Merge tag 'modules-next-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[deliverable/linux.git] / include / linux / gfp.h
1 #ifndef __LINUX_GFP_H
2 #define __LINUX_GFP_H
3
4 #include <linux/mmdebug.h>
5 #include <linux/mmzone.h>
6 #include <linux/stddef.h>
7 #include <linux/linkage.h>
8 #include <linux/topology.h>
9
10 struct vm_area_struct;
11
12 /* Plain integer GFP bitmasks. Do not use this directly. */
13 #define ___GFP_DMA 0x01u
14 #define ___GFP_HIGHMEM 0x02u
15 #define ___GFP_DMA32 0x04u
16 #define ___GFP_MOVABLE 0x08u
17 #define ___GFP_RECLAIMABLE 0x10u
18 #define ___GFP_HIGH 0x20u
19 #define ___GFP_IO 0x40u
20 #define ___GFP_FS 0x80u
21 #define ___GFP_COLD 0x100u
22 #define ___GFP_NOWARN 0x200u
23 #define ___GFP_REPEAT 0x400u
24 #define ___GFP_NOFAIL 0x800u
25 #define ___GFP_NORETRY 0x1000u
26 #define ___GFP_MEMALLOC 0x2000u
27 #define ___GFP_COMP 0x4000u
28 #define ___GFP_ZERO 0x8000u
29 #define ___GFP_NOMEMALLOC 0x10000u
30 #define ___GFP_HARDWALL 0x20000u
31 #define ___GFP_THISNODE 0x40000u
32 #define ___GFP_ATOMIC 0x80000u
33 #define ___GFP_NOACCOUNT 0x100000u
34 #define ___GFP_NOTRACK 0x200000u
35 #define ___GFP_DIRECT_RECLAIM 0x400000u
36 #define ___GFP_OTHER_NODE 0x800000u
37 #define ___GFP_WRITE 0x1000000u
38 #define ___GFP_KSWAPD_RECLAIM 0x2000000u
39 /* If the above are modified, __GFP_BITS_SHIFT may need updating */
40
41 /*
42 * Physical address zone modifiers (see linux/mmzone.h - low four bits)
43 *
44 * Do not put any conditional on these. If necessary modify the definitions
45 * without the underscores and use them consistently. The definitions here may
46 * be used in bit comparisons.
47 */
48 #define __GFP_DMA ((__force gfp_t)___GFP_DMA)
49 #define __GFP_HIGHMEM ((__force gfp_t)___GFP_HIGHMEM)
50 #define __GFP_DMA32 ((__force gfp_t)___GFP_DMA32)
51 #define __GFP_MOVABLE ((__force gfp_t)___GFP_MOVABLE) /* Page is movable */
52 #define __GFP_MOVABLE ((__force gfp_t)___GFP_MOVABLE) /* ZONE_MOVABLE allowed */
53 #define GFP_ZONEMASK (__GFP_DMA|__GFP_HIGHMEM|__GFP_DMA32|__GFP_MOVABLE)
54
55 /*
56 * Page mobility and placement hints
57 *
58 * These flags provide hints about how mobile the page is. Pages with similar
59 * mobility are placed within the same pageblocks to minimise problems due
60 * to external fragmentation.
61 *
62 * __GFP_MOVABLE (also a zone modifier) indicates that the page can be
63 * moved by page migration during memory compaction or can be reclaimed.
64 *
65 * __GFP_RECLAIMABLE is used for slab allocations that specify
66 * SLAB_RECLAIM_ACCOUNT and whose pages can be freed via shrinkers.
67 *
68 * __GFP_WRITE indicates the caller intends to dirty the page. Where possible,
69 * these pages will be spread between local zones to avoid all the dirty
70 * pages being in one zone (fair zone allocation policy).
71 *
72 * __GFP_HARDWALL enforces the cpuset memory allocation policy.
73 *
74 * __GFP_THISNODE forces the allocation to be satisified from the requested
75 * node with no fallbacks or placement policy enforcements.
76 */
77 #define __GFP_RECLAIMABLE ((__force gfp_t)___GFP_RECLAIMABLE)
78 #define __GFP_WRITE ((__force gfp_t)___GFP_WRITE)
79 #define __GFP_HARDWALL ((__force gfp_t)___GFP_HARDWALL)
80 #define __GFP_THISNODE ((__force gfp_t)___GFP_THISNODE)
81
82 /*
83 * Watermark modifiers -- controls access to emergency reserves
84 *
85 * __GFP_HIGH indicates that the caller is high-priority and that granting
86 * the request is necessary before the system can make forward progress.
87 * For example, creating an IO context to clean pages.
88 *
89 * __GFP_ATOMIC indicates that the caller cannot reclaim or sleep and is
90 * high priority. Users are typically interrupt handlers. This may be
91 * used in conjunction with __GFP_HIGH
92 *
93 * __GFP_MEMALLOC allows access to all memory. This should only be used when
94 * the caller guarantees the allocation will allow more memory to be freed
95 * very shortly e.g. process exiting or swapping. Users either should
96 * be the MM or co-ordinating closely with the VM (e.g. swap over NFS).
97 *
98 * __GFP_NOMEMALLOC is used to explicitly forbid access to emergency reserves.
99 * This takes precedence over the __GFP_MEMALLOC flag if both are set.
100 *
101 * __GFP_NOACCOUNT ignores the accounting for kmemcg limit enforcement.
102 */
103 #define __GFP_ATOMIC ((__force gfp_t)___GFP_ATOMIC)
104 #define __GFP_HIGH ((__force gfp_t)___GFP_HIGH)
105 #define __GFP_MEMALLOC ((__force gfp_t)___GFP_MEMALLOC)
106 #define __GFP_NOMEMALLOC ((__force gfp_t)___GFP_NOMEMALLOC)
107 #define __GFP_NOACCOUNT ((__force gfp_t)___GFP_NOACCOUNT)
108
109 /*
110 * Reclaim modifiers
111 *
112 * __GFP_IO can start physical IO.
113 *
114 * __GFP_FS can call down to the low-level FS. Clearing the flag avoids the
115 * allocator recursing into the filesystem which might already be holding
116 * locks.
117 *
118 * __GFP_DIRECT_RECLAIM indicates that the caller may enter direct reclaim.
119 * This flag can be cleared to avoid unnecessary delays when a fallback
120 * option is available.
121 *
122 * __GFP_KSWAPD_RECLAIM indicates that the caller wants to wake kswapd when
123 * the low watermark is reached and have it reclaim pages until the high
124 * watermark is reached. A caller may wish to clear this flag when fallback
125 * options are available and the reclaim is likely to disrupt the system. The
126 * canonical example is THP allocation where a fallback is cheap but
127 * reclaim/compaction may cause indirect stalls.
128 *
129 * __GFP_RECLAIM is shorthand to allow/forbid both direct and kswapd reclaim.
130 *
131 * __GFP_REPEAT: Try hard to allocate the memory, but the allocation attempt
132 * _might_ fail. This depends upon the particular VM implementation.
133 *
134 * __GFP_NOFAIL: The VM implementation _must_ retry infinitely: the caller
135 * cannot handle allocation failures. New users should be evaluated carefully
136 * (and the flag should be used only when there is no reasonable failure
137 * policy) but it is definitely preferable to use the flag rather than
138 * opencode endless loop around allocator.
139 *
140 * __GFP_NORETRY: The VM implementation must not retry indefinitely and will
141 * return NULL when direct reclaim and memory compaction have failed to allow
142 * the allocation to succeed. The OOM killer is not called with the current
143 * implementation.
144 */
145 #define __GFP_IO ((__force gfp_t)___GFP_IO)
146 #define __GFP_FS ((__force gfp_t)___GFP_FS)
147 #define __GFP_DIRECT_RECLAIM ((__force gfp_t)___GFP_DIRECT_RECLAIM) /* Caller can reclaim */
148 #define __GFP_KSWAPD_RECLAIM ((__force gfp_t)___GFP_KSWAPD_RECLAIM) /* kswapd can wake */
149 #define __GFP_RECLAIM ((__force gfp_t)(___GFP_DIRECT_RECLAIM|___GFP_KSWAPD_RECLAIM))
150 #define __GFP_REPEAT ((__force gfp_t)___GFP_REPEAT)
151 #define __GFP_NOFAIL ((__force gfp_t)___GFP_NOFAIL)
152 #define __GFP_NORETRY ((__force gfp_t)___GFP_NORETRY)
153
154 /*
155 * Action modifiers
156 *
157 * __GFP_COLD indicates that the caller does not expect to be used in the near
158 * future. Where possible, a cache-cold page will be returned.
159 *
160 * __GFP_NOWARN suppresses allocation failure reports.
161 *
162 * __GFP_COMP address compound page metadata.
163 *
164 * __GFP_ZERO returns a zeroed page on success.
165 *
166 * __GFP_NOTRACK avoids tracking with kmemcheck.
167 *
168 * __GFP_NOTRACK_FALSE_POSITIVE is an alias of __GFP_NOTRACK. It's a means of
169 * distinguishing in the source between false positives and allocations that
170 * cannot be supported (e.g. page tables).
171 *
172 * __GFP_OTHER_NODE is for allocations that are on a remote node but that
173 * should not be accounted for as a remote allocation in vmstat. A
174 * typical user would be khugepaged collapsing a huge page on a remote
175 * node.
176 */
177 #define __GFP_COLD ((__force gfp_t)___GFP_COLD)
178 #define __GFP_NOWARN ((__force gfp_t)___GFP_NOWARN)
179 #define __GFP_COMP ((__force gfp_t)___GFP_COMP)
180 #define __GFP_ZERO ((__force gfp_t)___GFP_ZERO)
181 #define __GFP_NOTRACK ((__force gfp_t)___GFP_NOTRACK)
182 #define __GFP_NOTRACK_FALSE_POSITIVE (__GFP_NOTRACK)
183 #define __GFP_OTHER_NODE ((__force gfp_t)___GFP_OTHER_NODE)
184
185 /* Room for N __GFP_FOO bits */
186 #define __GFP_BITS_SHIFT 26
187 #define __GFP_BITS_MASK ((__force gfp_t)((1 << __GFP_BITS_SHIFT) - 1))
188
189 /*
190 * Useful GFP flag combinations that are commonly used. It is recommended
191 * that subsystems start with one of these combinations and then set/clear
192 * __GFP_FOO flags as necessary.
193 *
194 * GFP_ATOMIC users can not sleep and need the allocation to succeed. A lower
195 * watermark is applied to allow access to "atomic reserves"
196 *
197 * GFP_KERNEL is typical for kernel-internal allocations. The caller requires
198 * ZONE_NORMAL or a lower zone for direct access but can direct reclaim.
199 *
200 * GFP_NOWAIT is for kernel allocations that should not stall for direct
201 * reclaim, start physical IO or use any filesystem callback.
202 *
203 * GFP_NOIO will use direct reclaim to discard clean pages or slab pages
204 * that do not require the starting of any physical IO.
205 *
206 * GFP_NOFS will use direct reclaim but will not use any filesystem interfaces.
207 *
208 * GFP_USER is for userspace allocations that also need to be directly
209 * accessibly by the kernel or hardware. It is typically used by hardware
210 * for buffers that are mapped to userspace (e.g. graphics) that hardware
211 * still must DMA to. cpuset limits are enforced for these allocations.
212 *
213 * GFP_DMA exists for historical reasons and should be avoided where possible.
214 * The flags indicates that the caller requires that the lowest zone be
215 * used (ZONE_DMA or 16M on x86-64). Ideally, this would be removed but
216 * it would require careful auditing as some users really require it and
217 * others use the flag to avoid lowmem reserves in ZONE_DMA and treat the
218 * lowest zone as a type of emergency reserve.
219 *
220 * GFP_DMA32 is similar to GFP_DMA except that the caller requires a 32-bit
221 * address.
222 *
223 * GFP_HIGHUSER is for userspace allocations that may be mapped to userspace,
224 * do not need to be directly accessible by the kernel but that cannot
225 * move once in use. An example may be a hardware allocation that maps
226 * data directly into userspace but has no addressing limitations.
227 *
228 * GFP_HIGHUSER_MOVABLE is for userspace allocations that the kernel does not
229 * need direct access to but can use kmap() when access is required. They
230 * are expected to be movable via page reclaim or page migration. Typically,
231 * pages on the LRU would also be allocated with GFP_HIGHUSER_MOVABLE.
232 *
233 * GFP_TRANSHUGE is used for THP allocations. They are compound allocations
234 * that will fail quickly if memory is not available and will not wake
235 * kswapd on failure.
236 */
237 #define GFP_ATOMIC (__GFP_HIGH|__GFP_ATOMIC|__GFP_KSWAPD_RECLAIM)
238 #define GFP_KERNEL (__GFP_RECLAIM | __GFP_IO | __GFP_FS)
239 #define GFP_NOWAIT (__GFP_KSWAPD_RECLAIM)
240 #define GFP_NOIO (__GFP_RECLAIM)
241 #define GFP_NOFS (__GFP_RECLAIM | __GFP_IO)
242 #define GFP_TEMPORARY (__GFP_RECLAIM | __GFP_IO | __GFP_FS | \
243 __GFP_RECLAIMABLE)
244 #define GFP_USER (__GFP_RECLAIM | __GFP_IO | __GFP_FS | __GFP_HARDWALL)
245 #define GFP_DMA __GFP_DMA
246 #define GFP_DMA32 __GFP_DMA32
247 #define GFP_HIGHUSER (GFP_USER | __GFP_HIGHMEM)
248 #define GFP_HIGHUSER_MOVABLE (GFP_HIGHUSER | __GFP_MOVABLE)
249 #define GFP_TRANSHUGE ((GFP_HIGHUSER_MOVABLE | __GFP_COMP | \
250 __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN) & \
251 ~__GFP_KSWAPD_RECLAIM)
252
253 /* Convert GFP flags to their corresponding migrate type */
254 #define GFP_MOVABLE_MASK (__GFP_RECLAIMABLE|__GFP_MOVABLE)
255 #define GFP_MOVABLE_SHIFT 3
256
257 static inline int gfpflags_to_migratetype(const gfp_t gfp_flags)
258 {
259 VM_WARN_ON((gfp_flags & GFP_MOVABLE_MASK) == GFP_MOVABLE_MASK);
260 BUILD_BUG_ON((1UL << GFP_MOVABLE_SHIFT) != ___GFP_MOVABLE);
261 BUILD_BUG_ON((___GFP_MOVABLE >> GFP_MOVABLE_SHIFT) != MIGRATE_MOVABLE);
262
263 if (unlikely(page_group_by_mobility_disabled))
264 return MIGRATE_UNMOVABLE;
265
266 /* Group based on mobility */
267 return (gfp_flags & GFP_MOVABLE_MASK) >> GFP_MOVABLE_SHIFT;
268 }
269 #undef GFP_MOVABLE_MASK
270 #undef GFP_MOVABLE_SHIFT
271
272 static inline bool gfpflags_allow_blocking(const gfp_t gfp_flags)
273 {
274 return gfp_flags & __GFP_DIRECT_RECLAIM;
275 }
276
277 #ifdef CONFIG_HIGHMEM
278 #define OPT_ZONE_HIGHMEM ZONE_HIGHMEM
279 #else
280 #define OPT_ZONE_HIGHMEM ZONE_NORMAL
281 #endif
282
283 #ifdef CONFIG_ZONE_DMA
284 #define OPT_ZONE_DMA ZONE_DMA
285 #else
286 #define OPT_ZONE_DMA ZONE_NORMAL
287 #endif
288
289 #ifdef CONFIG_ZONE_DMA32
290 #define OPT_ZONE_DMA32 ZONE_DMA32
291 #else
292 #define OPT_ZONE_DMA32 ZONE_NORMAL
293 #endif
294
295 /*
296 * GFP_ZONE_TABLE is a word size bitstring that is used for looking up the
297 * zone to use given the lowest 4 bits of gfp_t. Entries are ZONE_SHIFT long
298 * and there are 16 of them to cover all possible combinations of
299 * __GFP_DMA, __GFP_DMA32, __GFP_MOVABLE and __GFP_HIGHMEM.
300 *
301 * The zone fallback order is MOVABLE=>HIGHMEM=>NORMAL=>DMA32=>DMA.
302 * But GFP_MOVABLE is not only a zone specifier but also an allocation
303 * policy. Therefore __GFP_MOVABLE plus another zone selector is valid.
304 * Only 1 bit of the lowest 3 bits (DMA,DMA32,HIGHMEM) can be set to "1".
305 *
306 * bit result
307 * =================
308 * 0x0 => NORMAL
309 * 0x1 => DMA or NORMAL
310 * 0x2 => HIGHMEM or NORMAL
311 * 0x3 => BAD (DMA+HIGHMEM)
312 * 0x4 => DMA32 or DMA or NORMAL
313 * 0x5 => BAD (DMA+DMA32)
314 * 0x6 => BAD (HIGHMEM+DMA32)
315 * 0x7 => BAD (HIGHMEM+DMA32+DMA)
316 * 0x8 => NORMAL (MOVABLE+0)
317 * 0x9 => DMA or NORMAL (MOVABLE+DMA)
318 * 0xa => MOVABLE (Movable is valid only if HIGHMEM is set too)
319 * 0xb => BAD (MOVABLE+HIGHMEM+DMA)
320 * 0xc => DMA32 (MOVABLE+DMA32)
321 * 0xd => BAD (MOVABLE+DMA32+DMA)
322 * 0xe => BAD (MOVABLE+DMA32+HIGHMEM)
323 * 0xf => BAD (MOVABLE+DMA32+HIGHMEM+DMA)
324 *
325 * ZONES_SHIFT must be <= 2 on 32 bit platforms.
326 */
327
328 #if 16 * ZONES_SHIFT > BITS_PER_LONG
329 #error ZONES_SHIFT too large to create GFP_ZONE_TABLE integer
330 #endif
331
332 #define GFP_ZONE_TABLE ( \
333 (ZONE_NORMAL << 0 * ZONES_SHIFT) \
334 | (OPT_ZONE_DMA << ___GFP_DMA * ZONES_SHIFT) \
335 | (OPT_ZONE_HIGHMEM << ___GFP_HIGHMEM * ZONES_SHIFT) \
336 | (OPT_ZONE_DMA32 << ___GFP_DMA32 * ZONES_SHIFT) \
337 | (ZONE_NORMAL << ___GFP_MOVABLE * ZONES_SHIFT) \
338 | (OPT_ZONE_DMA << (___GFP_MOVABLE | ___GFP_DMA) * ZONES_SHIFT) \
339 | (ZONE_MOVABLE << (___GFP_MOVABLE | ___GFP_HIGHMEM) * ZONES_SHIFT) \
340 | (OPT_ZONE_DMA32 << (___GFP_MOVABLE | ___GFP_DMA32) * ZONES_SHIFT) \
341 )
342
343 /*
344 * GFP_ZONE_BAD is a bitmap for all combinations of __GFP_DMA, __GFP_DMA32
345 * __GFP_HIGHMEM and __GFP_MOVABLE that are not permitted. One flag per
346 * entry starting with bit 0. Bit is set if the combination is not
347 * allowed.
348 */
349 #define GFP_ZONE_BAD ( \
350 1 << (___GFP_DMA | ___GFP_HIGHMEM) \
351 | 1 << (___GFP_DMA | ___GFP_DMA32) \
352 | 1 << (___GFP_DMA32 | ___GFP_HIGHMEM) \
353 | 1 << (___GFP_DMA | ___GFP_DMA32 | ___GFP_HIGHMEM) \
354 | 1 << (___GFP_MOVABLE | ___GFP_HIGHMEM | ___GFP_DMA) \
355 | 1 << (___GFP_MOVABLE | ___GFP_DMA32 | ___GFP_DMA) \
356 | 1 << (___GFP_MOVABLE | ___GFP_DMA32 | ___GFP_HIGHMEM) \
357 | 1 << (___GFP_MOVABLE | ___GFP_DMA32 | ___GFP_DMA | ___GFP_HIGHMEM) \
358 )
359
360 static inline enum zone_type gfp_zone(gfp_t flags)
361 {
362 enum zone_type z;
363 int bit = (__force int) (flags & GFP_ZONEMASK);
364
365 z = (GFP_ZONE_TABLE >> (bit * ZONES_SHIFT)) &
366 ((1 << ZONES_SHIFT) - 1);
367 VM_BUG_ON((GFP_ZONE_BAD >> bit) & 1);
368 return z;
369 }
370
371 /*
372 * There is only one page-allocator function, and two main namespaces to
373 * it. The alloc_page*() variants return 'struct page *' and as such
374 * can allocate highmem pages, the *get*page*() variants return
375 * virtual kernel addresses to the allocated page(s).
376 */
377
378 static inline int gfp_zonelist(gfp_t flags)
379 {
380 if (IS_ENABLED(CONFIG_NUMA) && unlikely(flags & __GFP_THISNODE))
381 return 1;
382
383 return 0;
384 }
385
386 /*
387 * We get the zone list from the current node and the gfp_mask.
388 * This zone list contains a maximum of MAXNODES*MAX_NR_ZONES zones.
389 * There are two zonelists per node, one for all zones with memory and
390 * one containing just zones from the node the zonelist belongs to.
391 *
392 * For the normal case of non-DISCONTIGMEM systems the NODE_DATA() gets
393 * optimized to &contig_page_data at compile-time.
394 */
395 static inline struct zonelist *node_zonelist(int nid, gfp_t flags)
396 {
397 return NODE_DATA(nid)->node_zonelists + gfp_zonelist(flags);
398 }
399
400 #ifndef HAVE_ARCH_FREE_PAGE
401 static inline void arch_free_page(struct page *page, int order) { }
402 #endif
403 #ifndef HAVE_ARCH_ALLOC_PAGE
404 static inline void arch_alloc_page(struct page *page, int order) { }
405 #endif
406
407 struct page *
408 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
409 struct zonelist *zonelist, nodemask_t *nodemask);
410
411 static inline struct page *
412 __alloc_pages(gfp_t gfp_mask, unsigned int order,
413 struct zonelist *zonelist)
414 {
415 return __alloc_pages_nodemask(gfp_mask, order, zonelist, NULL);
416 }
417
418 /*
419 * Allocate pages, preferring the node given as nid. The node must be valid and
420 * online. For more general interface, see alloc_pages_node().
421 */
422 static inline struct page *
423 __alloc_pages_node(int nid, gfp_t gfp_mask, unsigned int order)
424 {
425 VM_BUG_ON(nid < 0 || nid >= MAX_NUMNODES);
426 VM_WARN_ON(!node_online(nid));
427
428 return __alloc_pages(gfp_mask, order, node_zonelist(nid, gfp_mask));
429 }
430
431 /*
432 * Allocate pages, preferring the node given as nid. When nid == NUMA_NO_NODE,
433 * prefer the current CPU's closest node. Otherwise node must be valid and
434 * online.
435 */
436 static inline struct page *alloc_pages_node(int nid, gfp_t gfp_mask,
437 unsigned int order)
438 {
439 if (nid == NUMA_NO_NODE)
440 nid = numa_mem_id();
441
442 return __alloc_pages_node(nid, gfp_mask, order);
443 }
444
445 #ifdef CONFIG_NUMA
446 extern struct page *alloc_pages_current(gfp_t gfp_mask, unsigned order);
447
448 static inline struct page *
449 alloc_pages(gfp_t gfp_mask, unsigned int order)
450 {
451 return alloc_pages_current(gfp_mask, order);
452 }
453 extern struct page *alloc_pages_vma(gfp_t gfp_mask, int order,
454 struct vm_area_struct *vma, unsigned long addr,
455 int node, bool hugepage);
456 #define alloc_hugepage_vma(gfp_mask, vma, addr, order) \
457 alloc_pages_vma(gfp_mask, order, vma, addr, numa_node_id(), true)
458 #else
459 #define alloc_pages(gfp_mask, order) \
460 alloc_pages_node(numa_node_id(), gfp_mask, order)
461 #define alloc_pages_vma(gfp_mask, order, vma, addr, node, false)\
462 alloc_pages(gfp_mask, order)
463 #define alloc_hugepage_vma(gfp_mask, vma, addr, order) \
464 alloc_pages(gfp_mask, order)
465 #endif
466 #define alloc_page(gfp_mask) alloc_pages(gfp_mask, 0)
467 #define alloc_page_vma(gfp_mask, vma, addr) \
468 alloc_pages_vma(gfp_mask, 0, vma, addr, numa_node_id(), false)
469 #define alloc_page_vma_node(gfp_mask, vma, addr, node) \
470 alloc_pages_vma(gfp_mask, 0, vma, addr, node, false)
471
472 extern struct page *alloc_kmem_pages(gfp_t gfp_mask, unsigned int order);
473 extern struct page *alloc_kmem_pages_node(int nid, gfp_t gfp_mask,
474 unsigned int order);
475
476 extern unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order);
477 extern unsigned long get_zeroed_page(gfp_t gfp_mask);
478
479 void *alloc_pages_exact(size_t size, gfp_t gfp_mask);
480 void free_pages_exact(void *virt, size_t size);
481 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask);
482
483 #define __get_free_page(gfp_mask) \
484 __get_free_pages((gfp_mask), 0)
485
486 #define __get_dma_pages(gfp_mask, order) \
487 __get_free_pages((gfp_mask) | GFP_DMA, (order))
488
489 extern void __free_pages(struct page *page, unsigned int order);
490 extern void free_pages(unsigned long addr, unsigned int order);
491 extern void free_hot_cold_page(struct page *page, bool cold);
492 extern void free_hot_cold_page_list(struct list_head *list, bool cold);
493
494 struct page_frag_cache;
495 extern void *__alloc_page_frag(struct page_frag_cache *nc,
496 unsigned int fragsz, gfp_t gfp_mask);
497 extern void __free_page_frag(void *addr);
498
499 extern void __free_kmem_pages(struct page *page, unsigned int order);
500 extern void free_kmem_pages(unsigned long addr, unsigned int order);
501
502 #define __free_page(page) __free_pages((page), 0)
503 #define free_page(addr) free_pages((addr), 0)
504
505 void page_alloc_init(void);
506 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp);
507 void drain_all_pages(struct zone *zone);
508 void drain_local_pages(struct zone *zone);
509
510 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
511 void page_alloc_init_late(void);
512 #else
513 static inline void page_alloc_init_late(void)
514 {
515 }
516 #endif
517
518 /*
519 * gfp_allowed_mask is set to GFP_BOOT_MASK during early boot to restrict what
520 * GFP flags are used before interrupts are enabled. Once interrupts are
521 * enabled, it is set to __GFP_BITS_MASK while the system is running. During
522 * hibernation, it is used by PM to avoid I/O during memory allocation while
523 * devices are suspended.
524 */
525 extern gfp_t gfp_allowed_mask;
526
527 /* Returns true if the gfp_mask allows use of ALLOC_NO_WATERMARK */
528 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask);
529
530 extern void pm_restrict_gfp_mask(void);
531 extern void pm_restore_gfp_mask(void);
532
533 #ifdef CONFIG_PM_SLEEP
534 extern bool pm_suspended_storage(void);
535 #else
536 static inline bool pm_suspended_storage(void)
537 {
538 return false;
539 }
540 #endif /* CONFIG_PM_SLEEP */
541
542 #ifdef CONFIG_CMA
543
544 /* The below functions must be run on a range from a single zone. */
545 extern int alloc_contig_range(unsigned long start, unsigned long end,
546 unsigned migratetype);
547 extern void free_contig_range(unsigned long pfn, unsigned nr_pages);
548
549 /* CMA stuff */
550 extern void init_cma_reserved_pageblock(struct page *page);
551
552 #endif
553
554 #endif /* __LINUX_GFP_H */
This page took 0.051938 seconds and 5 git commands to generate.