Merge branch 'fix/fsl-dspi' of git://git.kernel.org/pub/scm/linux/kernel/git/broonie...
[deliverable/linux.git] / include / linux / dmaengine.h
1 /*
2 * Copyright(c) 2004 - 2006 Intel Corporation. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms of the GNU General Public License as published by the Free
6 * Software Foundation; either version 2 of the License, or (at your option)
7 * any later version.
8 *
9 * This program is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
13 *
14 * The full GNU General Public License is included in this distribution in the
15 * file called COPYING.
16 */
17 #ifndef LINUX_DMAENGINE_H
18 #define LINUX_DMAENGINE_H
19
20 #include <linux/device.h>
21 #include <linux/err.h>
22 #include <linux/uio.h>
23 #include <linux/bug.h>
24 #include <linux/scatterlist.h>
25 #include <linux/bitmap.h>
26 #include <linux/types.h>
27 #include <asm/page.h>
28
29 /**
30 * typedef dma_cookie_t - an opaque DMA cookie
31 *
32 * if dma_cookie_t is >0 it's a DMA request cookie, <0 it's an error code
33 */
34 typedef s32 dma_cookie_t;
35 #define DMA_MIN_COOKIE 1
36
37 static inline int dma_submit_error(dma_cookie_t cookie)
38 {
39 return cookie < 0 ? cookie : 0;
40 }
41
42 /**
43 * enum dma_status - DMA transaction status
44 * @DMA_COMPLETE: transaction completed
45 * @DMA_IN_PROGRESS: transaction not yet processed
46 * @DMA_PAUSED: transaction is paused
47 * @DMA_ERROR: transaction failed
48 */
49 enum dma_status {
50 DMA_COMPLETE,
51 DMA_IN_PROGRESS,
52 DMA_PAUSED,
53 DMA_ERROR,
54 };
55
56 /**
57 * enum dma_transaction_type - DMA transaction types/indexes
58 *
59 * Note: The DMA_ASYNC_TX capability is not to be set by drivers. It is
60 * automatically set as dma devices are registered.
61 */
62 enum dma_transaction_type {
63 DMA_MEMCPY,
64 DMA_XOR,
65 DMA_PQ,
66 DMA_XOR_VAL,
67 DMA_PQ_VAL,
68 DMA_INTERRUPT,
69 DMA_SG,
70 DMA_PRIVATE,
71 DMA_ASYNC_TX,
72 DMA_SLAVE,
73 DMA_CYCLIC,
74 DMA_INTERLEAVE,
75 /* last transaction type for creation of the capabilities mask */
76 DMA_TX_TYPE_END,
77 };
78
79 /**
80 * enum dma_transfer_direction - dma transfer mode and direction indicator
81 * @DMA_MEM_TO_MEM: Async/Memcpy mode
82 * @DMA_MEM_TO_DEV: Slave mode & From Memory to Device
83 * @DMA_DEV_TO_MEM: Slave mode & From Device to Memory
84 * @DMA_DEV_TO_DEV: Slave mode & From Device to Device
85 */
86 enum dma_transfer_direction {
87 DMA_MEM_TO_MEM,
88 DMA_MEM_TO_DEV,
89 DMA_DEV_TO_MEM,
90 DMA_DEV_TO_DEV,
91 DMA_TRANS_NONE,
92 };
93
94 /**
95 * Interleaved Transfer Request
96 * ----------------------------
97 * A chunk is collection of contiguous bytes to be transfered.
98 * The gap(in bytes) between two chunks is called inter-chunk-gap(ICG).
99 * ICGs may or maynot change between chunks.
100 * A FRAME is the smallest series of contiguous {chunk,icg} pairs,
101 * that when repeated an integral number of times, specifies the transfer.
102 * A transfer template is specification of a Frame, the number of times
103 * it is to be repeated and other per-transfer attributes.
104 *
105 * Practically, a client driver would have ready a template for each
106 * type of transfer it is going to need during its lifetime and
107 * set only 'src_start' and 'dst_start' before submitting the requests.
108 *
109 *
110 * | Frame-1 | Frame-2 | ~ | Frame-'numf' |
111 * |====....==.===...=...|====....==.===...=...| ~ |====....==.===...=...|
112 *
113 * == Chunk size
114 * ... ICG
115 */
116
117 /**
118 * struct data_chunk - Element of scatter-gather list that makes a frame.
119 * @size: Number of bytes to read from source.
120 * size_dst := fn(op, size_src), so doesn't mean much for destination.
121 * @icg: Number of bytes to jump after last src/dst address of this
122 * chunk and before first src/dst address for next chunk.
123 * Ignored for dst(assumed 0), if dst_inc is true and dst_sgl is false.
124 * Ignored for src(assumed 0), if src_inc is true and src_sgl is false.
125 */
126 struct data_chunk {
127 size_t size;
128 size_t icg;
129 };
130
131 /**
132 * struct dma_interleaved_template - Template to convey DMAC the transfer pattern
133 * and attributes.
134 * @src_start: Bus address of source for the first chunk.
135 * @dst_start: Bus address of destination for the first chunk.
136 * @dir: Specifies the type of Source and Destination.
137 * @src_inc: If the source address increments after reading from it.
138 * @dst_inc: If the destination address increments after writing to it.
139 * @src_sgl: If the 'icg' of sgl[] applies to Source (scattered read).
140 * Otherwise, source is read contiguously (icg ignored).
141 * Ignored if src_inc is false.
142 * @dst_sgl: If the 'icg' of sgl[] applies to Destination (scattered write).
143 * Otherwise, destination is filled contiguously (icg ignored).
144 * Ignored if dst_inc is false.
145 * @numf: Number of frames in this template.
146 * @frame_size: Number of chunks in a frame i.e, size of sgl[].
147 * @sgl: Array of {chunk,icg} pairs that make up a frame.
148 */
149 struct dma_interleaved_template {
150 dma_addr_t src_start;
151 dma_addr_t dst_start;
152 enum dma_transfer_direction dir;
153 bool src_inc;
154 bool dst_inc;
155 bool src_sgl;
156 bool dst_sgl;
157 size_t numf;
158 size_t frame_size;
159 struct data_chunk sgl[0];
160 };
161
162 /**
163 * enum dma_ctrl_flags - DMA flags to augment operation preparation,
164 * control completion, and communicate status.
165 * @DMA_PREP_INTERRUPT - trigger an interrupt (callback) upon completion of
166 * this transaction
167 * @DMA_CTRL_ACK - if clear, the descriptor cannot be reused until the client
168 * acknowledges receipt, i.e. has has a chance to establish any dependency
169 * chains
170 * @DMA_PREP_PQ_DISABLE_P - prevent generation of P while generating Q
171 * @DMA_PREP_PQ_DISABLE_Q - prevent generation of Q while generating P
172 * @DMA_PREP_CONTINUE - indicate to a driver that it is reusing buffers as
173 * sources that were the result of a previous operation, in the case of a PQ
174 * operation it continues the calculation with new sources
175 * @DMA_PREP_FENCE - tell the driver that subsequent operations depend
176 * on the result of this operation
177 */
178 enum dma_ctrl_flags {
179 DMA_PREP_INTERRUPT = (1 << 0),
180 DMA_CTRL_ACK = (1 << 1),
181 DMA_PREP_PQ_DISABLE_P = (1 << 2),
182 DMA_PREP_PQ_DISABLE_Q = (1 << 3),
183 DMA_PREP_CONTINUE = (1 << 4),
184 DMA_PREP_FENCE = (1 << 5),
185 };
186
187 /**
188 * enum sum_check_bits - bit position of pq_check_flags
189 */
190 enum sum_check_bits {
191 SUM_CHECK_P = 0,
192 SUM_CHECK_Q = 1,
193 };
194
195 /**
196 * enum pq_check_flags - result of async_{xor,pq}_zero_sum operations
197 * @SUM_CHECK_P_RESULT - 1 if xor zero sum error, 0 otherwise
198 * @SUM_CHECK_Q_RESULT - 1 if reed-solomon zero sum error, 0 otherwise
199 */
200 enum sum_check_flags {
201 SUM_CHECK_P_RESULT = (1 << SUM_CHECK_P),
202 SUM_CHECK_Q_RESULT = (1 << SUM_CHECK_Q),
203 };
204
205
206 /**
207 * dma_cap_mask_t - capabilities bitmap modeled after cpumask_t.
208 * See linux/cpumask.h
209 */
210 typedef struct { DECLARE_BITMAP(bits, DMA_TX_TYPE_END); } dma_cap_mask_t;
211
212 /**
213 * struct dma_chan_percpu - the per-CPU part of struct dma_chan
214 * @memcpy_count: transaction counter
215 * @bytes_transferred: byte counter
216 */
217
218 struct dma_chan_percpu {
219 /* stats */
220 unsigned long memcpy_count;
221 unsigned long bytes_transferred;
222 };
223
224 /**
225 * struct dma_chan - devices supply DMA channels, clients use them
226 * @device: ptr to the dma device who supplies this channel, always !%NULL
227 * @cookie: last cookie value returned to client
228 * @completed_cookie: last completed cookie for this channel
229 * @chan_id: channel ID for sysfs
230 * @dev: class device for sysfs
231 * @device_node: used to add this to the device chan list
232 * @local: per-cpu pointer to a struct dma_chan_percpu
233 * @client_count: how many clients are using this channel
234 * @table_count: number of appearances in the mem-to-mem allocation table
235 * @private: private data for certain client-channel associations
236 */
237 struct dma_chan {
238 struct dma_device *device;
239 dma_cookie_t cookie;
240 dma_cookie_t completed_cookie;
241
242 /* sysfs */
243 int chan_id;
244 struct dma_chan_dev *dev;
245
246 struct list_head device_node;
247 struct dma_chan_percpu __percpu *local;
248 int client_count;
249 int table_count;
250 void *private;
251 };
252
253 /**
254 * struct dma_chan_dev - relate sysfs device node to backing channel device
255 * @chan: driver channel device
256 * @device: sysfs device
257 * @dev_id: parent dma_device dev_id
258 * @idr_ref: reference count to gate release of dma_device dev_id
259 */
260 struct dma_chan_dev {
261 struct dma_chan *chan;
262 struct device device;
263 int dev_id;
264 atomic_t *idr_ref;
265 };
266
267 /**
268 * enum dma_slave_buswidth - defines bus width of the DMA slave
269 * device, source or target buses
270 */
271 enum dma_slave_buswidth {
272 DMA_SLAVE_BUSWIDTH_UNDEFINED = 0,
273 DMA_SLAVE_BUSWIDTH_1_BYTE = 1,
274 DMA_SLAVE_BUSWIDTH_2_BYTES = 2,
275 DMA_SLAVE_BUSWIDTH_3_BYTES = 3,
276 DMA_SLAVE_BUSWIDTH_4_BYTES = 4,
277 DMA_SLAVE_BUSWIDTH_8_BYTES = 8,
278 DMA_SLAVE_BUSWIDTH_16_BYTES = 16,
279 DMA_SLAVE_BUSWIDTH_32_BYTES = 32,
280 DMA_SLAVE_BUSWIDTH_64_BYTES = 64,
281 };
282
283 /**
284 * struct dma_slave_config - dma slave channel runtime config
285 * @direction: whether the data shall go in or out on this slave
286 * channel, right now. DMA_MEM_TO_DEV and DMA_DEV_TO_MEM are
287 * legal values. DEPRECATED, drivers should use the direction argument
288 * to the device_prep_slave_sg and device_prep_dma_cyclic functions or
289 * the dir field in the dma_interleaved_template structure.
290 * @src_addr: this is the physical address where DMA slave data
291 * should be read (RX), if the source is memory this argument is
292 * ignored.
293 * @dst_addr: this is the physical address where DMA slave data
294 * should be written (TX), if the source is memory this argument
295 * is ignored.
296 * @src_addr_width: this is the width in bytes of the source (RX)
297 * register where DMA data shall be read. If the source
298 * is memory this may be ignored depending on architecture.
299 * Legal values: 1, 2, 4, 8.
300 * @dst_addr_width: same as src_addr_width but for destination
301 * target (TX) mutatis mutandis.
302 * @src_maxburst: the maximum number of words (note: words, as in
303 * units of the src_addr_width member, not bytes) that can be sent
304 * in one burst to the device. Typically something like half the
305 * FIFO depth on I/O peripherals so you don't overflow it. This
306 * may or may not be applicable on memory sources.
307 * @dst_maxburst: same as src_maxburst but for destination target
308 * mutatis mutandis.
309 * @device_fc: Flow Controller Settings. Only valid for slave channels. Fill
310 * with 'true' if peripheral should be flow controller. Direction will be
311 * selected at Runtime.
312 * @slave_id: Slave requester id. Only valid for slave channels. The dma
313 * slave peripheral will have unique id as dma requester which need to be
314 * pass as slave config.
315 *
316 * This struct is passed in as configuration data to a DMA engine
317 * in order to set up a certain channel for DMA transport at runtime.
318 * The DMA device/engine has to provide support for an additional
319 * callback in the dma_device structure, device_config and this struct
320 * will then be passed in as an argument to the function.
321 *
322 * The rationale for adding configuration information to this struct is as
323 * follows: if it is likely that more than one DMA slave controllers in
324 * the world will support the configuration option, then make it generic.
325 * If not: if it is fixed so that it be sent in static from the platform
326 * data, then prefer to do that.
327 */
328 struct dma_slave_config {
329 enum dma_transfer_direction direction;
330 dma_addr_t src_addr;
331 dma_addr_t dst_addr;
332 enum dma_slave_buswidth src_addr_width;
333 enum dma_slave_buswidth dst_addr_width;
334 u32 src_maxburst;
335 u32 dst_maxburst;
336 bool device_fc;
337 unsigned int slave_id;
338 };
339
340 /**
341 * enum dma_residue_granularity - Granularity of the reported transfer residue
342 * @DMA_RESIDUE_GRANULARITY_DESCRIPTOR: Residue reporting is not support. The
343 * DMA channel is only able to tell whether a descriptor has been completed or
344 * not, which means residue reporting is not supported by this channel. The
345 * residue field of the dma_tx_state field will always be 0.
346 * @DMA_RESIDUE_GRANULARITY_SEGMENT: Residue is updated after each successfully
347 * completed segment of the transfer (For cyclic transfers this is after each
348 * period). This is typically implemented by having the hardware generate an
349 * interrupt after each transferred segment and then the drivers updates the
350 * outstanding residue by the size of the segment. Another possibility is if
351 * the hardware supports scatter-gather and the segment descriptor has a field
352 * which gets set after the segment has been completed. The driver then counts
353 * the number of segments without the flag set to compute the residue.
354 * @DMA_RESIDUE_GRANULARITY_BURST: Residue is updated after each transferred
355 * burst. This is typically only supported if the hardware has a progress
356 * register of some sort (E.g. a register with the current read/write address
357 * or a register with the amount of bursts/beats/bytes that have been
358 * transferred or still need to be transferred).
359 */
360 enum dma_residue_granularity {
361 DMA_RESIDUE_GRANULARITY_DESCRIPTOR = 0,
362 DMA_RESIDUE_GRANULARITY_SEGMENT = 1,
363 DMA_RESIDUE_GRANULARITY_BURST = 2,
364 };
365
366 /* struct dma_slave_caps - expose capabilities of a slave channel only
367 *
368 * @src_addr_widths: bit mask of src addr widths the channel supports
369 * @dst_addr_widths: bit mask of dstn addr widths the channel supports
370 * @directions: bit mask of slave direction the channel supported
371 * since the enum dma_transfer_direction is not defined as bits for each
372 * type of direction, the dma controller should fill (1 << <TYPE>) and same
373 * should be checked by controller as well
374 * @cmd_pause: true, if pause and thereby resume is supported
375 * @cmd_terminate: true, if terminate cmd is supported
376 * @residue_granularity: granularity of the reported transfer residue
377 */
378 struct dma_slave_caps {
379 u32 src_addr_widths;
380 u32 dst_addr_widths;
381 u32 directions;
382 bool cmd_pause;
383 bool cmd_terminate;
384 enum dma_residue_granularity residue_granularity;
385 };
386
387 static inline const char *dma_chan_name(struct dma_chan *chan)
388 {
389 return dev_name(&chan->dev->device);
390 }
391
392 void dma_chan_cleanup(struct kref *kref);
393
394 /**
395 * typedef dma_filter_fn - callback filter for dma_request_channel
396 * @chan: channel to be reviewed
397 * @filter_param: opaque parameter passed through dma_request_channel
398 *
399 * When this optional parameter is specified in a call to dma_request_channel a
400 * suitable channel is passed to this routine for further dispositioning before
401 * being returned. Where 'suitable' indicates a non-busy channel that
402 * satisfies the given capability mask. It returns 'true' to indicate that the
403 * channel is suitable.
404 */
405 typedef bool (*dma_filter_fn)(struct dma_chan *chan, void *filter_param);
406
407 typedef void (*dma_async_tx_callback)(void *dma_async_param);
408
409 struct dmaengine_unmap_data {
410 u8 map_cnt;
411 u8 to_cnt;
412 u8 from_cnt;
413 u8 bidi_cnt;
414 struct device *dev;
415 struct kref kref;
416 size_t len;
417 dma_addr_t addr[0];
418 };
419
420 /**
421 * struct dma_async_tx_descriptor - async transaction descriptor
422 * ---dma generic offload fields---
423 * @cookie: tracking cookie for this transaction, set to -EBUSY if
424 * this tx is sitting on a dependency list
425 * @flags: flags to augment operation preparation, control completion, and
426 * communicate status
427 * @phys: physical address of the descriptor
428 * @chan: target channel for this operation
429 * @tx_submit: accept the descriptor, assign ordered cookie and mark the
430 * descriptor pending. To be pushed on .issue_pending() call
431 * @callback: routine to call after this operation is complete
432 * @callback_param: general parameter to pass to the callback routine
433 * ---async_tx api specific fields---
434 * @next: at completion submit this descriptor
435 * @parent: pointer to the next level up in the dependency chain
436 * @lock: protect the parent and next pointers
437 */
438 struct dma_async_tx_descriptor {
439 dma_cookie_t cookie;
440 enum dma_ctrl_flags flags; /* not a 'long' to pack with cookie */
441 dma_addr_t phys;
442 struct dma_chan *chan;
443 dma_cookie_t (*tx_submit)(struct dma_async_tx_descriptor *tx);
444 dma_async_tx_callback callback;
445 void *callback_param;
446 struct dmaengine_unmap_data *unmap;
447 #ifdef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
448 struct dma_async_tx_descriptor *next;
449 struct dma_async_tx_descriptor *parent;
450 spinlock_t lock;
451 #endif
452 };
453
454 #ifdef CONFIG_DMA_ENGINE
455 static inline void dma_set_unmap(struct dma_async_tx_descriptor *tx,
456 struct dmaengine_unmap_data *unmap)
457 {
458 kref_get(&unmap->kref);
459 tx->unmap = unmap;
460 }
461
462 struct dmaengine_unmap_data *
463 dmaengine_get_unmap_data(struct device *dev, int nr, gfp_t flags);
464 void dmaengine_unmap_put(struct dmaengine_unmap_data *unmap);
465 #else
466 static inline void dma_set_unmap(struct dma_async_tx_descriptor *tx,
467 struct dmaengine_unmap_data *unmap)
468 {
469 }
470 static inline struct dmaengine_unmap_data *
471 dmaengine_get_unmap_data(struct device *dev, int nr, gfp_t flags)
472 {
473 return NULL;
474 }
475 static inline void dmaengine_unmap_put(struct dmaengine_unmap_data *unmap)
476 {
477 }
478 #endif
479
480 static inline void dma_descriptor_unmap(struct dma_async_tx_descriptor *tx)
481 {
482 if (tx->unmap) {
483 dmaengine_unmap_put(tx->unmap);
484 tx->unmap = NULL;
485 }
486 }
487
488 #ifndef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
489 static inline void txd_lock(struct dma_async_tx_descriptor *txd)
490 {
491 }
492 static inline void txd_unlock(struct dma_async_tx_descriptor *txd)
493 {
494 }
495 static inline void txd_chain(struct dma_async_tx_descriptor *txd, struct dma_async_tx_descriptor *next)
496 {
497 BUG();
498 }
499 static inline void txd_clear_parent(struct dma_async_tx_descriptor *txd)
500 {
501 }
502 static inline void txd_clear_next(struct dma_async_tx_descriptor *txd)
503 {
504 }
505 static inline struct dma_async_tx_descriptor *txd_next(struct dma_async_tx_descriptor *txd)
506 {
507 return NULL;
508 }
509 static inline struct dma_async_tx_descriptor *txd_parent(struct dma_async_tx_descriptor *txd)
510 {
511 return NULL;
512 }
513
514 #else
515 static inline void txd_lock(struct dma_async_tx_descriptor *txd)
516 {
517 spin_lock_bh(&txd->lock);
518 }
519 static inline void txd_unlock(struct dma_async_tx_descriptor *txd)
520 {
521 spin_unlock_bh(&txd->lock);
522 }
523 static inline void txd_chain(struct dma_async_tx_descriptor *txd, struct dma_async_tx_descriptor *next)
524 {
525 txd->next = next;
526 next->parent = txd;
527 }
528 static inline void txd_clear_parent(struct dma_async_tx_descriptor *txd)
529 {
530 txd->parent = NULL;
531 }
532 static inline void txd_clear_next(struct dma_async_tx_descriptor *txd)
533 {
534 txd->next = NULL;
535 }
536 static inline struct dma_async_tx_descriptor *txd_parent(struct dma_async_tx_descriptor *txd)
537 {
538 return txd->parent;
539 }
540 static inline struct dma_async_tx_descriptor *txd_next(struct dma_async_tx_descriptor *txd)
541 {
542 return txd->next;
543 }
544 #endif
545
546 /**
547 * struct dma_tx_state - filled in to report the status of
548 * a transfer.
549 * @last: last completed DMA cookie
550 * @used: last issued DMA cookie (i.e. the one in progress)
551 * @residue: the remaining number of bytes left to transmit
552 * on the selected transfer for states DMA_IN_PROGRESS and
553 * DMA_PAUSED if this is implemented in the driver, else 0
554 */
555 struct dma_tx_state {
556 dma_cookie_t last;
557 dma_cookie_t used;
558 u32 residue;
559 };
560
561 /**
562 * struct dma_device - info on the entity supplying DMA services
563 * @chancnt: how many DMA channels are supported
564 * @privatecnt: how many DMA channels are requested by dma_request_channel
565 * @channels: the list of struct dma_chan
566 * @global_node: list_head for global dma_device_list
567 * @cap_mask: one or more dma_capability flags
568 * @max_xor: maximum number of xor sources, 0 if no capability
569 * @max_pq: maximum number of PQ sources and PQ-continue capability
570 * @copy_align: alignment shift for memcpy operations
571 * @xor_align: alignment shift for xor operations
572 * @pq_align: alignment shift for pq operations
573 * @dev_id: unique device ID
574 * @dev: struct device reference for dma mapping api
575 * @src_addr_widths: bit mask of src addr widths the device supports
576 * @dst_addr_widths: bit mask of dst addr widths the device supports
577 * @directions: bit mask of slave direction the device supports since
578 * the enum dma_transfer_direction is not defined as bits for
579 * each type of direction, the dma controller should fill (1 <<
580 * <TYPE>) and same should be checked by controller as well
581 * @residue_granularity: granularity of the transfer residue reported
582 * by tx_status
583 * @device_alloc_chan_resources: allocate resources and return the
584 * number of allocated descriptors
585 * @device_free_chan_resources: release DMA channel's resources
586 * @device_prep_dma_memcpy: prepares a memcpy operation
587 * @device_prep_dma_xor: prepares a xor operation
588 * @device_prep_dma_xor_val: prepares a xor validation operation
589 * @device_prep_dma_pq: prepares a pq operation
590 * @device_prep_dma_pq_val: prepares a pqzero_sum operation
591 * @device_prep_dma_interrupt: prepares an end of chain interrupt operation
592 * @device_prep_slave_sg: prepares a slave dma operation
593 * @device_prep_dma_cyclic: prepare a cyclic dma operation suitable for audio.
594 * The function takes a buffer of size buf_len. The callback function will
595 * be called after period_len bytes have been transferred.
596 * @device_prep_interleaved_dma: Transfer expression in a generic way.
597 * @device_config: Pushes a new configuration to a channel, return 0 or an error
598 * code
599 * @device_pause: Pauses any transfer happening on a channel. Returns
600 * 0 or an error code
601 * @device_resume: Resumes any transfer on a channel previously
602 * paused. Returns 0 or an error code
603 * @device_terminate_all: Aborts all transfers on a channel. Returns 0
604 * or an error code
605 * @device_tx_status: poll for transaction completion, the optional
606 * txstate parameter can be supplied with a pointer to get a
607 * struct with auxiliary transfer status information, otherwise the call
608 * will just return a simple status code
609 * @device_issue_pending: push pending transactions to hardware
610 */
611 struct dma_device {
612
613 unsigned int chancnt;
614 unsigned int privatecnt;
615 struct list_head channels;
616 struct list_head global_node;
617 dma_cap_mask_t cap_mask;
618 unsigned short max_xor;
619 unsigned short max_pq;
620 u8 copy_align;
621 u8 xor_align;
622 u8 pq_align;
623 #define DMA_HAS_PQ_CONTINUE (1 << 15)
624
625 int dev_id;
626 struct device *dev;
627
628 u32 src_addr_widths;
629 u32 dst_addr_widths;
630 u32 directions;
631 enum dma_residue_granularity residue_granularity;
632
633 int (*device_alloc_chan_resources)(struct dma_chan *chan);
634 void (*device_free_chan_resources)(struct dma_chan *chan);
635
636 struct dma_async_tx_descriptor *(*device_prep_dma_memcpy)(
637 struct dma_chan *chan, dma_addr_t dst, dma_addr_t src,
638 size_t len, unsigned long flags);
639 struct dma_async_tx_descriptor *(*device_prep_dma_xor)(
640 struct dma_chan *chan, dma_addr_t dst, dma_addr_t *src,
641 unsigned int src_cnt, size_t len, unsigned long flags);
642 struct dma_async_tx_descriptor *(*device_prep_dma_xor_val)(
643 struct dma_chan *chan, dma_addr_t *src, unsigned int src_cnt,
644 size_t len, enum sum_check_flags *result, unsigned long flags);
645 struct dma_async_tx_descriptor *(*device_prep_dma_pq)(
646 struct dma_chan *chan, dma_addr_t *dst, dma_addr_t *src,
647 unsigned int src_cnt, const unsigned char *scf,
648 size_t len, unsigned long flags);
649 struct dma_async_tx_descriptor *(*device_prep_dma_pq_val)(
650 struct dma_chan *chan, dma_addr_t *pq, dma_addr_t *src,
651 unsigned int src_cnt, const unsigned char *scf, size_t len,
652 enum sum_check_flags *pqres, unsigned long flags);
653 struct dma_async_tx_descriptor *(*device_prep_dma_interrupt)(
654 struct dma_chan *chan, unsigned long flags);
655 struct dma_async_tx_descriptor *(*device_prep_dma_sg)(
656 struct dma_chan *chan,
657 struct scatterlist *dst_sg, unsigned int dst_nents,
658 struct scatterlist *src_sg, unsigned int src_nents,
659 unsigned long flags);
660
661 struct dma_async_tx_descriptor *(*device_prep_slave_sg)(
662 struct dma_chan *chan, struct scatterlist *sgl,
663 unsigned int sg_len, enum dma_transfer_direction direction,
664 unsigned long flags, void *context);
665 struct dma_async_tx_descriptor *(*device_prep_dma_cyclic)(
666 struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
667 size_t period_len, enum dma_transfer_direction direction,
668 unsigned long flags);
669 struct dma_async_tx_descriptor *(*device_prep_interleaved_dma)(
670 struct dma_chan *chan, struct dma_interleaved_template *xt,
671 unsigned long flags);
672
673 int (*device_config)(struct dma_chan *chan,
674 struct dma_slave_config *config);
675 int (*device_pause)(struct dma_chan *chan);
676 int (*device_resume)(struct dma_chan *chan);
677 int (*device_terminate_all)(struct dma_chan *chan);
678
679 enum dma_status (*device_tx_status)(struct dma_chan *chan,
680 dma_cookie_t cookie,
681 struct dma_tx_state *txstate);
682 void (*device_issue_pending)(struct dma_chan *chan);
683 };
684
685 static inline int dmaengine_slave_config(struct dma_chan *chan,
686 struct dma_slave_config *config)
687 {
688 if (chan->device->device_config)
689 return chan->device->device_config(chan, config);
690
691 return -ENOSYS;
692 }
693
694 static inline bool is_slave_direction(enum dma_transfer_direction direction)
695 {
696 return (direction == DMA_MEM_TO_DEV) || (direction == DMA_DEV_TO_MEM);
697 }
698
699 static inline struct dma_async_tx_descriptor *dmaengine_prep_slave_single(
700 struct dma_chan *chan, dma_addr_t buf, size_t len,
701 enum dma_transfer_direction dir, unsigned long flags)
702 {
703 struct scatterlist sg;
704 sg_init_table(&sg, 1);
705 sg_dma_address(&sg) = buf;
706 sg_dma_len(&sg) = len;
707
708 return chan->device->device_prep_slave_sg(chan, &sg, 1,
709 dir, flags, NULL);
710 }
711
712 static inline struct dma_async_tx_descriptor *dmaengine_prep_slave_sg(
713 struct dma_chan *chan, struct scatterlist *sgl, unsigned int sg_len,
714 enum dma_transfer_direction dir, unsigned long flags)
715 {
716 return chan->device->device_prep_slave_sg(chan, sgl, sg_len,
717 dir, flags, NULL);
718 }
719
720 #ifdef CONFIG_RAPIDIO_DMA_ENGINE
721 struct rio_dma_ext;
722 static inline struct dma_async_tx_descriptor *dmaengine_prep_rio_sg(
723 struct dma_chan *chan, struct scatterlist *sgl, unsigned int sg_len,
724 enum dma_transfer_direction dir, unsigned long flags,
725 struct rio_dma_ext *rio_ext)
726 {
727 return chan->device->device_prep_slave_sg(chan, sgl, sg_len,
728 dir, flags, rio_ext);
729 }
730 #endif
731
732 static inline struct dma_async_tx_descriptor *dmaengine_prep_dma_cyclic(
733 struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
734 size_t period_len, enum dma_transfer_direction dir,
735 unsigned long flags)
736 {
737 return chan->device->device_prep_dma_cyclic(chan, buf_addr, buf_len,
738 period_len, dir, flags);
739 }
740
741 static inline struct dma_async_tx_descriptor *dmaengine_prep_interleaved_dma(
742 struct dma_chan *chan, struct dma_interleaved_template *xt,
743 unsigned long flags)
744 {
745 return chan->device->device_prep_interleaved_dma(chan, xt, flags);
746 }
747
748 static inline struct dma_async_tx_descriptor *dmaengine_prep_dma_sg(
749 struct dma_chan *chan,
750 struct scatterlist *dst_sg, unsigned int dst_nents,
751 struct scatterlist *src_sg, unsigned int src_nents,
752 unsigned long flags)
753 {
754 return chan->device->device_prep_dma_sg(chan, dst_sg, dst_nents,
755 src_sg, src_nents, flags);
756 }
757
758 static inline int dmaengine_terminate_all(struct dma_chan *chan)
759 {
760 if (chan->device->device_terminate_all)
761 return chan->device->device_terminate_all(chan);
762
763 return -ENOSYS;
764 }
765
766 static inline int dmaengine_pause(struct dma_chan *chan)
767 {
768 if (chan->device->device_pause)
769 return chan->device->device_pause(chan);
770
771 return -ENOSYS;
772 }
773
774 static inline int dmaengine_resume(struct dma_chan *chan)
775 {
776 if (chan->device->device_resume)
777 return chan->device->device_resume(chan);
778
779 return -ENOSYS;
780 }
781
782 static inline enum dma_status dmaengine_tx_status(struct dma_chan *chan,
783 dma_cookie_t cookie, struct dma_tx_state *state)
784 {
785 return chan->device->device_tx_status(chan, cookie, state);
786 }
787
788 static inline dma_cookie_t dmaengine_submit(struct dma_async_tx_descriptor *desc)
789 {
790 return desc->tx_submit(desc);
791 }
792
793 static inline bool dmaengine_check_align(u8 align, size_t off1, size_t off2, size_t len)
794 {
795 size_t mask;
796
797 if (!align)
798 return true;
799 mask = (1 << align) - 1;
800 if (mask & (off1 | off2 | len))
801 return false;
802 return true;
803 }
804
805 static inline bool is_dma_copy_aligned(struct dma_device *dev, size_t off1,
806 size_t off2, size_t len)
807 {
808 return dmaengine_check_align(dev->copy_align, off1, off2, len);
809 }
810
811 static inline bool is_dma_xor_aligned(struct dma_device *dev, size_t off1,
812 size_t off2, size_t len)
813 {
814 return dmaengine_check_align(dev->xor_align, off1, off2, len);
815 }
816
817 static inline bool is_dma_pq_aligned(struct dma_device *dev, size_t off1,
818 size_t off2, size_t len)
819 {
820 return dmaengine_check_align(dev->pq_align, off1, off2, len);
821 }
822
823 static inline void
824 dma_set_maxpq(struct dma_device *dma, int maxpq, int has_pq_continue)
825 {
826 dma->max_pq = maxpq;
827 if (has_pq_continue)
828 dma->max_pq |= DMA_HAS_PQ_CONTINUE;
829 }
830
831 static inline bool dmaf_continue(enum dma_ctrl_flags flags)
832 {
833 return (flags & DMA_PREP_CONTINUE) == DMA_PREP_CONTINUE;
834 }
835
836 static inline bool dmaf_p_disabled_continue(enum dma_ctrl_flags flags)
837 {
838 enum dma_ctrl_flags mask = DMA_PREP_CONTINUE | DMA_PREP_PQ_DISABLE_P;
839
840 return (flags & mask) == mask;
841 }
842
843 static inline bool dma_dev_has_pq_continue(struct dma_device *dma)
844 {
845 return (dma->max_pq & DMA_HAS_PQ_CONTINUE) == DMA_HAS_PQ_CONTINUE;
846 }
847
848 static inline unsigned short dma_dev_to_maxpq(struct dma_device *dma)
849 {
850 return dma->max_pq & ~DMA_HAS_PQ_CONTINUE;
851 }
852
853 /* dma_maxpq - reduce maxpq in the face of continued operations
854 * @dma - dma device with PQ capability
855 * @flags - to check if DMA_PREP_CONTINUE and DMA_PREP_PQ_DISABLE_P are set
856 *
857 * When an engine does not support native continuation we need 3 extra
858 * source slots to reuse P and Q with the following coefficients:
859 * 1/ {00} * P : remove P from Q', but use it as a source for P'
860 * 2/ {01} * Q : use Q to continue Q' calculation
861 * 3/ {00} * Q : subtract Q from P' to cancel (2)
862 *
863 * In the case where P is disabled we only need 1 extra source:
864 * 1/ {01} * Q : use Q to continue Q' calculation
865 */
866 static inline int dma_maxpq(struct dma_device *dma, enum dma_ctrl_flags flags)
867 {
868 if (dma_dev_has_pq_continue(dma) || !dmaf_continue(flags))
869 return dma_dev_to_maxpq(dma);
870 else if (dmaf_p_disabled_continue(flags))
871 return dma_dev_to_maxpq(dma) - 1;
872 else if (dmaf_continue(flags))
873 return dma_dev_to_maxpq(dma) - 3;
874 BUG();
875 }
876
877 /* --- public DMA engine API --- */
878
879 #ifdef CONFIG_DMA_ENGINE
880 void dmaengine_get(void);
881 void dmaengine_put(void);
882 #else
883 static inline void dmaengine_get(void)
884 {
885 }
886 static inline void dmaengine_put(void)
887 {
888 }
889 #endif
890
891 #ifdef CONFIG_ASYNC_TX_DMA
892 #define async_dmaengine_get() dmaengine_get()
893 #define async_dmaengine_put() dmaengine_put()
894 #ifndef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
895 #define async_dma_find_channel(type) dma_find_channel(DMA_ASYNC_TX)
896 #else
897 #define async_dma_find_channel(type) dma_find_channel(type)
898 #endif /* CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH */
899 #else
900 static inline void async_dmaengine_get(void)
901 {
902 }
903 static inline void async_dmaengine_put(void)
904 {
905 }
906 static inline struct dma_chan *
907 async_dma_find_channel(enum dma_transaction_type type)
908 {
909 return NULL;
910 }
911 #endif /* CONFIG_ASYNC_TX_DMA */
912 void dma_async_tx_descriptor_init(struct dma_async_tx_descriptor *tx,
913 struct dma_chan *chan);
914
915 static inline void async_tx_ack(struct dma_async_tx_descriptor *tx)
916 {
917 tx->flags |= DMA_CTRL_ACK;
918 }
919
920 static inline void async_tx_clear_ack(struct dma_async_tx_descriptor *tx)
921 {
922 tx->flags &= ~DMA_CTRL_ACK;
923 }
924
925 static inline bool async_tx_test_ack(struct dma_async_tx_descriptor *tx)
926 {
927 return (tx->flags & DMA_CTRL_ACK) == DMA_CTRL_ACK;
928 }
929
930 #define dma_cap_set(tx, mask) __dma_cap_set((tx), &(mask))
931 static inline void
932 __dma_cap_set(enum dma_transaction_type tx_type, dma_cap_mask_t *dstp)
933 {
934 set_bit(tx_type, dstp->bits);
935 }
936
937 #define dma_cap_clear(tx, mask) __dma_cap_clear((tx), &(mask))
938 static inline void
939 __dma_cap_clear(enum dma_transaction_type tx_type, dma_cap_mask_t *dstp)
940 {
941 clear_bit(tx_type, dstp->bits);
942 }
943
944 #define dma_cap_zero(mask) __dma_cap_zero(&(mask))
945 static inline void __dma_cap_zero(dma_cap_mask_t *dstp)
946 {
947 bitmap_zero(dstp->bits, DMA_TX_TYPE_END);
948 }
949
950 #define dma_has_cap(tx, mask) __dma_has_cap((tx), &(mask))
951 static inline int
952 __dma_has_cap(enum dma_transaction_type tx_type, dma_cap_mask_t *srcp)
953 {
954 return test_bit(tx_type, srcp->bits);
955 }
956
957 #define for_each_dma_cap_mask(cap, mask) \
958 for_each_set_bit(cap, mask.bits, DMA_TX_TYPE_END)
959
960 /**
961 * dma_async_issue_pending - flush pending transactions to HW
962 * @chan: target DMA channel
963 *
964 * This allows drivers to push copies to HW in batches,
965 * reducing MMIO writes where possible.
966 */
967 static inline void dma_async_issue_pending(struct dma_chan *chan)
968 {
969 chan->device->device_issue_pending(chan);
970 }
971
972 /**
973 * dma_async_is_tx_complete - poll for transaction completion
974 * @chan: DMA channel
975 * @cookie: transaction identifier to check status of
976 * @last: returns last completed cookie, can be NULL
977 * @used: returns last issued cookie, can be NULL
978 *
979 * If @last and @used are passed in, upon return they reflect the driver
980 * internal state and can be used with dma_async_is_complete() to check
981 * the status of multiple cookies without re-checking hardware state.
982 */
983 static inline enum dma_status dma_async_is_tx_complete(struct dma_chan *chan,
984 dma_cookie_t cookie, dma_cookie_t *last, dma_cookie_t *used)
985 {
986 struct dma_tx_state state;
987 enum dma_status status;
988
989 status = chan->device->device_tx_status(chan, cookie, &state);
990 if (last)
991 *last = state.last;
992 if (used)
993 *used = state.used;
994 return status;
995 }
996
997 /**
998 * dma_async_is_complete - test a cookie against chan state
999 * @cookie: transaction identifier to test status of
1000 * @last_complete: last know completed transaction
1001 * @last_used: last cookie value handed out
1002 *
1003 * dma_async_is_complete() is used in dma_async_is_tx_complete()
1004 * the test logic is separated for lightweight testing of multiple cookies
1005 */
1006 static inline enum dma_status dma_async_is_complete(dma_cookie_t cookie,
1007 dma_cookie_t last_complete, dma_cookie_t last_used)
1008 {
1009 if (last_complete <= last_used) {
1010 if ((cookie <= last_complete) || (cookie > last_used))
1011 return DMA_COMPLETE;
1012 } else {
1013 if ((cookie <= last_complete) && (cookie > last_used))
1014 return DMA_COMPLETE;
1015 }
1016 return DMA_IN_PROGRESS;
1017 }
1018
1019 static inline void
1020 dma_set_tx_state(struct dma_tx_state *st, dma_cookie_t last, dma_cookie_t used, u32 residue)
1021 {
1022 if (st) {
1023 st->last = last;
1024 st->used = used;
1025 st->residue = residue;
1026 }
1027 }
1028
1029 #ifdef CONFIG_DMA_ENGINE
1030 struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type);
1031 enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie);
1032 enum dma_status dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx);
1033 void dma_issue_pending_all(void);
1034 struct dma_chan *__dma_request_channel(const dma_cap_mask_t *mask,
1035 dma_filter_fn fn, void *fn_param);
1036 struct dma_chan *dma_request_slave_channel_reason(struct device *dev,
1037 const char *name);
1038 struct dma_chan *dma_request_slave_channel(struct device *dev, const char *name);
1039 void dma_release_channel(struct dma_chan *chan);
1040 int dma_get_slave_caps(struct dma_chan *chan, struct dma_slave_caps *caps);
1041 #else
1042 static inline struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type)
1043 {
1044 return NULL;
1045 }
1046 static inline enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie)
1047 {
1048 return DMA_COMPLETE;
1049 }
1050 static inline enum dma_status dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx)
1051 {
1052 return DMA_COMPLETE;
1053 }
1054 static inline void dma_issue_pending_all(void)
1055 {
1056 }
1057 static inline struct dma_chan *__dma_request_channel(const dma_cap_mask_t *mask,
1058 dma_filter_fn fn, void *fn_param)
1059 {
1060 return NULL;
1061 }
1062 static inline struct dma_chan *dma_request_slave_channel_reason(
1063 struct device *dev, const char *name)
1064 {
1065 return ERR_PTR(-ENODEV);
1066 }
1067 static inline struct dma_chan *dma_request_slave_channel(struct device *dev,
1068 const char *name)
1069 {
1070 return NULL;
1071 }
1072 static inline void dma_release_channel(struct dma_chan *chan)
1073 {
1074 }
1075 static inline int dma_get_slave_caps(struct dma_chan *chan,
1076 struct dma_slave_caps *caps)
1077 {
1078 return -ENXIO;
1079 }
1080 #endif
1081
1082 /* --- DMA device --- */
1083
1084 int dma_async_device_register(struct dma_device *device);
1085 void dma_async_device_unregister(struct dma_device *device);
1086 void dma_run_dependencies(struct dma_async_tx_descriptor *tx);
1087 struct dma_chan *dma_get_slave_channel(struct dma_chan *chan);
1088 struct dma_chan *dma_get_any_slave_channel(struct dma_device *device);
1089 #define dma_request_channel(mask, x, y) __dma_request_channel(&(mask), x, y)
1090 #define dma_request_slave_channel_compat(mask, x, y, dev, name) \
1091 __dma_request_slave_channel_compat(&(mask), x, y, dev, name)
1092
1093 static inline struct dma_chan
1094 *__dma_request_slave_channel_compat(const dma_cap_mask_t *mask,
1095 dma_filter_fn fn, void *fn_param,
1096 struct device *dev, char *name)
1097 {
1098 struct dma_chan *chan;
1099
1100 chan = dma_request_slave_channel(dev, name);
1101 if (chan)
1102 return chan;
1103
1104 return __dma_request_channel(mask, fn, fn_param);
1105 }
1106 #endif /* DMAENGINE_H */
This page took 0.088276 seconds and 6 git commands to generate.