Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/sage/ceph...
[deliverable/linux.git] / include / linux / dmaengine.h
1 /*
2 * Copyright(c) 2004 - 2006 Intel Corporation. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms of the GNU General Public License as published by the Free
6 * Software Foundation; either version 2 of the License, or (at your option)
7 * any later version.
8 *
9 * This program is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
13 *
14 * The full GNU General Public License is included in this distribution in the
15 * file called COPYING.
16 */
17 #ifndef LINUX_DMAENGINE_H
18 #define LINUX_DMAENGINE_H
19
20 #include <linux/device.h>
21 #include <linux/err.h>
22 #include <linux/uio.h>
23 #include <linux/bug.h>
24 #include <linux/scatterlist.h>
25 #include <linux/bitmap.h>
26 #include <linux/types.h>
27 #include <asm/page.h>
28
29 /**
30 * typedef dma_cookie_t - an opaque DMA cookie
31 *
32 * if dma_cookie_t is >0 it's a DMA request cookie, <0 it's an error code
33 */
34 typedef s32 dma_cookie_t;
35 #define DMA_MIN_COOKIE 1
36
37 static inline int dma_submit_error(dma_cookie_t cookie)
38 {
39 return cookie < 0 ? cookie : 0;
40 }
41
42 /**
43 * enum dma_status - DMA transaction status
44 * @DMA_COMPLETE: transaction completed
45 * @DMA_IN_PROGRESS: transaction not yet processed
46 * @DMA_PAUSED: transaction is paused
47 * @DMA_ERROR: transaction failed
48 */
49 enum dma_status {
50 DMA_COMPLETE,
51 DMA_IN_PROGRESS,
52 DMA_PAUSED,
53 DMA_ERROR,
54 };
55
56 /**
57 * enum dma_transaction_type - DMA transaction types/indexes
58 *
59 * Note: The DMA_ASYNC_TX capability is not to be set by drivers. It is
60 * automatically set as dma devices are registered.
61 */
62 enum dma_transaction_type {
63 DMA_MEMCPY,
64 DMA_XOR,
65 DMA_PQ,
66 DMA_XOR_VAL,
67 DMA_PQ_VAL,
68 DMA_MEMSET,
69 DMA_INTERRUPT,
70 DMA_SG,
71 DMA_PRIVATE,
72 DMA_ASYNC_TX,
73 DMA_SLAVE,
74 DMA_CYCLIC,
75 DMA_INTERLEAVE,
76 /* last transaction type for creation of the capabilities mask */
77 DMA_TX_TYPE_END,
78 };
79
80 /**
81 * enum dma_transfer_direction - dma transfer mode and direction indicator
82 * @DMA_MEM_TO_MEM: Async/Memcpy mode
83 * @DMA_MEM_TO_DEV: Slave mode & From Memory to Device
84 * @DMA_DEV_TO_MEM: Slave mode & From Device to Memory
85 * @DMA_DEV_TO_DEV: Slave mode & From Device to Device
86 */
87 enum dma_transfer_direction {
88 DMA_MEM_TO_MEM,
89 DMA_MEM_TO_DEV,
90 DMA_DEV_TO_MEM,
91 DMA_DEV_TO_DEV,
92 DMA_TRANS_NONE,
93 };
94
95 /**
96 * Interleaved Transfer Request
97 * ----------------------------
98 * A chunk is collection of contiguous bytes to be transfered.
99 * The gap(in bytes) between two chunks is called inter-chunk-gap(ICG).
100 * ICGs may or maynot change between chunks.
101 * A FRAME is the smallest series of contiguous {chunk,icg} pairs,
102 * that when repeated an integral number of times, specifies the transfer.
103 * A transfer template is specification of a Frame, the number of times
104 * it is to be repeated and other per-transfer attributes.
105 *
106 * Practically, a client driver would have ready a template for each
107 * type of transfer it is going to need during its lifetime and
108 * set only 'src_start' and 'dst_start' before submitting the requests.
109 *
110 *
111 * | Frame-1 | Frame-2 | ~ | Frame-'numf' |
112 * |====....==.===...=...|====....==.===...=...| ~ |====....==.===...=...|
113 *
114 * == Chunk size
115 * ... ICG
116 */
117
118 /**
119 * struct data_chunk - Element of scatter-gather list that makes a frame.
120 * @size: Number of bytes to read from source.
121 * size_dst := fn(op, size_src), so doesn't mean much for destination.
122 * @icg: Number of bytes to jump after last src/dst address of this
123 * chunk and before first src/dst address for next chunk.
124 * Ignored for dst(assumed 0), if dst_inc is true and dst_sgl is false.
125 * Ignored for src(assumed 0), if src_inc is true and src_sgl is false.
126 * @dst_icg: Number of bytes to jump after last dst address of this
127 * chunk and before the first dst address for next chunk.
128 * Ignored if dst_inc is true and dst_sgl is false.
129 * @src_icg: Number of bytes to jump after last src address of this
130 * chunk and before the first src address for next chunk.
131 * Ignored if src_inc is true and src_sgl is false.
132 */
133 struct data_chunk {
134 size_t size;
135 size_t icg;
136 size_t dst_icg;
137 size_t src_icg;
138 };
139
140 /**
141 * struct dma_interleaved_template - Template to convey DMAC the transfer pattern
142 * and attributes.
143 * @src_start: Bus address of source for the first chunk.
144 * @dst_start: Bus address of destination for the first chunk.
145 * @dir: Specifies the type of Source and Destination.
146 * @src_inc: If the source address increments after reading from it.
147 * @dst_inc: If the destination address increments after writing to it.
148 * @src_sgl: If the 'icg' of sgl[] applies to Source (scattered read).
149 * Otherwise, source is read contiguously (icg ignored).
150 * Ignored if src_inc is false.
151 * @dst_sgl: If the 'icg' of sgl[] applies to Destination (scattered write).
152 * Otherwise, destination is filled contiguously (icg ignored).
153 * Ignored if dst_inc is false.
154 * @numf: Number of frames in this template.
155 * @frame_size: Number of chunks in a frame i.e, size of sgl[].
156 * @sgl: Array of {chunk,icg} pairs that make up a frame.
157 */
158 struct dma_interleaved_template {
159 dma_addr_t src_start;
160 dma_addr_t dst_start;
161 enum dma_transfer_direction dir;
162 bool src_inc;
163 bool dst_inc;
164 bool src_sgl;
165 bool dst_sgl;
166 size_t numf;
167 size_t frame_size;
168 struct data_chunk sgl[0];
169 };
170
171 /**
172 * enum dma_ctrl_flags - DMA flags to augment operation preparation,
173 * control completion, and communicate status.
174 * @DMA_PREP_INTERRUPT - trigger an interrupt (callback) upon completion of
175 * this transaction
176 * @DMA_CTRL_ACK - if clear, the descriptor cannot be reused until the client
177 * acknowledges receipt, i.e. has has a chance to establish any dependency
178 * chains
179 * @DMA_PREP_PQ_DISABLE_P - prevent generation of P while generating Q
180 * @DMA_PREP_PQ_DISABLE_Q - prevent generation of Q while generating P
181 * @DMA_PREP_CONTINUE - indicate to a driver that it is reusing buffers as
182 * sources that were the result of a previous operation, in the case of a PQ
183 * operation it continues the calculation with new sources
184 * @DMA_PREP_FENCE - tell the driver that subsequent operations depend
185 * on the result of this operation
186 */
187 enum dma_ctrl_flags {
188 DMA_PREP_INTERRUPT = (1 << 0),
189 DMA_CTRL_ACK = (1 << 1),
190 DMA_PREP_PQ_DISABLE_P = (1 << 2),
191 DMA_PREP_PQ_DISABLE_Q = (1 << 3),
192 DMA_PREP_CONTINUE = (1 << 4),
193 DMA_PREP_FENCE = (1 << 5),
194 };
195
196 /**
197 * enum sum_check_bits - bit position of pq_check_flags
198 */
199 enum sum_check_bits {
200 SUM_CHECK_P = 0,
201 SUM_CHECK_Q = 1,
202 };
203
204 /**
205 * enum pq_check_flags - result of async_{xor,pq}_zero_sum operations
206 * @SUM_CHECK_P_RESULT - 1 if xor zero sum error, 0 otherwise
207 * @SUM_CHECK_Q_RESULT - 1 if reed-solomon zero sum error, 0 otherwise
208 */
209 enum sum_check_flags {
210 SUM_CHECK_P_RESULT = (1 << SUM_CHECK_P),
211 SUM_CHECK_Q_RESULT = (1 << SUM_CHECK_Q),
212 };
213
214
215 /**
216 * dma_cap_mask_t - capabilities bitmap modeled after cpumask_t.
217 * See linux/cpumask.h
218 */
219 typedef struct { DECLARE_BITMAP(bits, DMA_TX_TYPE_END); } dma_cap_mask_t;
220
221 /**
222 * struct dma_chan_percpu - the per-CPU part of struct dma_chan
223 * @memcpy_count: transaction counter
224 * @bytes_transferred: byte counter
225 */
226
227 struct dma_chan_percpu {
228 /* stats */
229 unsigned long memcpy_count;
230 unsigned long bytes_transferred;
231 };
232
233 /**
234 * struct dma_router - DMA router structure
235 * @dev: pointer to the DMA router device
236 * @route_free: function to be called when the route can be disconnected
237 */
238 struct dma_router {
239 struct device *dev;
240 void (*route_free)(struct device *dev, void *route_data);
241 };
242
243 /**
244 * struct dma_chan - devices supply DMA channels, clients use them
245 * @device: ptr to the dma device who supplies this channel, always !%NULL
246 * @cookie: last cookie value returned to client
247 * @completed_cookie: last completed cookie for this channel
248 * @chan_id: channel ID for sysfs
249 * @dev: class device for sysfs
250 * @device_node: used to add this to the device chan list
251 * @local: per-cpu pointer to a struct dma_chan_percpu
252 * @client_count: how many clients are using this channel
253 * @table_count: number of appearances in the mem-to-mem allocation table
254 * @router: pointer to the DMA router structure
255 * @route_data: channel specific data for the router
256 * @private: private data for certain client-channel associations
257 */
258 struct dma_chan {
259 struct dma_device *device;
260 dma_cookie_t cookie;
261 dma_cookie_t completed_cookie;
262
263 /* sysfs */
264 int chan_id;
265 struct dma_chan_dev *dev;
266
267 struct list_head device_node;
268 struct dma_chan_percpu __percpu *local;
269 int client_count;
270 int table_count;
271
272 /* DMA router */
273 struct dma_router *router;
274 void *route_data;
275
276 void *private;
277 };
278
279 /**
280 * struct dma_chan_dev - relate sysfs device node to backing channel device
281 * @chan: driver channel device
282 * @device: sysfs device
283 * @dev_id: parent dma_device dev_id
284 * @idr_ref: reference count to gate release of dma_device dev_id
285 */
286 struct dma_chan_dev {
287 struct dma_chan *chan;
288 struct device device;
289 int dev_id;
290 atomic_t *idr_ref;
291 };
292
293 /**
294 * enum dma_slave_buswidth - defines bus width of the DMA slave
295 * device, source or target buses
296 */
297 enum dma_slave_buswidth {
298 DMA_SLAVE_BUSWIDTH_UNDEFINED = 0,
299 DMA_SLAVE_BUSWIDTH_1_BYTE = 1,
300 DMA_SLAVE_BUSWIDTH_2_BYTES = 2,
301 DMA_SLAVE_BUSWIDTH_3_BYTES = 3,
302 DMA_SLAVE_BUSWIDTH_4_BYTES = 4,
303 DMA_SLAVE_BUSWIDTH_8_BYTES = 8,
304 DMA_SLAVE_BUSWIDTH_16_BYTES = 16,
305 DMA_SLAVE_BUSWIDTH_32_BYTES = 32,
306 DMA_SLAVE_BUSWIDTH_64_BYTES = 64,
307 };
308
309 /**
310 * struct dma_slave_config - dma slave channel runtime config
311 * @direction: whether the data shall go in or out on this slave
312 * channel, right now. DMA_MEM_TO_DEV and DMA_DEV_TO_MEM are
313 * legal values. DEPRECATED, drivers should use the direction argument
314 * to the device_prep_slave_sg and device_prep_dma_cyclic functions or
315 * the dir field in the dma_interleaved_template structure.
316 * @src_addr: this is the physical address where DMA slave data
317 * should be read (RX), if the source is memory this argument is
318 * ignored.
319 * @dst_addr: this is the physical address where DMA slave data
320 * should be written (TX), if the source is memory this argument
321 * is ignored.
322 * @src_addr_width: this is the width in bytes of the source (RX)
323 * register where DMA data shall be read. If the source
324 * is memory this may be ignored depending on architecture.
325 * Legal values: 1, 2, 4, 8.
326 * @dst_addr_width: same as src_addr_width but for destination
327 * target (TX) mutatis mutandis.
328 * @src_maxburst: the maximum number of words (note: words, as in
329 * units of the src_addr_width member, not bytes) that can be sent
330 * in one burst to the device. Typically something like half the
331 * FIFO depth on I/O peripherals so you don't overflow it. This
332 * may or may not be applicable on memory sources.
333 * @dst_maxburst: same as src_maxburst but for destination target
334 * mutatis mutandis.
335 * @device_fc: Flow Controller Settings. Only valid for slave channels. Fill
336 * with 'true' if peripheral should be flow controller. Direction will be
337 * selected at Runtime.
338 * @slave_id: Slave requester id. Only valid for slave channels. The dma
339 * slave peripheral will have unique id as dma requester which need to be
340 * pass as slave config.
341 *
342 * This struct is passed in as configuration data to a DMA engine
343 * in order to set up a certain channel for DMA transport at runtime.
344 * The DMA device/engine has to provide support for an additional
345 * callback in the dma_device structure, device_config and this struct
346 * will then be passed in as an argument to the function.
347 *
348 * The rationale for adding configuration information to this struct is as
349 * follows: if it is likely that more than one DMA slave controllers in
350 * the world will support the configuration option, then make it generic.
351 * If not: if it is fixed so that it be sent in static from the platform
352 * data, then prefer to do that.
353 */
354 struct dma_slave_config {
355 enum dma_transfer_direction direction;
356 dma_addr_t src_addr;
357 dma_addr_t dst_addr;
358 enum dma_slave_buswidth src_addr_width;
359 enum dma_slave_buswidth dst_addr_width;
360 u32 src_maxburst;
361 u32 dst_maxburst;
362 bool device_fc;
363 unsigned int slave_id;
364 };
365
366 /**
367 * enum dma_residue_granularity - Granularity of the reported transfer residue
368 * @DMA_RESIDUE_GRANULARITY_DESCRIPTOR: Residue reporting is not support. The
369 * DMA channel is only able to tell whether a descriptor has been completed or
370 * not, which means residue reporting is not supported by this channel. The
371 * residue field of the dma_tx_state field will always be 0.
372 * @DMA_RESIDUE_GRANULARITY_SEGMENT: Residue is updated after each successfully
373 * completed segment of the transfer (For cyclic transfers this is after each
374 * period). This is typically implemented by having the hardware generate an
375 * interrupt after each transferred segment and then the drivers updates the
376 * outstanding residue by the size of the segment. Another possibility is if
377 * the hardware supports scatter-gather and the segment descriptor has a field
378 * which gets set after the segment has been completed. The driver then counts
379 * the number of segments without the flag set to compute the residue.
380 * @DMA_RESIDUE_GRANULARITY_BURST: Residue is updated after each transferred
381 * burst. This is typically only supported if the hardware has a progress
382 * register of some sort (E.g. a register with the current read/write address
383 * or a register with the amount of bursts/beats/bytes that have been
384 * transferred or still need to be transferred).
385 */
386 enum dma_residue_granularity {
387 DMA_RESIDUE_GRANULARITY_DESCRIPTOR = 0,
388 DMA_RESIDUE_GRANULARITY_SEGMENT = 1,
389 DMA_RESIDUE_GRANULARITY_BURST = 2,
390 };
391
392 /* struct dma_slave_caps - expose capabilities of a slave channel only
393 *
394 * @src_addr_widths: bit mask of src addr widths the channel supports
395 * @dst_addr_widths: bit mask of dstn addr widths the channel supports
396 * @directions: bit mask of slave direction the channel supported
397 * since the enum dma_transfer_direction is not defined as bits for each
398 * type of direction, the dma controller should fill (1 << <TYPE>) and same
399 * should be checked by controller as well
400 * @cmd_pause: true, if pause and thereby resume is supported
401 * @cmd_terminate: true, if terminate cmd is supported
402 * @residue_granularity: granularity of the reported transfer residue
403 */
404 struct dma_slave_caps {
405 u32 src_addr_widths;
406 u32 dst_addr_widths;
407 u32 directions;
408 bool cmd_pause;
409 bool cmd_terminate;
410 enum dma_residue_granularity residue_granularity;
411 };
412
413 static inline const char *dma_chan_name(struct dma_chan *chan)
414 {
415 return dev_name(&chan->dev->device);
416 }
417
418 void dma_chan_cleanup(struct kref *kref);
419
420 /**
421 * typedef dma_filter_fn - callback filter for dma_request_channel
422 * @chan: channel to be reviewed
423 * @filter_param: opaque parameter passed through dma_request_channel
424 *
425 * When this optional parameter is specified in a call to dma_request_channel a
426 * suitable channel is passed to this routine for further dispositioning before
427 * being returned. Where 'suitable' indicates a non-busy channel that
428 * satisfies the given capability mask. It returns 'true' to indicate that the
429 * channel is suitable.
430 */
431 typedef bool (*dma_filter_fn)(struct dma_chan *chan, void *filter_param);
432
433 typedef void (*dma_async_tx_callback)(void *dma_async_param);
434
435 struct dmaengine_unmap_data {
436 u8 map_cnt;
437 u8 to_cnt;
438 u8 from_cnt;
439 u8 bidi_cnt;
440 struct device *dev;
441 struct kref kref;
442 size_t len;
443 dma_addr_t addr[0];
444 };
445
446 /**
447 * struct dma_async_tx_descriptor - async transaction descriptor
448 * ---dma generic offload fields---
449 * @cookie: tracking cookie for this transaction, set to -EBUSY if
450 * this tx is sitting on a dependency list
451 * @flags: flags to augment operation preparation, control completion, and
452 * communicate status
453 * @phys: physical address of the descriptor
454 * @chan: target channel for this operation
455 * @tx_submit: accept the descriptor, assign ordered cookie and mark the
456 * descriptor pending. To be pushed on .issue_pending() call
457 * @callback: routine to call after this operation is complete
458 * @callback_param: general parameter to pass to the callback routine
459 * ---async_tx api specific fields---
460 * @next: at completion submit this descriptor
461 * @parent: pointer to the next level up in the dependency chain
462 * @lock: protect the parent and next pointers
463 */
464 struct dma_async_tx_descriptor {
465 dma_cookie_t cookie;
466 enum dma_ctrl_flags flags; /* not a 'long' to pack with cookie */
467 dma_addr_t phys;
468 struct dma_chan *chan;
469 dma_cookie_t (*tx_submit)(struct dma_async_tx_descriptor *tx);
470 dma_async_tx_callback callback;
471 void *callback_param;
472 struct dmaengine_unmap_data *unmap;
473 #ifdef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
474 struct dma_async_tx_descriptor *next;
475 struct dma_async_tx_descriptor *parent;
476 spinlock_t lock;
477 #endif
478 };
479
480 #ifdef CONFIG_DMA_ENGINE
481 static inline void dma_set_unmap(struct dma_async_tx_descriptor *tx,
482 struct dmaengine_unmap_data *unmap)
483 {
484 kref_get(&unmap->kref);
485 tx->unmap = unmap;
486 }
487
488 struct dmaengine_unmap_data *
489 dmaengine_get_unmap_data(struct device *dev, int nr, gfp_t flags);
490 void dmaengine_unmap_put(struct dmaengine_unmap_data *unmap);
491 #else
492 static inline void dma_set_unmap(struct dma_async_tx_descriptor *tx,
493 struct dmaengine_unmap_data *unmap)
494 {
495 }
496 static inline struct dmaengine_unmap_data *
497 dmaengine_get_unmap_data(struct device *dev, int nr, gfp_t flags)
498 {
499 return NULL;
500 }
501 static inline void dmaengine_unmap_put(struct dmaengine_unmap_data *unmap)
502 {
503 }
504 #endif
505
506 static inline void dma_descriptor_unmap(struct dma_async_tx_descriptor *tx)
507 {
508 if (tx->unmap) {
509 dmaengine_unmap_put(tx->unmap);
510 tx->unmap = NULL;
511 }
512 }
513
514 #ifndef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
515 static inline void txd_lock(struct dma_async_tx_descriptor *txd)
516 {
517 }
518 static inline void txd_unlock(struct dma_async_tx_descriptor *txd)
519 {
520 }
521 static inline void txd_chain(struct dma_async_tx_descriptor *txd, struct dma_async_tx_descriptor *next)
522 {
523 BUG();
524 }
525 static inline void txd_clear_parent(struct dma_async_tx_descriptor *txd)
526 {
527 }
528 static inline void txd_clear_next(struct dma_async_tx_descriptor *txd)
529 {
530 }
531 static inline struct dma_async_tx_descriptor *txd_next(struct dma_async_tx_descriptor *txd)
532 {
533 return NULL;
534 }
535 static inline struct dma_async_tx_descriptor *txd_parent(struct dma_async_tx_descriptor *txd)
536 {
537 return NULL;
538 }
539
540 #else
541 static inline void txd_lock(struct dma_async_tx_descriptor *txd)
542 {
543 spin_lock_bh(&txd->lock);
544 }
545 static inline void txd_unlock(struct dma_async_tx_descriptor *txd)
546 {
547 spin_unlock_bh(&txd->lock);
548 }
549 static inline void txd_chain(struct dma_async_tx_descriptor *txd, struct dma_async_tx_descriptor *next)
550 {
551 txd->next = next;
552 next->parent = txd;
553 }
554 static inline void txd_clear_parent(struct dma_async_tx_descriptor *txd)
555 {
556 txd->parent = NULL;
557 }
558 static inline void txd_clear_next(struct dma_async_tx_descriptor *txd)
559 {
560 txd->next = NULL;
561 }
562 static inline struct dma_async_tx_descriptor *txd_parent(struct dma_async_tx_descriptor *txd)
563 {
564 return txd->parent;
565 }
566 static inline struct dma_async_tx_descriptor *txd_next(struct dma_async_tx_descriptor *txd)
567 {
568 return txd->next;
569 }
570 #endif
571
572 /**
573 * struct dma_tx_state - filled in to report the status of
574 * a transfer.
575 * @last: last completed DMA cookie
576 * @used: last issued DMA cookie (i.e. the one in progress)
577 * @residue: the remaining number of bytes left to transmit
578 * on the selected transfer for states DMA_IN_PROGRESS and
579 * DMA_PAUSED if this is implemented in the driver, else 0
580 */
581 struct dma_tx_state {
582 dma_cookie_t last;
583 dma_cookie_t used;
584 u32 residue;
585 };
586
587 /**
588 * struct dma_device - info on the entity supplying DMA services
589 * @chancnt: how many DMA channels are supported
590 * @privatecnt: how many DMA channels are requested by dma_request_channel
591 * @channels: the list of struct dma_chan
592 * @global_node: list_head for global dma_device_list
593 * @cap_mask: one or more dma_capability flags
594 * @max_xor: maximum number of xor sources, 0 if no capability
595 * @max_pq: maximum number of PQ sources and PQ-continue capability
596 * @copy_align: alignment shift for memcpy operations
597 * @xor_align: alignment shift for xor operations
598 * @pq_align: alignment shift for pq operations
599 * @fill_align: alignment shift for memset operations
600 * @dev_id: unique device ID
601 * @dev: struct device reference for dma mapping api
602 * @src_addr_widths: bit mask of src addr widths the device supports
603 * @dst_addr_widths: bit mask of dst addr widths the device supports
604 * @directions: bit mask of slave direction the device supports since
605 * the enum dma_transfer_direction is not defined as bits for
606 * each type of direction, the dma controller should fill (1 <<
607 * <TYPE>) and same should be checked by controller as well
608 * @residue_granularity: granularity of the transfer residue reported
609 * by tx_status
610 * @device_alloc_chan_resources: allocate resources and return the
611 * number of allocated descriptors
612 * @device_free_chan_resources: release DMA channel's resources
613 * @device_prep_dma_memcpy: prepares a memcpy operation
614 * @device_prep_dma_xor: prepares a xor operation
615 * @device_prep_dma_xor_val: prepares a xor validation operation
616 * @device_prep_dma_pq: prepares a pq operation
617 * @device_prep_dma_pq_val: prepares a pqzero_sum operation
618 * @device_prep_dma_memset: prepares a memset operation
619 * @device_prep_dma_interrupt: prepares an end of chain interrupt operation
620 * @device_prep_slave_sg: prepares a slave dma operation
621 * @device_prep_dma_cyclic: prepare a cyclic dma operation suitable for audio.
622 * The function takes a buffer of size buf_len. The callback function will
623 * be called after period_len bytes have been transferred.
624 * @device_prep_interleaved_dma: Transfer expression in a generic way.
625 * @device_config: Pushes a new configuration to a channel, return 0 or an error
626 * code
627 * @device_pause: Pauses any transfer happening on a channel. Returns
628 * 0 or an error code
629 * @device_resume: Resumes any transfer on a channel previously
630 * paused. Returns 0 or an error code
631 * @device_terminate_all: Aborts all transfers on a channel. Returns 0
632 * or an error code
633 * @device_tx_status: poll for transaction completion, the optional
634 * txstate parameter can be supplied with a pointer to get a
635 * struct with auxiliary transfer status information, otherwise the call
636 * will just return a simple status code
637 * @device_issue_pending: push pending transactions to hardware
638 */
639 struct dma_device {
640
641 unsigned int chancnt;
642 unsigned int privatecnt;
643 struct list_head channels;
644 struct list_head global_node;
645 dma_cap_mask_t cap_mask;
646 unsigned short max_xor;
647 unsigned short max_pq;
648 u8 copy_align;
649 u8 xor_align;
650 u8 pq_align;
651 u8 fill_align;
652 #define DMA_HAS_PQ_CONTINUE (1 << 15)
653
654 int dev_id;
655 struct device *dev;
656
657 u32 src_addr_widths;
658 u32 dst_addr_widths;
659 u32 directions;
660 enum dma_residue_granularity residue_granularity;
661
662 int (*device_alloc_chan_resources)(struct dma_chan *chan);
663 void (*device_free_chan_resources)(struct dma_chan *chan);
664
665 struct dma_async_tx_descriptor *(*device_prep_dma_memcpy)(
666 struct dma_chan *chan, dma_addr_t dst, dma_addr_t src,
667 size_t len, unsigned long flags);
668 struct dma_async_tx_descriptor *(*device_prep_dma_xor)(
669 struct dma_chan *chan, dma_addr_t dst, dma_addr_t *src,
670 unsigned int src_cnt, size_t len, unsigned long flags);
671 struct dma_async_tx_descriptor *(*device_prep_dma_xor_val)(
672 struct dma_chan *chan, dma_addr_t *src, unsigned int src_cnt,
673 size_t len, enum sum_check_flags *result, unsigned long flags);
674 struct dma_async_tx_descriptor *(*device_prep_dma_pq)(
675 struct dma_chan *chan, dma_addr_t *dst, dma_addr_t *src,
676 unsigned int src_cnt, const unsigned char *scf,
677 size_t len, unsigned long flags);
678 struct dma_async_tx_descriptor *(*device_prep_dma_pq_val)(
679 struct dma_chan *chan, dma_addr_t *pq, dma_addr_t *src,
680 unsigned int src_cnt, const unsigned char *scf, size_t len,
681 enum sum_check_flags *pqres, unsigned long flags);
682 struct dma_async_tx_descriptor *(*device_prep_dma_memset)(
683 struct dma_chan *chan, dma_addr_t dest, int value, size_t len,
684 unsigned long flags);
685 struct dma_async_tx_descriptor *(*device_prep_dma_interrupt)(
686 struct dma_chan *chan, unsigned long flags);
687 struct dma_async_tx_descriptor *(*device_prep_dma_sg)(
688 struct dma_chan *chan,
689 struct scatterlist *dst_sg, unsigned int dst_nents,
690 struct scatterlist *src_sg, unsigned int src_nents,
691 unsigned long flags);
692
693 struct dma_async_tx_descriptor *(*device_prep_slave_sg)(
694 struct dma_chan *chan, struct scatterlist *sgl,
695 unsigned int sg_len, enum dma_transfer_direction direction,
696 unsigned long flags, void *context);
697 struct dma_async_tx_descriptor *(*device_prep_dma_cyclic)(
698 struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
699 size_t period_len, enum dma_transfer_direction direction,
700 unsigned long flags);
701 struct dma_async_tx_descriptor *(*device_prep_interleaved_dma)(
702 struct dma_chan *chan, struct dma_interleaved_template *xt,
703 unsigned long flags);
704
705 int (*device_config)(struct dma_chan *chan,
706 struct dma_slave_config *config);
707 int (*device_pause)(struct dma_chan *chan);
708 int (*device_resume)(struct dma_chan *chan);
709 int (*device_terminate_all)(struct dma_chan *chan);
710
711 enum dma_status (*device_tx_status)(struct dma_chan *chan,
712 dma_cookie_t cookie,
713 struct dma_tx_state *txstate);
714 void (*device_issue_pending)(struct dma_chan *chan);
715 };
716
717 static inline int dmaengine_slave_config(struct dma_chan *chan,
718 struct dma_slave_config *config)
719 {
720 if (chan->device->device_config)
721 return chan->device->device_config(chan, config);
722
723 return -ENOSYS;
724 }
725
726 static inline bool is_slave_direction(enum dma_transfer_direction direction)
727 {
728 return (direction == DMA_MEM_TO_DEV) || (direction == DMA_DEV_TO_MEM);
729 }
730
731 static inline struct dma_async_tx_descriptor *dmaengine_prep_slave_single(
732 struct dma_chan *chan, dma_addr_t buf, size_t len,
733 enum dma_transfer_direction dir, unsigned long flags)
734 {
735 struct scatterlist sg;
736 sg_init_table(&sg, 1);
737 sg_dma_address(&sg) = buf;
738 sg_dma_len(&sg) = len;
739
740 return chan->device->device_prep_slave_sg(chan, &sg, 1,
741 dir, flags, NULL);
742 }
743
744 static inline struct dma_async_tx_descriptor *dmaengine_prep_slave_sg(
745 struct dma_chan *chan, struct scatterlist *sgl, unsigned int sg_len,
746 enum dma_transfer_direction dir, unsigned long flags)
747 {
748 return chan->device->device_prep_slave_sg(chan, sgl, sg_len,
749 dir, flags, NULL);
750 }
751
752 #ifdef CONFIG_RAPIDIO_DMA_ENGINE
753 struct rio_dma_ext;
754 static inline struct dma_async_tx_descriptor *dmaengine_prep_rio_sg(
755 struct dma_chan *chan, struct scatterlist *sgl, unsigned int sg_len,
756 enum dma_transfer_direction dir, unsigned long flags,
757 struct rio_dma_ext *rio_ext)
758 {
759 return chan->device->device_prep_slave_sg(chan, sgl, sg_len,
760 dir, flags, rio_ext);
761 }
762 #endif
763
764 static inline struct dma_async_tx_descriptor *dmaengine_prep_dma_cyclic(
765 struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
766 size_t period_len, enum dma_transfer_direction dir,
767 unsigned long flags)
768 {
769 return chan->device->device_prep_dma_cyclic(chan, buf_addr, buf_len,
770 period_len, dir, flags);
771 }
772
773 static inline struct dma_async_tx_descriptor *dmaengine_prep_interleaved_dma(
774 struct dma_chan *chan, struct dma_interleaved_template *xt,
775 unsigned long flags)
776 {
777 return chan->device->device_prep_interleaved_dma(chan, xt, flags);
778 }
779
780 static inline struct dma_async_tx_descriptor *dmaengine_prep_dma_memset(
781 struct dma_chan *chan, dma_addr_t dest, int value, size_t len,
782 unsigned long flags)
783 {
784 if (!chan || !chan->device)
785 return NULL;
786
787 return chan->device->device_prep_dma_memset(chan, dest, value,
788 len, flags);
789 }
790
791 static inline struct dma_async_tx_descriptor *dmaengine_prep_dma_sg(
792 struct dma_chan *chan,
793 struct scatterlist *dst_sg, unsigned int dst_nents,
794 struct scatterlist *src_sg, unsigned int src_nents,
795 unsigned long flags)
796 {
797 return chan->device->device_prep_dma_sg(chan, dst_sg, dst_nents,
798 src_sg, src_nents, flags);
799 }
800
801 static inline int dmaengine_terminate_all(struct dma_chan *chan)
802 {
803 if (chan->device->device_terminate_all)
804 return chan->device->device_terminate_all(chan);
805
806 return -ENOSYS;
807 }
808
809 static inline int dmaengine_pause(struct dma_chan *chan)
810 {
811 if (chan->device->device_pause)
812 return chan->device->device_pause(chan);
813
814 return -ENOSYS;
815 }
816
817 static inline int dmaengine_resume(struct dma_chan *chan)
818 {
819 if (chan->device->device_resume)
820 return chan->device->device_resume(chan);
821
822 return -ENOSYS;
823 }
824
825 static inline enum dma_status dmaengine_tx_status(struct dma_chan *chan,
826 dma_cookie_t cookie, struct dma_tx_state *state)
827 {
828 return chan->device->device_tx_status(chan, cookie, state);
829 }
830
831 static inline dma_cookie_t dmaengine_submit(struct dma_async_tx_descriptor *desc)
832 {
833 return desc->tx_submit(desc);
834 }
835
836 static inline bool dmaengine_check_align(u8 align, size_t off1, size_t off2, size_t len)
837 {
838 size_t mask;
839
840 if (!align)
841 return true;
842 mask = (1 << align) - 1;
843 if (mask & (off1 | off2 | len))
844 return false;
845 return true;
846 }
847
848 static inline bool is_dma_copy_aligned(struct dma_device *dev, size_t off1,
849 size_t off2, size_t len)
850 {
851 return dmaengine_check_align(dev->copy_align, off1, off2, len);
852 }
853
854 static inline bool is_dma_xor_aligned(struct dma_device *dev, size_t off1,
855 size_t off2, size_t len)
856 {
857 return dmaengine_check_align(dev->xor_align, off1, off2, len);
858 }
859
860 static inline bool is_dma_pq_aligned(struct dma_device *dev, size_t off1,
861 size_t off2, size_t len)
862 {
863 return dmaengine_check_align(dev->pq_align, off1, off2, len);
864 }
865
866 static inline bool is_dma_fill_aligned(struct dma_device *dev, size_t off1,
867 size_t off2, size_t len)
868 {
869 return dmaengine_check_align(dev->fill_align, off1, off2, len);
870 }
871
872 static inline void
873 dma_set_maxpq(struct dma_device *dma, int maxpq, int has_pq_continue)
874 {
875 dma->max_pq = maxpq;
876 if (has_pq_continue)
877 dma->max_pq |= DMA_HAS_PQ_CONTINUE;
878 }
879
880 static inline bool dmaf_continue(enum dma_ctrl_flags flags)
881 {
882 return (flags & DMA_PREP_CONTINUE) == DMA_PREP_CONTINUE;
883 }
884
885 static inline bool dmaf_p_disabled_continue(enum dma_ctrl_flags flags)
886 {
887 enum dma_ctrl_flags mask = DMA_PREP_CONTINUE | DMA_PREP_PQ_DISABLE_P;
888
889 return (flags & mask) == mask;
890 }
891
892 static inline bool dma_dev_has_pq_continue(struct dma_device *dma)
893 {
894 return (dma->max_pq & DMA_HAS_PQ_CONTINUE) == DMA_HAS_PQ_CONTINUE;
895 }
896
897 static inline unsigned short dma_dev_to_maxpq(struct dma_device *dma)
898 {
899 return dma->max_pq & ~DMA_HAS_PQ_CONTINUE;
900 }
901
902 /* dma_maxpq - reduce maxpq in the face of continued operations
903 * @dma - dma device with PQ capability
904 * @flags - to check if DMA_PREP_CONTINUE and DMA_PREP_PQ_DISABLE_P are set
905 *
906 * When an engine does not support native continuation we need 3 extra
907 * source slots to reuse P and Q with the following coefficients:
908 * 1/ {00} * P : remove P from Q', but use it as a source for P'
909 * 2/ {01} * Q : use Q to continue Q' calculation
910 * 3/ {00} * Q : subtract Q from P' to cancel (2)
911 *
912 * In the case where P is disabled we only need 1 extra source:
913 * 1/ {01} * Q : use Q to continue Q' calculation
914 */
915 static inline int dma_maxpq(struct dma_device *dma, enum dma_ctrl_flags flags)
916 {
917 if (dma_dev_has_pq_continue(dma) || !dmaf_continue(flags))
918 return dma_dev_to_maxpq(dma);
919 else if (dmaf_p_disabled_continue(flags))
920 return dma_dev_to_maxpq(dma) - 1;
921 else if (dmaf_continue(flags))
922 return dma_dev_to_maxpq(dma) - 3;
923 BUG();
924 }
925
926 static inline size_t dmaengine_get_icg(bool inc, bool sgl, size_t icg,
927 size_t dir_icg)
928 {
929 if (inc) {
930 if (dir_icg)
931 return dir_icg;
932 else if (sgl)
933 return icg;
934 }
935
936 return 0;
937 }
938
939 static inline size_t dmaengine_get_dst_icg(struct dma_interleaved_template *xt,
940 struct data_chunk *chunk)
941 {
942 return dmaengine_get_icg(xt->dst_inc, xt->dst_sgl,
943 chunk->icg, chunk->dst_icg);
944 }
945
946 static inline size_t dmaengine_get_src_icg(struct dma_interleaved_template *xt,
947 struct data_chunk *chunk)
948 {
949 return dmaengine_get_icg(xt->src_inc, xt->src_sgl,
950 chunk->icg, chunk->src_icg);
951 }
952
953 /* --- public DMA engine API --- */
954
955 #ifdef CONFIG_DMA_ENGINE
956 void dmaengine_get(void);
957 void dmaengine_put(void);
958 #else
959 static inline void dmaengine_get(void)
960 {
961 }
962 static inline void dmaengine_put(void)
963 {
964 }
965 #endif
966
967 #ifdef CONFIG_ASYNC_TX_DMA
968 #define async_dmaengine_get() dmaengine_get()
969 #define async_dmaengine_put() dmaengine_put()
970 #ifndef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
971 #define async_dma_find_channel(type) dma_find_channel(DMA_ASYNC_TX)
972 #else
973 #define async_dma_find_channel(type) dma_find_channel(type)
974 #endif /* CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH */
975 #else
976 static inline void async_dmaengine_get(void)
977 {
978 }
979 static inline void async_dmaengine_put(void)
980 {
981 }
982 static inline struct dma_chan *
983 async_dma_find_channel(enum dma_transaction_type type)
984 {
985 return NULL;
986 }
987 #endif /* CONFIG_ASYNC_TX_DMA */
988 void dma_async_tx_descriptor_init(struct dma_async_tx_descriptor *tx,
989 struct dma_chan *chan);
990
991 static inline void async_tx_ack(struct dma_async_tx_descriptor *tx)
992 {
993 tx->flags |= DMA_CTRL_ACK;
994 }
995
996 static inline void async_tx_clear_ack(struct dma_async_tx_descriptor *tx)
997 {
998 tx->flags &= ~DMA_CTRL_ACK;
999 }
1000
1001 static inline bool async_tx_test_ack(struct dma_async_tx_descriptor *tx)
1002 {
1003 return (tx->flags & DMA_CTRL_ACK) == DMA_CTRL_ACK;
1004 }
1005
1006 #define dma_cap_set(tx, mask) __dma_cap_set((tx), &(mask))
1007 static inline void
1008 __dma_cap_set(enum dma_transaction_type tx_type, dma_cap_mask_t *dstp)
1009 {
1010 set_bit(tx_type, dstp->bits);
1011 }
1012
1013 #define dma_cap_clear(tx, mask) __dma_cap_clear((tx), &(mask))
1014 static inline void
1015 __dma_cap_clear(enum dma_transaction_type tx_type, dma_cap_mask_t *dstp)
1016 {
1017 clear_bit(tx_type, dstp->bits);
1018 }
1019
1020 #define dma_cap_zero(mask) __dma_cap_zero(&(mask))
1021 static inline void __dma_cap_zero(dma_cap_mask_t *dstp)
1022 {
1023 bitmap_zero(dstp->bits, DMA_TX_TYPE_END);
1024 }
1025
1026 #define dma_has_cap(tx, mask) __dma_has_cap((tx), &(mask))
1027 static inline int
1028 __dma_has_cap(enum dma_transaction_type tx_type, dma_cap_mask_t *srcp)
1029 {
1030 return test_bit(tx_type, srcp->bits);
1031 }
1032
1033 #define for_each_dma_cap_mask(cap, mask) \
1034 for_each_set_bit(cap, mask.bits, DMA_TX_TYPE_END)
1035
1036 /**
1037 * dma_async_issue_pending - flush pending transactions to HW
1038 * @chan: target DMA channel
1039 *
1040 * This allows drivers to push copies to HW in batches,
1041 * reducing MMIO writes where possible.
1042 */
1043 static inline void dma_async_issue_pending(struct dma_chan *chan)
1044 {
1045 chan->device->device_issue_pending(chan);
1046 }
1047
1048 /**
1049 * dma_async_is_tx_complete - poll for transaction completion
1050 * @chan: DMA channel
1051 * @cookie: transaction identifier to check status of
1052 * @last: returns last completed cookie, can be NULL
1053 * @used: returns last issued cookie, can be NULL
1054 *
1055 * If @last and @used are passed in, upon return they reflect the driver
1056 * internal state and can be used with dma_async_is_complete() to check
1057 * the status of multiple cookies without re-checking hardware state.
1058 */
1059 static inline enum dma_status dma_async_is_tx_complete(struct dma_chan *chan,
1060 dma_cookie_t cookie, dma_cookie_t *last, dma_cookie_t *used)
1061 {
1062 struct dma_tx_state state;
1063 enum dma_status status;
1064
1065 status = chan->device->device_tx_status(chan, cookie, &state);
1066 if (last)
1067 *last = state.last;
1068 if (used)
1069 *used = state.used;
1070 return status;
1071 }
1072
1073 /**
1074 * dma_async_is_complete - test a cookie against chan state
1075 * @cookie: transaction identifier to test status of
1076 * @last_complete: last know completed transaction
1077 * @last_used: last cookie value handed out
1078 *
1079 * dma_async_is_complete() is used in dma_async_is_tx_complete()
1080 * the test logic is separated for lightweight testing of multiple cookies
1081 */
1082 static inline enum dma_status dma_async_is_complete(dma_cookie_t cookie,
1083 dma_cookie_t last_complete, dma_cookie_t last_used)
1084 {
1085 if (last_complete <= last_used) {
1086 if ((cookie <= last_complete) || (cookie > last_used))
1087 return DMA_COMPLETE;
1088 } else {
1089 if ((cookie <= last_complete) && (cookie > last_used))
1090 return DMA_COMPLETE;
1091 }
1092 return DMA_IN_PROGRESS;
1093 }
1094
1095 static inline void
1096 dma_set_tx_state(struct dma_tx_state *st, dma_cookie_t last, dma_cookie_t used, u32 residue)
1097 {
1098 if (st) {
1099 st->last = last;
1100 st->used = used;
1101 st->residue = residue;
1102 }
1103 }
1104
1105 #ifdef CONFIG_DMA_ENGINE
1106 struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type);
1107 enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie);
1108 enum dma_status dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx);
1109 void dma_issue_pending_all(void);
1110 struct dma_chan *__dma_request_channel(const dma_cap_mask_t *mask,
1111 dma_filter_fn fn, void *fn_param);
1112 struct dma_chan *dma_request_slave_channel_reason(struct device *dev,
1113 const char *name);
1114 struct dma_chan *dma_request_slave_channel(struct device *dev, const char *name);
1115 void dma_release_channel(struct dma_chan *chan);
1116 int dma_get_slave_caps(struct dma_chan *chan, struct dma_slave_caps *caps);
1117 #else
1118 static inline struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type)
1119 {
1120 return NULL;
1121 }
1122 static inline enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie)
1123 {
1124 return DMA_COMPLETE;
1125 }
1126 static inline enum dma_status dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx)
1127 {
1128 return DMA_COMPLETE;
1129 }
1130 static inline void dma_issue_pending_all(void)
1131 {
1132 }
1133 static inline struct dma_chan *__dma_request_channel(const dma_cap_mask_t *mask,
1134 dma_filter_fn fn, void *fn_param)
1135 {
1136 return NULL;
1137 }
1138 static inline struct dma_chan *dma_request_slave_channel_reason(
1139 struct device *dev, const char *name)
1140 {
1141 return ERR_PTR(-ENODEV);
1142 }
1143 static inline struct dma_chan *dma_request_slave_channel(struct device *dev,
1144 const char *name)
1145 {
1146 return NULL;
1147 }
1148 static inline void dma_release_channel(struct dma_chan *chan)
1149 {
1150 }
1151 static inline int dma_get_slave_caps(struct dma_chan *chan,
1152 struct dma_slave_caps *caps)
1153 {
1154 return -ENXIO;
1155 }
1156 #endif
1157
1158 /* --- DMA device --- */
1159
1160 int dma_async_device_register(struct dma_device *device);
1161 void dma_async_device_unregister(struct dma_device *device);
1162 void dma_run_dependencies(struct dma_async_tx_descriptor *tx);
1163 struct dma_chan *dma_get_slave_channel(struct dma_chan *chan);
1164 struct dma_chan *dma_get_any_slave_channel(struct dma_device *device);
1165 #define dma_request_channel(mask, x, y) __dma_request_channel(&(mask), x, y)
1166 #define dma_request_slave_channel_compat(mask, x, y, dev, name) \
1167 __dma_request_slave_channel_compat(&(mask), x, y, dev, name)
1168
1169 static inline struct dma_chan
1170 *__dma_request_slave_channel_compat(const dma_cap_mask_t *mask,
1171 dma_filter_fn fn, void *fn_param,
1172 struct device *dev, char *name)
1173 {
1174 struct dma_chan *chan;
1175
1176 chan = dma_request_slave_channel(dev, name);
1177 if (chan)
1178 return chan;
1179
1180 return __dma_request_channel(mask, fn, fn_param);
1181 }
1182 #endif /* DMAENGINE_H */
This page took 0.12729 seconds and 6 git commands to generate.