38
39 /**
40 * enum dma_status - DMA transaction status
41 * @DMA_SUCCESS: transaction completed successfully
42 * @DMA_IN_PROGRESS: transaction not yet processed
43 * @DMA_PAUSED: transaction is paused
44 * @DMA_ERROR: transaction failed
45 */
46 enum dma_status {
47 DMA_SUCCESS,
48 DMA_IN_PROGRESS,
49 DMA_PAUSED,
50 DMA_ERROR,
51 };
52
53 /**
54 * enum dma_transaction_type - DMA transaction types/indexes
55 *
56 * Note: The DMA_ASYNC_TX capability is not to be set by drivers. It is
57 * automatically set as dma devices are registered.
58 */
59 enum dma_transaction_type {
60 DMA_MEMCPY,
61 DMA_XOR,
62 DMA_PQ,
63 DMA_XOR_VAL,
64 DMA_PQ_VAL,
65 DMA_MEMSET,
66 DMA_INTERRUPT,
67 DMA_SG,
68 DMA_PRIVATE,
69 DMA_ASYNC_TX,
70 DMA_SLAVE,
71 DMA_CYCLIC,
72 };
73
74 /* last transaction type for creation of the capabilities mask */
75 #define DMA_TX_TYPE_END (DMA_CYCLIC + 1)
76
77 /**
78 * enum dma_transfer_direction - dma transfer mode and direction indicator
79 * @DMA_MEM_TO_MEM: Async/Memcpy mode
80 * @DMA_MEM_TO_DEV: Slave mode & From Memory to Device
81 * @DMA_DEV_TO_MEM: Slave mode & From Device to Memory
82 * @DMA_DEV_TO_DEV: Slave mode & From Device to Device
83 */
84 enum dma_transfer_direction {
85 DMA_MEM_TO_MEM,
86 DMA_MEM_TO_DEV,
87 DMA_DEV_TO_MEM,
88 DMA_DEV_TO_DEV,
89 };
90
91 /**
92 * enum dma_ctrl_flags - DMA flags to augment operation preparation,
93 * control completion, and communicate status.
94 * @DMA_PREP_INTERRUPT - trigger an interrupt (callback) upon completion of
95 * this transaction
96 * @DMA_CTRL_ACK - if clear, the descriptor cannot be reused until the client
97 * acknowledges receipt, i.e. has has a chance to establish any dependency
98 * chains
99 * @DMA_COMPL_SKIP_SRC_UNMAP - set to disable dma-unmapping the source buffer(s)
100 * @DMA_COMPL_SKIP_DEST_UNMAP - set to disable dma-unmapping the destination(s)
101 * @DMA_COMPL_SRC_UNMAP_SINGLE - set to do the source dma-unmapping as single
102 * (if not set, do the source dma-unmapping as page)
103 * @DMA_COMPL_DEST_UNMAP_SINGLE - set to do the destination dma-unmapping as single
104 * (if not set, do the destination dma-unmapping as page)
105 * @DMA_PREP_PQ_DISABLE_P - prevent generation of P while generating Q
106 * @DMA_PREP_PQ_DISABLE_Q - prevent generation of Q while generating P
107 * @DMA_PREP_CONTINUE - indicate to a driver that it is reusing buffers as
108 * sources that were the result of a previous operation, in the case of a PQ
109 * operation it continues the calculation with new sources
110 * @DMA_PREP_FENCE - tell the driver that subsequent operations depend
111 * on the result of this operation
112 */
113 enum dma_ctrl_flags {
114 DMA_PREP_INTERRUPT = (1 << 0),
115 DMA_CTRL_ACK = (1 << 1),
116 DMA_COMPL_SKIP_SRC_UNMAP = (1 << 2),
117 DMA_COMPL_SKIP_DEST_UNMAP = (1 << 3),
118 DMA_COMPL_SRC_UNMAP_SINGLE = (1 << 4),
119 DMA_COMPL_DEST_UNMAP_SINGLE = (1 << 5),
120 DMA_PREP_PQ_DISABLE_P = (1 << 6),
121 DMA_PREP_PQ_DISABLE_Q = (1 << 7),
122 DMA_PREP_CONTINUE = (1 << 8),
123 DMA_PREP_FENCE = (1 << 9),
124 };
125
126 /**
127 * enum dma_ctrl_cmd - DMA operations that can optionally be exercised
128 * on a running channel.
129 * @DMA_TERMINATE_ALL: terminate all ongoing transfers
130 * @DMA_PAUSE: pause ongoing transfers
131 * @DMA_RESUME: resume paused transfer
132 * @DMA_SLAVE_CONFIG: this command is only implemented by DMA controllers
133 * that need to runtime reconfigure the slave channels (as opposed to passing
134 * configuration data in statically from the platform). An additional
135 * argument of struct dma_slave_config must be passed in with this
136 * command.
137 * @FSLDMA_EXTERNAL_START: this command will put the Freescale DMA controller
138 * into external start mode.
139 */
140 enum dma_ctrl_cmd {
141 DMA_TERMINATE_ALL,
142 DMA_PAUSE,
143 DMA_RESUME,
144 DMA_SLAVE_CONFIG,
145 FSLDMA_EXTERNAL_START,
146 };
147
148 /**
149 * enum sum_check_bits - bit position of pq_check_flags
150 */
151 enum sum_check_bits {
152 SUM_CHECK_P = 0,
153 SUM_CHECK_Q = 1,
154 };
155
156 /**
157 * enum pq_check_flags - result of async_{xor,pq}_zero_sum operations
158 * @SUM_CHECK_P_RESULT - 1 if xor zero sum error, 0 otherwise
159 * @SUM_CHECK_Q_RESULT - 1 if reed-solomon zero sum error, 0 otherwise
160 */
161 enum sum_check_flags {
162 SUM_CHECK_P_RESULT = (1 << SUM_CHECK_P),
163 SUM_CHECK_Q_RESULT = (1 << SUM_CHECK_Q),
164 };
165
166
167 /**
168 * dma_cap_mask_t - capabilities bitmap modeled after cpumask_t.
169 * See linux/cpumask.h
170 */
171 typedef struct { DECLARE_BITMAP(bits, DMA_TX_TYPE_END); } dma_cap_mask_t;
172
173 /**
174 * struct dma_chan_percpu - the per-CPU part of struct dma_chan
175 * @memcpy_count: transaction counter
176 * @bytes_transferred: byte counter
177 */
178
179 struct dma_chan_percpu {
180 /* stats */
181 unsigned long memcpy_count;
182 unsigned long bytes_transferred;
183 };
184
185 /**
186 * struct dma_chan - devices supply DMA channels, clients use them
187 * @device: ptr to the dma device who supplies this channel, always !%NULL
188 * @cookie: last cookie value returned to client
189 * @chan_id: channel ID for sysfs
190 * @dev: class device for sysfs
191 * @device_node: used to add this to the device chan list
192 * @local: per-cpu pointer to a struct dma_chan_percpu
193 * @client-count: how many clients are using this channel
194 * @table_count: number of appearances in the mem-to-mem allocation table
195 * @private: private data for certain client-channel associations
196 */
197 struct dma_chan {
198 struct dma_device *device;
199 dma_cookie_t cookie;
200
201 /* sysfs */
202 int chan_id;
203 struct dma_chan_dev *dev;
204
205 struct list_head device_node;
206 struct dma_chan_percpu __percpu *local;
207 int client_count;
208 int table_count;
209 void *private;
210 };
211
212 /**
213 * struct dma_chan_dev - relate sysfs device node to backing channel device
214 * @chan - driver channel device
215 * @device - sysfs device
216 * @dev_id - parent dma_device dev_id
217 * @idr_ref - reference count to gate release of dma_device dev_id
218 */
219 struct dma_chan_dev {
220 struct dma_chan *chan;
221 struct device device;
222 int dev_id;
223 atomic_t *idr_ref;
224 };
225
226 /**
227 * enum dma_slave_buswidth - defines bus with of the DMA slave
228 * device, source or target buses
229 */
230 enum dma_slave_buswidth {
231 DMA_SLAVE_BUSWIDTH_UNDEFINED = 0,
232 DMA_SLAVE_BUSWIDTH_1_BYTE = 1,
233 DMA_SLAVE_BUSWIDTH_2_BYTES = 2,
234 DMA_SLAVE_BUSWIDTH_4_BYTES = 4,
235 DMA_SLAVE_BUSWIDTH_8_BYTES = 8,
236 };
237
238 /**
239 * struct dma_slave_config - dma slave channel runtime config
240 * @direction: whether the data shall go in or out on this slave
241 * channel, right now. DMA_TO_DEVICE and DMA_FROM_DEVICE are
242 * legal values, DMA_BIDIRECTIONAL is not acceptable since we
243 * need to differentiate source and target addresses.
244 * @src_addr: this is the physical address where DMA slave data
245 * should be read (RX), if the source is memory this argument is
246 * ignored.
247 * @dst_addr: this is the physical address where DMA slave data
248 * should be written (TX), if the source is memory this argument
249 * is ignored.
250 * @src_addr_width: this is the width in bytes of the source (RX)
251 * register where DMA data shall be read. If the source
252 * is memory this may be ignored depending on architecture.
253 * Legal values: 1, 2, 4, 8.
254 * @dst_addr_width: same as src_addr_width but for destination
255 * target (TX) mutatis mutandis.
256 * @src_maxburst: the maximum number of words (note: words, as in
257 * units of the src_addr_width member, not bytes) that can be sent
258 * in one burst to the device. Typically something like half the
259 * FIFO depth on I/O peripherals so you don't overflow it. This
260 * may or may not be applicable on memory sources.
261 * @dst_maxburst: same as src_maxburst but for destination target
262 * mutatis mutandis.
263 *
264 * This struct is passed in as configuration data to a DMA engine
265 * in order to set up a certain channel for DMA transport at runtime.
266 * The DMA device/engine has to provide support for an additional
267 * command in the channel config interface, DMA_SLAVE_CONFIG
268 * and this struct will then be passed in as an argument to the
269 * DMA engine device_control() function.
270 *
271 * The rationale for adding configuration information to this struct
272 * is as follows: if it is likely that most DMA slave controllers in
273 * the world will support the configuration option, then make it
274 * generic. If not: if it is fixed so that it be sent in static from
275 * the platform data, then prefer to do that. Else, if it is neither
276 * fixed at runtime, nor generic enough (such as bus mastership on
277 * some CPU family and whatnot) then create a custom slave config
278 * struct and pass that, then make this config a member of that
279 * struct, if applicable.
280 */
281 struct dma_slave_config {
282 enum dma_transfer_direction direction;
283 dma_addr_t src_addr;
284 dma_addr_t dst_addr;
285 enum dma_slave_buswidth src_addr_width;
286 enum dma_slave_buswidth dst_addr_width;
287 u32 src_maxburst;
288 u32 dst_maxburst;
289 };
290
291 static inline const char *dma_chan_name(struct dma_chan *chan)
292 {
293 return dev_name(&chan->dev->device);
294 }
295
296 void dma_chan_cleanup(struct kref *kref);
297
298 /**
299 * typedef dma_filter_fn - callback filter for dma_request_channel
300 * @chan: channel to be reviewed
301 * @filter_param: opaque parameter passed through dma_request_channel
302 *
303 * When this optional parameter is specified in a call to dma_request_channel a
304 * suitable channel is passed to this routine for further dispositioning before
305 * being returned. Where 'suitable' indicates a non-busy channel that
306 * satisfies the given capability mask. It returns 'true' to indicate that the
307 * channel is suitable.
308 */
309 typedef bool (*dma_filter_fn)(struct dma_chan *chan, void *filter_param);
310
311 typedef void (*dma_async_tx_callback)(void *dma_async_param);
312 /**
313 * struct dma_async_tx_descriptor - async transaction descriptor
314 * ---dma generic offload fields---
315 * @cookie: tracking cookie for this transaction, set to -EBUSY if
316 * this tx is sitting on a dependency list
317 * @flags: flags to augment operation preparation, control completion, and
318 * communicate status
319 * @phys: physical address of the descriptor
320 * @chan: target channel for this operation
321 * @tx_submit: set the prepared descriptor(s) to be executed by the engine
322 * @callback: routine to call after this operation is complete
323 * @callback_param: general parameter to pass to the callback routine
324 * ---async_tx api specific fields---
325 * @next: at completion submit this descriptor
326 * @parent: pointer to the next level up in the dependency chain
327 * @lock: protect the parent and next pointers
328 */
329 struct dma_async_tx_descriptor {
330 dma_cookie_t cookie;
331 enum dma_ctrl_flags flags; /* not a 'long' to pack with cookie */
332 dma_addr_t phys;
333 struct dma_chan *chan;
334 dma_cookie_t (*tx_submit)(struct dma_async_tx_descriptor *tx);
335 dma_async_tx_callback callback;
336 void *callback_param;
337 #ifdef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
338 struct dma_async_tx_descriptor *next;
339 struct dma_async_tx_descriptor *parent;
340 spinlock_t lock;
341 #endif
342 };
343
344 #ifndef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
345 static inline void txd_lock(struct dma_async_tx_descriptor *txd)
346 {
347 }
348 static inline void txd_unlock(struct dma_async_tx_descriptor *txd)
349 {
350 }
351 static inline void txd_chain(struct dma_async_tx_descriptor *txd, struct dma_async_tx_descriptor *next)
352 {
353 BUG();
354 }
355 static inline void txd_clear_parent(struct dma_async_tx_descriptor *txd)
356 {
357 }
358 static inline void txd_clear_next(struct dma_async_tx_descriptor *txd)
359 {
360 }
361 static inline struct dma_async_tx_descriptor *txd_next(struct dma_async_tx_descriptor *txd)
362 {
363 return NULL;
364 }
365 static inline struct dma_async_tx_descriptor *txd_parent(struct dma_async_tx_descriptor *txd)
366 {
367 return NULL;
368 }
369
370 #else
371 static inline void txd_lock(struct dma_async_tx_descriptor *txd)
372 {
373 spin_lock_bh(&txd->lock);
374 }
375 static inline void txd_unlock(struct dma_async_tx_descriptor *txd)
376 {
377 spin_unlock_bh(&txd->lock);
378 }
379 static inline void txd_chain(struct dma_async_tx_descriptor *txd, struct dma_async_tx_descriptor *next)
380 {
381 txd->next = next;
382 next->parent = txd;
383 }
384 static inline void txd_clear_parent(struct dma_async_tx_descriptor *txd)
385 {
386 txd->parent = NULL;
387 }
388 static inline void txd_clear_next(struct dma_async_tx_descriptor *txd)
389 {
390 txd->next = NULL;
391 }
392 static inline struct dma_async_tx_descriptor *txd_parent(struct dma_async_tx_descriptor *txd)
393 {
394 return txd->parent;
395 }
396 static inline struct dma_async_tx_descriptor *txd_next(struct dma_async_tx_descriptor *txd)
397 {
398 return txd->next;
399 }
400 #endif
401
402 /**
403 * struct dma_tx_state - filled in to report the status of
404 * a transfer.
405 * @last: last completed DMA cookie
406 * @used: last issued DMA cookie (i.e. the one in progress)
407 * @residue: the remaining number of bytes left to transmit
408 * on the selected transfer for states DMA_IN_PROGRESS and
409 * DMA_PAUSED if this is implemented in the driver, else 0
410 */
411 struct dma_tx_state {
412 dma_cookie_t last;
413 dma_cookie_t used;
414 u32 residue;
415 };
416
417 /**
418 * struct dma_device - info on the entity supplying DMA services
419 * @chancnt: how many DMA channels are supported
420 * @privatecnt: how many DMA channels are requested by dma_request_channel
421 * @channels: the list of struct dma_chan
422 * @global_node: list_head for global dma_device_list
423 * @cap_mask: one or more dma_capability flags
424 * @max_xor: maximum number of xor sources, 0 if no capability
425 * @max_pq: maximum number of PQ sources and PQ-continue capability
426 * @copy_align: alignment shift for memcpy operations
427 * @xor_align: alignment shift for xor operations
428 * @pq_align: alignment shift for pq operations
429 * @fill_align: alignment shift for memset operations
430 * @dev_id: unique device ID
431 * @dev: struct device reference for dma mapping api
432 * @device_alloc_chan_resources: allocate resources and return the
433 * number of allocated descriptors
434 * @device_free_chan_resources: release DMA channel's resources
435 * @device_prep_dma_memcpy: prepares a memcpy operation
436 * @device_prep_dma_xor: prepares a xor operation
437 * @device_prep_dma_xor_val: prepares a xor validation operation
438 * @device_prep_dma_pq: prepares a pq operation
439 * @device_prep_dma_pq_val: prepares a pqzero_sum operation
440 * @device_prep_dma_memset: prepares a memset operation
441 * @device_prep_dma_interrupt: prepares an end of chain interrupt operation
442 * @device_prep_slave_sg: prepares a slave dma operation
443 * @device_prep_dma_cyclic: prepare a cyclic dma operation suitable for audio.
444 * The function takes a buffer of size buf_len. The callback function will
445 * be called after period_len bytes have been transferred.
446 * @device_control: manipulate all pending operations on a channel, returns
447 * zero or error code
448 * @device_tx_status: poll for transaction completion, the optional
449 * txstate parameter can be supplied with a pointer to get a
450 * struct with auxiliary transfer status information, otherwise the call
451 * will just return a simple status code
452 * @device_issue_pending: push pending transactions to hardware
453 */
454 struct dma_device {
455
456 unsigned int chancnt;
457 unsigned int privatecnt;
458 struct list_head channels;
459 struct list_head global_node;
460 dma_cap_mask_t cap_mask;
461 unsigned short max_xor;
462 unsigned short max_pq;
463 u8 copy_align;
464 u8 xor_align;
465 u8 pq_align;
466 u8 fill_align;
467 #define DMA_HAS_PQ_CONTINUE (1 << 15)
468
469 int dev_id;
470 struct device *dev;
471
472 int (*device_alloc_chan_resources)(struct dma_chan *chan);
473 void (*device_free_chan_resources)(struct dma_chan *chan);
474
475 struct dma_async_tx_descriptor *(*device_prep_dma_memcpy)(
476 struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
477 size_t len, unsigned long flags);
478 struct dma_async_tx_descriptor *(*device_prep_dma_xor)(
479 struct dma_chan *chan, dma_addr_t dest, dma_addr_t *src,
480 unsigned int src_cnt, size_t len, unsigned long flags);
481 struct dma_async_tx_descriptor *(*device_prep_dma_xor_val)(
482 struct dma_chan *chan, dma_addr_t *src, unsigned int src_cnt,
483 size_t len, enum sum_check_flags *result, unsigned long flags);
484 struct dma_async_tx_descriptor *(*device_prep_dma_pq)(
485 struct dma_chan *chan, dma_addr_t *dst, dma_addr_t *src,
486 unsigned int src_cnt, const unsigned char *scf,
487 size_t len, unsigned long flags);
488 struct dma_async_tx_descriptor *(*device_prep_dma_pq_val)(
489 struct dma_chan *chan, dma_addr_t *pq, dma_addr_t *src,
490 unsigned int src_cnt, const unsigned char *scf, size_t len,
491 enum sum_check_flags *pqres, unsigned long flags);
492 struct dma_async_tx_descriptor *(*device_prep_dma_memset)(
493 struct dma_chan *chan, dma_addr_t dest, int value, size_t len,
494 unsigned long flags);
495 struct dma_async_tx_descriptor *(*device_prep_dma_interrupt)(
496 struct dma_chan *chan, unsigned long flags);
497 struct dma_async_tx_descriptor *(*device_prep_dma_sg)(
498 struct dma_chan *chan,
499 struct scatterlist *dst_sg, unsigned int dst_nents,
500 struct scatterlist *src_sg, unsigned int src_nents,
501 unsigned long flags);
502
503 struct dma_async_tx_descriptor *(*device_prep_slave_sg)(
504 struct dma_chan *chan, struct scatterlist *sgl,
505 unsigned int sg_len, enum dma_transfer_direction direction,
506 unsigned long flags);
507 struct dma_async_tx_descriptor *(*device_prep_dma_cyclic)(
508 struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
509 size_t period_len, enum dma_transfer_direction direction);
510 int (*device_control)(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
511 unsigned long arg);
512
513 enum dma_status (*device_tx_status)(struct dma_chan *chan,
514 dma_cookie_t cookie,
515 struct dma_tx_state *txstate);
516 void (*device_issue_pending)(struct dma_chan *chan);
517 };
518
519 static inline int dmaengine_device_control(struct dma_chan *chan,
520 enum dma_ctrl_cmd cmd,
521 unsigned long arg)
522 {
523 return chan->device->device_control(chan, cmd, arg);
524 }
525
526 static inline int dmaengine_slave_config(struct dma_chan *chan,
527 struct dma_slave_config *config)
528 {
529 return dmaengine_device_control(chan, DMA_SLAVE_CONFIG,
530 (unsigned long)config);
531 }
532
533 static inline struct dma_async_tx_descriptor *dmaengine_prep_slave_single(
534 struct dma_chan *chan, void *buf, size_t len,
535 enum dma_transfer_direction dir, unsigned long flags)
536 {
537 struct scatterlist sg;
538 sg_init_one(&sg, buf, len);
539
540 return chan->device->device_prep_slave_sg(chan, &sg, 1, dir, flags);
541 }
542
543 static inline int dmaengine_terminate_all(struct dma_chan *chan)
544 {
545 return dmaengine_device_control(chan, DMA_TERMINATE_ALL, 0);
546 }
547
548 static inline int dmaengine_pause(struct dma_chan *chan)
549 {
550 return dmaengine_device_control(chan, DMA_PAUSE, 0);
551 }
552
553 static inline int dmaengine_resume(struct dma_chan *chan)
554 {
555 return dmaengine_device_control(chan, DMA_RESUME, 0);
556 }
557
558 static inline dma_cookie_t dmaengine_submit(struct dma_async_tx_descriptor *desc)
559 {
560 return desc->tx_submit(desc);
561 }
562
563 static inline bool dmaengine_check_align(u8 align, size_t off1, size_t off2, size_t len)
564 {
565 size_t mask;
566
567 if (!align)
568 return true;
569 mask = (1 << align) - 1;
570 if (mask & (off1 | off2 | len))
571 return false;
572 return true;
573 }
574
575 static inline bool is_dma_copy_aligned(struct dma_device *dev, size_t off1,
576 size_t off2, size_t len)
577 {
578 return dmaengine_check_align(dev->copy_align, off1, off2, len);
579 }
580
581 static inline bool is_dma_xor_aligned(struct dma_device *dev, size_t off1,
582 size_t off2, size_t len)
583 {
584 return dmaengine_check_align(dev->xor_align, off1, off2, len);
585 }
586
587 static inline bool is_dma_pq_aligned(struct dma_device *dev, size_t off1,
588 size_t off2, size_t len)
589 {
590 return dmaengine_check_align(dev->pq_align, off1, off2, len);
591 }
592
593 static inline bool is_dma_fill_aligned(struct dma_device *dev, size_t off1,
594 size_t off2, size_t len)
595 {
596 return dmaengine_check_align(dev->fill_align, off1, off2, len);
597 }
598
599 static inline void
600 dma_set_maxpq(struct dma_device *dma, int maxpq, int has_pq_continue)
601 {
602 dma->max_pq = maxpq;
603 if (has_pq_continue)
604 dma->max_pq |= DMA_HAS_PQ_CONTINUE;
605 }
606
607 static inline bool dmaf_continue(enum dma_ctrl_flags flags)
608 {
609 return (flags & DMA_PREP_CONTINUE) == DMA_PREP_CONTINUE;
610 }
611
612 static inline bool dmaf_p_disabled_continue(enum dma_ctrl_flags flags)
613 {
614 enum dma_ctrl_flags mask = DMA_PREP_CONTINUE | DMA_PREP_PQ_DISABLE_P;
615
616 return (flags & mask) == mask;
617 }
618
619 static inline bool dma_dev_has_pq_continue(struct dma_device *dma)
620 {
621 return (dma->max_pq & DMA_HAS_PQ_CONTINUE) == DMA_HAS_PQ_CONTINUE;
622 }
623
624 static inline unsigned short dma_dev_to_maxpq(struct dma_device *dma)
625 {
626 return dma->max_pq & ~DMA_HAS_PQ_CONTINUE;
627 }
628
629 /* dma_maxpq - reduce maxpq in the face of continued operations
630 * @dma - dma device with PQ capability
631 * @flags - to check if DMA_PREP_CONTINUE and DMA_PREP_PQ_DISABLE_P are set
632 *
633 * When an engine does not support native continuation we need 3 extra
634 * source slots to reuse P and Q with the following coefficients:
635 * 1/ {00} * P : remove P from Q', but use it as a source for P'
636 * 2/ {01} * Q : use Q to continue Q' calculation
637 * 3/ {00} * Q : subtract Q from P' to cancel (2)
638 *
639 * In the case where P is disabled we only need 1 extra source:
640 * 1/ {01} * Q : use Q to continue Q' calculation
641 */
642 static inline int dma_maxpq(struct dma_device *dma, enum dma_ctrl_flags flags)
643 {
644 if (dma_dev_has_pq_continue(dma) || !dmaf_continue(flags))
645 return dma_dev_to_maxpq(dma);
646 else if (dmaf_p_disabled_continue(flags))
647 return dma_dev_to_maxpq(dma) - 1;
648 else if (dmaf_continue(flags))
649 return dma_dev_to_maxpq(dma) - 3;
650 BUG();
651 }
652
653 /* --- public DMA engine API --- */
654
655 #ifdef CONFIG_DMA_ENGINE
656 void dmaengine_get(void);
657 void dmaengine_put(void);
658 #else
659 static inline void dmaengine_get(void)
660 {
661 }
662 static inline void dmaengine_put(void)
663 {
664 }
665 #endif
666
667 #ifdef CONFIG_NET_DMA
668 #define net_dmaengine_get() dmaengine_get()
669 #define net_dmaengine_put() dmaengine_put()
670 #else
671 static inline void net_dmaengine_get(void)
672 {
673 }
674 static inline void net_dmaengine_put(void)
675 {
676 }
677 #endif
678
679 #ifdef CONFIG_ASYNC_TX_DMA
680 #define async_dmaengine_get() dmaengine_get()
681 #define async_dmaengine_put() dmaengine_put()
682 #ifndef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
683 #define async_dma_find_channel(type) dma_find_channel(DMA_ASYNC_TX)
684 #else
685 #define async_dma_find_channel(type) dma_find_channel(type)
686 #endif /* CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH */
687 #else
688 static inline void async_dmaengine_get(void)
689 {
690 }
691 static inline void async_dmaengine_put(void)
692 {
693 }
694 static inline struct dma_chan *
695 async_dma_find_channel(enum dma_transaction_type type)
696 {
697 return NULL;
698 }
699 #endif /* CONFIG_ASYNC_TX_DMA */
700
701 dma_cookie_t dma_async_memcpy_buf_to_buf(struct dma_chan *chan,
702 void *dest, void *src, size_t len);
703 dma_cookie_t dma_async_memcpy_buf_to_pg(struct dma_chan *chan,
704 struct page *page, unsigned int offset, void *kdata, size_t len);
705 dma_cookie_t dma_async_memcpy_pg_to_pg(struct dma_chan *chan,
706 struct page *dest_pg, unsigned int dest_off, struct page *src_pg,
707 unsigned int src_off, size_t len);
708 void dma_async_tx_descriptor_init(struct dma_async_tx_descriptor *tx,
709 struct dma_chan *chan);
710
711 static inline void async_tx_ack(struct dma_async_tx_descriptor *tx)
712 {
713 tx->flags |= DMA_CTRL_ACK;
714 }
715
716 static inline void async_tx_clear_ack(struct dma_async_tx_descriptor *tx)
717 {
718 tx->flags &= ~DMA_CTRL_ACK;
719 }
720
721 static inline bool async_tx_test_ack(struct dma_async_tx_descriptor *tx)
722 {
723 return (tx->flags & DMA_CTRL_ACK) == DMA_CTRL_ACK;
724 }
725
726 #define first_dma_cap(mask) __first_dma_cap(&(mask))
727 static inline int __first_dma_cap(const dma_cap_mask_t *srcp)
728 {
729 return min_t(int, DMA_TX_TYPE_END,
730 find_first_bit(srcp->bits, DMA_TX_TYPE_END));
731 }
732
733 #define next_dma_cap(n, mask) __next_dma_cap((n), &(mask))
734 static inline int __next_dma_cap(int n, const dma_cap_mask_t *srcp)
735 {
736 return min_t(int, DMA_TX_TYPE_END,
737 find_next_bit(srcp->bits, DMA_TX_TYPE_END, n+1));
738 }
739
740 #define dma_cap_set(tx, mask) __dma_cap_set((tx), &(mask))
741 static inline void
742 __dma_cap_set(enum dma_transaction_type tx_type, dma_cap_mask_t *dstp)
743 {
744 set_bit(tx_type, dstp->bits);
745 }
746
747 #define dma_cap_clear(tx, mask) __dma_cap_clear((tx), &(mask))
748 static inline void
749 __dma_cap_clear(enum dma_transaction_type tx_type, dma_cap_mask_t *dstp)
750 {
751 clear_bit(tx_type, dstp->bits);
752 }
753
754 #define dma_cap_zero(mask) __dma_cap_zero(&(mask))
755 static inline void __dma_cap_zero(dma_cap_mask_t *dstp)
756 {
757 bitmap_zero(dstp->bits, DMA_TX_TYPE_END);
758 }
759
760 #define dma_has_cap(tx, mask) __dma_has_cap((tx), &(mask))
761 static inline int
762 __dma_has_cap(enum dma_transaction_type tx_type, dma_cap_mask_t *srcp)
763 {
764 return test_bit(tx_type, srcp->bits);
765 }
766
767 #define for_each_dma_cap_mask(cap, mask) \
768 for ((cap) = first_dma_cap(mask); \
769 (cap) < DMA_TX_TYPE_END; \
770 (cap) = next_dma_cap((cap), (mask)))
771
772 /**
773 * dma_async_issue_pending - flush pending transactions to HW
774 * @chan: target DMA channel
775 *
776 * This allows drivers to push copies to HW in batches,
777 * reducing MMIO writes where possible.
778 */
779 static inline void dma_async_issue_pending(struct dma_chan *chan)
780 {
781 chan->device->device_issue_pending(chan);
782 }
783
784 #define dma_async_memcpy_issue_pending(chan) dma_async_issue_pending(chan)
785
786 /**
787 * dma_async_is_tx_complete - poll for transaction completion
788 * @chan: DMA channel
789 * @cookie: transaction identifier to check status of
790 * @last: returns last completed cookie, can be NULL
791 * @used: returns last issued cookie, can be NULL
792 *
793 * If @last and @used are passed in, upon return they reflect the driver
794 * internal state and can be used with dma_async_is_complete() to check
795 * the status of multiple cookies without re-checking hardware state.
796 */
797 static inline enum dma_status dma_async_is_tx_complete(struct dma_chan *chan,
798 dma_cookie_t cookie, dma_cookie_t *last, dma_cookie_t *used)
799 {
800 struct dma_tx_state state;
801 enum dma_status status;
802
803 status = chan->device->device_tx_status(chan, cookie, &state);
804 if (last)
805 *last = state.last;
806 if (used)
807 *used = state.used;
808 return status;
809 }
810
811 #define dma_async_memcpy_complete(chan, cookie, last, used)\
812 dma_async_is_tx_complete(chan, cookie, last, used)
813
814 /**
815 * dma_async_is_complete - test a cookie against chan state
816 * @cookie: transaction identifier to test status of
817 * @last_complete: last know completed transaction
818 * @last_used: last cookie value handed out
819 *
820 * dma_async_is_complete() is used in dma_async_memcpy_complete()
821 * the test logic is separated for lightweight testing of multiple cookies
822 */
823 static inline enum dma_status dma_async_is_complete(dma_cookie_t cookie,
824 dma_cookie_t last_complete, dma_cookie_t last_used)
825 {
826 if (last_complete <= last_used) {
827 if ((cookie <= last_complete) || (cookie > last_used))
828 return DMA_SUCCESS;
829 } else {
830 if ((cookie <= last_complete) && (cookie > last_used))
831 return DMA_SUCCESS;
832 }
833 return DMA_IN_PROGRESS;
834 }
835
836 static inline void
837 dma_set_tx_state(struct dma_tx_state *st, dma_cookie_t last, dma_cookie_t used, u32 residue)
838 {
839 if (st) {
840 st->last = last;
841 st->used = used;
842 st->residue = residue;
843 }
844 }
845
846 enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie);
847 #ifdef CONFIG_DMA_ENGINE
848 enum dma_status dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx);
849 void dma_issue_pending_all(void);
850 struct dma_chan *__dma_request_channel(dma_cap_mask_t *mask, dma_filter_fn fn, void *fn_param);
851 void dma_release_channel(struct dma_chan *chan);
852 #else
853 static inline enum dma_status dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx)
854 {
855 return DMA_SUCCESS;
856 }
857 static inline void dma_issue_pending_all(void)
858 {
859 }
860 static inline struct dma_chan *__dma_request_channel(dma_cap_mask_t *mask,
861 dma_filter_fn fn, void *fn_param)
862 {
863 return NULL;
864 }
865 static inline void dma_release_channel(struct dma_chan *chan)
866 {
867 }
868 #endif
869
870 /* --- DMA device --- */
871
872 int dma_async_device_register(struct dma_device *device);
873 void dma_async_device_unregister(struct dma_device *device);
874 void dma_run_dependencies(struct dma_async_tx_descriptor *tx);
875 struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type);
876 #define dma_request_channel(mask, x, y) __dma_request_channel(&(mask), x, y)
877
878 /* --- Helper iov-locking functions --- */
879
880 struct dma_page_list {
881 char __user *base_address;
882 int nr_pages;
883 struct page **pages;
884 };
885
886 struct dma_pinned_list {
887 int nr_iovecs;
888 struct dma_page_list page_list[0];
889 };
890
891 struct dma_pinned_list *dma_pin_iovec_pages(struct iovec *iov, size_t len);
892 void dma_unpin_iovec_pages(struct dma_pinned_list* pinned_list);
893
894 dma_cookie_t dma_memcpy_to_iovec(struct dma_chan *chan, struct iovec *iov,
895 struct dma_pinned_list *pinned_list, unsigned char *kdata, size_t len);
896 dma_cookie_t dma_memcpy_pg_to_iovec(struct dma_chan *chan, struct iovec *iov,
897 struct dma_pinned_list *pinned_list, struct page *page,
898 unsigned int offset, size_t len);
899
900 #endif /* DMAENGINE_H */
This page took 0.047594 seconds and 5 git commands to generate.