Merge tag 'extcon-next-for-3.13' of git://git.kernel.org/pub/scm/linux/kernel/git...
[deliverable/linux.git] / include / linux / hyperv.h
1 /*
2 *
3 * Copyright (c) 2011, Microsoft Corporation.
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
13 *
14 * You should have received a copy of the GNU General Public License along with
15 * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
16 * Place - Suite 330, Boston, MA 02111-1307 USA.
17 *
18 * Authors:
19 * Haiyang Zhang <haiyangz@microsoft.com>
20 * Hank Janssen <hjanssen@microsoft.com>
21 * K. Y. Srinivasan <kys@microsoft.com>
22 *
23 */
24
25 #ifndef _HYPERV_H
26 #define _HYPERV_H
27
28 #include <linux/types.h>
29
30 /*
31 * Framework version for util services.
32 */
33
34 #define UTIL_FW_MAJOR 3
35 #define UTIL_FW_MINOR 0
36 #define UTIL_FW_MAJOR_MINOR (UTIL_FW_MAJOR << 16 | UTIL_FW_MINOR)
37
38
39 /*
40 * Implementation of host controlled snapshot of the guest.
41 */
42
43 #define VSS_OP_REGISTER 128
44
45 enum hv_vss_op {
46 VSS_OP_CREATE = 0,
47 VSS_OP_DELETE,
48 VSS_OP_HOT_BACKUP,
49 VSS_OP_GET_DM_INFO,
50 VSS_OP_BU_COMPLETE,
51 /*
52 * Following operations are only supported with IC version >= 5.0
53 */
54 VSS_OP_FREEZE, /* Freeze the file systems in the VM */
55 VSS_OP_THAW, /* Unfreeze the file systems */
56 VSS_OP_AUTO_RECOVER,
57 VSS_OP_COUNT /* Number of operations, must be last */
58 };
59
60
61 /*
62 * Header for all VSS messages.
63 */
64 struct hv_vss_hdr {
65 __u8 operation;
66 __u8 reserved[7];
67 } __attribute__((packed));
68
69
70 /*
71 * Flag values for the hv_vss_check_feature. Linux supports only
72 * one value.
73 */
74 #define VSS_HBU_NO_AUTO_RECOVERY 0x00000005
75
76 struct hv_vss_check_feature {
77 __u32 flags;
78 } __attribute__((packed));
79
80 struct hv_vss_check_dm_info {
81 __u32 flags;
82 } __attribute__((packed));
83
84 struct hv_vss_msg {
85 union {
86 struct hv_vss_hdr vss_hdr;
87 int error;
88 };
89 union {
90 struct hv_vss_check_feature vss_cf;
91 struct hv_vss_check_dm_info dm_info;
92 };
93 } __attribute__((packed));
94
95 /*
96 * An implementation of HyperV key value pair (KVP) functionality for Linux.
97 *
98 *
99 * Copyright (C) 2010, Novell, Inc.
100 * Author : K. Y. Srinivasan <ksrinivasan@novell.com>
101 *
102 */
103
104 /*
105 * Maximum value size - used for both key names and value data, and includes
106 * any applicable NULL terminators.
107 *
108 * Note: This limit is somewhat arbitrary, but falls easily within what is
109 * supported for all native guests (back to Win 2000) and what is reasonable
110 * for the IC KVP exchange functionality. Note that Windows Me/98/95 are
111 * limited to 255 character key names.
112 *
113 * MSDN recommends not storing data values larger than 2048 bytes in the
114 * registry.
115 *
116 * Note: This value is used in defining the KVP exchange message - this value
117 * cannot be modified without affecting the message size and compatibility.
118 */
119
120 /*
121 * bytes, including any null terminators
122 */
123 #define HV_KVP_EXCHANGE_MAX_VALUE_SIZE (2048)
124
125
126 /*
127 * Maximum key size - the registry limit for the length of an entry name
128 * is 256 characters, including the null terminator
129 */
130
131 #define HV_KVP_EXCHANGE_MAX_KEY_SIZE (512)
132
133 /*
134 * In Linux, we implement the KVP functionality in two components:
135 * 1) The kernel component which is packaged as part of the hv_utils driver
136 * is responsible for communicating with the host and responsible for
137 * implementing the host/guest protocol. 2) A user level daemon that is
138 * responsible for data gathering.
139 *
140 * Host/Guest Protocol: The host iterates over an index and expects the guest
141 * to assign a key name to the index and also return the value corresponding to
142 * the key. The host will have atmost one KVP transaction outstanding at any
143 * given point in time. The host side iteration stops when the guest returns
144 * an error. Microsoft has specified the following mapping of key names to
145 * host specified index:
146 *
147 * Index Key Name
148 * 0 FullyQualifiedDomainName
149 * 1 IntegrationServicesVersion
150 * 2 NetworkAddressIPv4
151 * 3 NetworkAddressIPv6
152 * 4 OSBuildNumber
153 * 5 OSName
154 * 6 OSMajorVersion
155 * 7 OSMinorVersion
156 * 8 OSVersion
157 * 9 ProcessorArchitecture
158 *
159 * The Windows host expects the Key Name and Key Value to be encoded in utf16.
160 *
161 * Guest Kernel/KVP Daemon Protocol: As noted earlier, we implement all of the
162 * data gathering functionality in a user mode daemon. The user level daemon
163 * is also responsible for binding the key name to the index as well. The
164 * kernel and user-level daemon communicate using a connector channel.
165 *
166 * The user mode component first registers with the
167 * the kernel component. Subsequently, the kernel component requests, data
168 * for the specified keys. In response to this message the user mode component
169 * fills in the value corresponding to the specified key. We overload the
170 * sequence field in the cn_msg header to define our KVP message types.
171 *
172 *
173 * The kernel component simply acts as a conduit for communication between the
174 * Windows host and the user-level daemon. The kernel component passes up the
175 * index received from the Host to the user-level daemon. If the index is
176 * valid (supported), the corresponding key as well as its
177 * value (both are strings) is returned. If the index is invalid
178 * (not supported), a NULL key string is returned.
179 */
180
181
182 /*
183 * Registry value types.
184 */
185
186 #define REG_SZ 1
187 #define REG_U32 4
188 #define REG_U64 8
189
190 /*
191 * As we look at expanding the KVP functionality to include
192 * IP injection functionality, we need to maintain binary
193 * compatibility with older daemons.
194 *
195 * The KVP opcodes are defined by the host and it was unfortunate
196 * that I chose to treat the registration operation as part of the
197 * KVP operations defined by the host.
198 * Here is the level of compatibility
199 * (between the user level daemon and the kernel KVP driver) that we
200 * will implement:
201 *
202 * An older daemon will always be supported on a newer driver.
203 * A given user level daemon will require a minimal version of the
204 * kernel driver.
205 * If we cannot handle the version differences, we will fail gracefully
206 * (this can happen when we have a user level daemon that is more
207 * advanced than the KVP driver.
208 *
209 * We will use values used in this handshake for determining if we have
210 * workable user level daemon and the kernel driver. We begin by taking the
211 * registration opcode out of the KVP opcode namespace. We will however,
212 * maintain compatibility with the existing user-level daemon code.
213 */
214
215 /*
216 * Daemon code not supporting IP injection (legacy daemon).
217 */
218
219 #define KVP_OP_REGISTER 4
220
221 /*
222 * Daemon code supporting IP injection.
223 * The KVP opcode field is used to communicate the
224 * registration information; so define a namespace that
225 * will be distinct from the host defined KVP opcode.
226 */
227
228 #define KVP_OP_REGISTER1 100
229
230 enum hv_kvp_exchg_op {
231 KVP_OP_GET = 0,
232 KVP_OP_SET,
233 KVP_OP_DELETE,
234 KVP_OP_ENUMERATE,
235 KVP_OP_GET_IP_INFO,
236 KVP_OP_SET_IP_INFO,
237 KVP_OP_COUNT /* Number of operations, must be last. */
238 };
239
240 enum hv_kvp_exchg_pool {
241 KVP_POOL_EXTERNAL = 0,
242 KVP_POOL_GUEST,
243 KVP_POOL_AUTO,
244 KVP_POOL_AUTO_EXTERNAL,
245 KVP_POOL_AUTO_INTERNAL,
246 KVP_POOL_COUNT /* Number of pools, must be last. */
247 };
248
249 /*
250 * Some Hyper-V status codes.
251 */
252
253 #define HV_S_OK 0x00000000
254 #define HV_E_FAIL 0x80004005
255 #define HV_S_CONT 0x80070103
256 #define HV_ERROR_NOT_SUPPORTED 0x80070032
257 #define HV_ERROR_MACHINE_LOCKED 0x800704F7
258 #define HV_ERROR_DEVICE_NOT_CONNECTED 0x8007048F
259 #define HV_INVALIDARG 0x80070057
260 #define HV_GUID_NOTFOUND 0x80041002
261
262 #define ADDR_FAMILY_NONE 0x00
263 #define ADDR_FAMILY_IPV4 0x01
264 #define ADDR_FAMILY_IPV6 0x02
265
266 #define MAX_ADAPTER_ID_SIZE 128
267 #define MAX_IP_ADDR_SIZE 1024
268 #define MAX_GATEWAY_SIZE 512
269
270
271 struct hv_kvp_ipaddr_value {
272 __u16 adapter_id[MAX_ADAPTER_ID_SIZE];
273 __u8 addr_family;
274 __u8 dhcp_enabled;
275 __u16 ip_addr[MAX_IP_ADDR_SIZE];
276 __u16 sub_net[MAX_IP_ADDR_SIZE];
277 __u16 gate_way[MAX_GATEWAY_SIZE];
278 __u16 dns_addr[MAX_IP_ADDR_SIZE];
279 } __attribute__((packed));
280
281
282 struct hv_kvp_hdr {
283 __u8 operation;
284 __u8 pool;
285 __u16 pad;
286 } __attribute__((packed));
287
288 struct hv_kvp_exchg_msg_value {
289 __u32 value_type;
290 __u32 key_size;
291 __u32 value_size;
292 __u8 key[HV_KVP_EXCHANGE_MAX_KEY_SIZE];
293 union {
294 __u8 value[HV_KVP_EXCHANGE_MAX_VALUE_SIZE];
295 __u32 value_u32;
296 __u64 value_u64;
297 };
298 } __attribute__((packed));
299
300 struct hv_kvp_msg_enumerate {
301 __u32 index;
302 struct hv_kvp_exchg_msg_value data;
303 } __attribute__((packed));
304
305 struct hv_kvp_msg_get {
306 struct hv_kvp_exchg_msg_value data;
307 };
308
309 struct hv_kvp_msg_set {
310 struct hv_kvp_exchg_msg_value data;
311 };
312
313 struct hv_kvp_msg_delete {
314 __u32 key_size;
315 __u8 key[HV_KVP_EXCHANGE_MAX_KEY_SIZE];
316 };
317
318 struct hv_kvp_register {
319 __u8 version[HV_KVP_EXCHANGE_MAX_KEY_SIZE];
320 };
321
322 struct hv_kvp_msg {
323 union {
324 struct hv_kvp_hdr kvp_hdr;
325 int error;
326 };
327 union {
328 struct hv_kvp_msg_get kvp_get;
329 struct hv_kvp_msg_set kvp_set;
330 struct hv_kvp_msg_delete kvp_delete;
331 struct hv_kvp_msg_enumerate kvp_enum_data;
332 struct hv_kvp_ipaddr_value kvp_ip_val;
333 struct hv_kvp_register kvp_register;
334 } body;
335 } __attribute__((packed));
336
337 struct hv_kvp_ip_msg {
338 __u8 operation;
339 __u8 pool;
340 struct hv_kvp_ipaddr_value kvp_ip_val;
341 } __attribute__((packed));
342
343 #ifdef __KERNEL__
344 #include <linux/scatterlist.h>
345 #include <linux/list.h>
346 #include <linux/uuid.h>
347 #include <linux/timer.h>
348 #include <linux/workqueue.h>
349 #include <linux/completion.h>
350 #include <linux/device.h>
351 #include <linux/mod_devicetable.h>
352
353
354 #define MAX_PAGE_BUFFER_COUNT 19
355 #define MAX_MULTIPAGE_BUFFER_COUNT 32 /* 128K */
356
357 #pragma pack(push, 1)
358
359 /* Single-page buffer */
360 struct hv_page_buffer {
361 u32 len;
362 u32 offset;
363 u64 pfn;
364 };
365
366 /* Multiple-page buffer */
367 struct hv_multipage_buffer {
368 /* Length and Offset determines the # of pfns in the array */
369 u32 len;
370 u32 offset;
371 u64 pfn_array[MAX_MULTIPAGE_BUFFER_COUNT];
372 };
373
374 /* 0x18 includes the proprietary packet header */
375 #define MAX_PAGE_BUFFER_PACKET (0x18 + \
376 (sizeof(struct hv_page_buffer) * \
377 MAX_PAGE_BUFFER_COUNT))
378 #define MAX_MULTIPAGE_BUFFER_PACKET (0x18 + \
379 sizeof(struct hv_multipage_buffer))
380
381
382 #pragma pack(pop)
383
384 struct hv_ring_buffer {
385 /* Offset in bytes from the start of ring data below */
386 u32 write_index;
387
388 /* Offset in bytes from the start of ring data below */
389 u32 read_index;
390
391 u32 interrupt_mask;
392
393 /*
394 * Win8 uses some of the reserved bits to implement
395 * interrupt driven flow management. On the send side
396 * we can request that the receiver interrupt the sender
397 * when the ring transitions from being full to being able
398 * to handle a message of size "pending_send_sz".
399 *
400 * Add necessary state for this enhancement.
401 */
402 u32 pending_send_sz;
403
404 u32 reserved1[12];
405
406 union {
407 struct {
408 u32 feat_pending_send_sz:1;
409 };
410 u32 value;
411 } feature_bits;
412
413 /* Pad it to PAGE_SIZE so that data starts on page boundary */
414 u8 reserved2[4028];
415
416 /*
417 * Ring data starts here + RingDataStartOffset
418 * !!! DO NOT place any fields below this !!!
419 */
420 u8 buffer[0];
421 } __packed;
422
423 struct hv_ring_buffer_info {
424 struct hv_ring_buffer *ring_buffer;
425 u32 ring_size; /* Include the shared header */
426 spinlock_t ring_lock;
427
428 u32 ring_datasize; /* < ring_size */
429 u32 ring_data_startoffset;
430 };
431
432 /*
433 *
434 * hv_get_ringbuffer_availbytes()
435 *
436 * Get number of bytes available to read and to write to
437 * for the specified ring buffer
438 */
439 static inline void
440 hv_get_ringbuffer_availbytes(struct hv_ring_buffer_info *rbi,
441 u32 *read, u32 *write)
442 {
443 u32 read_loc, write_loc, dsize;
444
445 smp_read_barrier_depends();
446
447 /* Capture the read/write indices before they changed */
448 read_loc = rbi->ring_buffer->read_index;
449 write_loc = rbi->ring_buffer->write_index;
450 dsize = rbi->ring_datasize;
451
452 *write = write_loc >= read_loc ? dsize - (write_loc - read_loc) :
453 read_loc - write_loc;
454 *read = dsize - *write;
455 }
456
457 /*
458 * VMBUS version is 32 bit entity broken up into
459 * two 16 bit quantities: major_number. minor_number.
460 *
461 * 0 . 13 (Windows Server 2008)
462 * 1 . 1 (Windows 7)
463 * 2 . 4 (Windows 8)
464 */
465
466 #define VERSION_WS2008 ((0 << 16) | (13))
467 #define VERSION_WIN7 ((1 << 16) | (1))
468 #define VERSION_WIN8 ((2 << 16) | (4))
469
470 #define VERSION_INVAL -1
471
472 #define VERSION_CURRENT VERSION_WIN8
473
474 /* Make maximum size of pipe payload of 16K */
475 #define MAX_PIPE_DATA_PAYLOAD (sizeof(u8) * 16384)
476
477 /* Define PipeMode values. */
478 #define VMBUS_PIPE_TYPE_BYTE 0x00000000
479 #define VMBUS_PIPE_TYPE_MESSAGE 0x00000004
480
481 /* The size of the user defined data buffer for non-pipe offers. */
482 #define MAX_USER_DEFINED_BYTES 120
483
484 /* The size of the user defined data buffer for pipe offers. */
485 #define MAX_PIPE_USER_DEFINED_BYTES 116
486
487 /*
488 * At the center of the Channel Management library is the Channel Offer. This
489 * struct contains the fundamental information about an offer.
490 */
491 struct vmbus_channel_offer {
492 uuid_le if_type;
493 uuid_le if_instance;
494
495 /*
496 * These two fields are not currently used.
497 */
498 u64 reserved1;
499 u64 reserved2;
500
501 u16 chn_flags;
502 u16 mmio_megabytes; /* in bytes * 1024 * 1024 */
503
504 union {
505 /* Non-pipes: The user has MAX_USER_DEFINED_BYTES bytes. */
506 struct {
507 unsigned char user_def[MAX_USER_DEFINED_BYTES];
508 } std;
509
510 /*
511 * Pipes:
512 * The following sructure is an integrated pipe protocol, which
513 * is implemented on top of standard user-defined data. Pipe
514 * clients have MAX_PIPE_USER_DEFINED_BYTES left for their own
515 * use.
516 */
517 struct {
518 u32 pipe_mode;
519 unsigned char user_def[MAX_PIPE_USER_DEFINED_BYTES];
520 } pipe;
521 } u;
522 /*
523 * The sub_channel_index is defined in win8.
524 */
525 u16 sub_channel_index;
526 u16 reserved3;
527 } __packed;
528
529 /* Server Flags */
530 #define VMBUS_CHANNEL_ENUMERATE_DEVICE_INTERFACE 1
531 #define VMBUS_CHANNEL_SERVER_SUPPORTS_TRANSFER_PAGES 2
532 #define VMBUS_CHANNEL_SERVER_SUPPORTS_GPADLS 4
533 #define VMBUS_CHANNEL_NAMED_PIPE_MODE 0x10
534 #define VMBUS_CHANNEL_LOOPBACK_OFFER 0x100
535 #define VMBUS_CHANNEL_PARENT_OFFER 0x200
536 #define VMBUS_CHANNEL_REQUEST_MONITORED_NOTIFICATION 0x400
537
538 struct vmpacket_descriptor {
539 u16 type;
540 u16 offset8;
541 u16 len8;
542 u16 flags;
543 u64 trans_id;
544 } __packed;
545
546 struct vmpacket_header {
547 u32 prev_pkt_start_offset;
548 struct vmpacket_descriptor descriptor;
549 } __packed;
550
551 struct vmtransfer_page_range {
552 u32 byte_count;
553 u32 byte_offset;
554 } __packed;
555
556 struct vmtransfer_page_packet_header {
557 struct vmpacket_descriptor d;
558 u16 xfer_pageset_id;
559 u8 sender_owns_set;
560 u8 reserved;
561 u32 range_cnt;
562 struct vmtransfer_page_range ranges[1];
563 } __packed;
564
565 struct vmgpadl_packet_header {
566 struct vmpacket_descriptor d;
567 u32 gpadl;
568 u32 reserved;
569 } __packed;
570
571 struct vmadd_remove_transfer_page_set {
572 struct vmpacket_descriptor d;
573 u32 gpadl;
574 u16 xfer_pageset_id;
575 u16 reserved;
576 } __packed;
577
578 /*
579 * This structure defines a range in guest physical space that can be made to
580 * look virtually contiguous.
581 */
582 struct gpa_range {
583 u32 byte_count;
584 u32 byte_offset;
585 u64 pfn_array[0];
586 };
587
588 /*
589 * This is the format for an Establish Gpadl packet, which contains a handle by
590 * which this GPADL will be known and a set of GPA ranges associated with it.
591 * This can be converted to a MDL by the guest OS. If there are multiple GPA
592 * ranges, then the resulting MDL will be "chained," representing multiple VA
593 * ranges.
594 */
595 struct vmestablish_gpadl {
596 struct vmpacket_descriptor d;
597 u32 gpadl;
598 u32 range_cnt;
599 struct gpa_range range[1];
600 } __packed;
601
602 /*
603 * This is the format for a Teardown Gpadl packet, which indicates that the
604 * GPADL handle in the Establish Gpadl packet will never be referenced again.
605 */
606 struct vmteardown_gpadl {
607 struct vmpacket_descriptor d;
608 u32 gpadl;
609 u32 reserved; /* for alignment to a 8-byte boundary */
610 } __packed;
611
612 /*
613 * This is the format for a GPA-Direct packet, which contains a set of GPA
614 * ranges, in addition to commands and/or data.
615 */
616 struct vmdata_gpa_direct {
617 struct vmpacket_descriptor d;
618 u32 reserved;
619 u32 range_cnt;
620 struct gpa_range range[1];
621 } __packed;
622
623 /* This is the format for a Additional Data Packet. */
624 struct vmadditional_data {
625 struct vmpacket_descriptor d;
626 u64 total_bytes;
627 u32 offset;
628 u32 byte_cnt;
629 unsigned char data[1];
630 } __packed;
631
632 union vmpacket_largest_possible_header {
633 struct vmpacket_descriptor simple_hdr;
634 struct vmtransfer_page_packet_header xfer_page_hdr;
635 struct vmgpadl_packet_header gpadl_hdr;
636 struct vmadd_remove_transfer_page_set add_rm_xfer_page_hdr;
637 struct vmestablish_gpadl establish_gpadl_hdr;
638 struct vmteardown_gpadl teardown_gpadl_hdr;
639 struct vmdata_gpa_direct data_gpa_direct_hdr;
640 };
641
642 #define VMPACKET_DATA_START_ADDRESS(__packet) \
643 (void *)(((unsigned char *)__packet) + \
644 ((struct vmpacket_descriptor)__packet)->offset8 * 8)
645
646 #define VMPACKET_DATA_LENGTH(__packet) \
647 ((((struct vmpacket_descriptor)__packet)->len8 - \
648 ((struct vmpacket_descriptor)__packet)->offset8) * 8)
649
650 #define VMPACKET_TRANSFER_MODE(__packet) \
651 (((struct IMPACT)__packet)->type)
652
653 enum vmbus_packet_type {
654 VM_PKT_INVALID = 0x0,
655 VM_PKT_SYNCH = 0x1,
656 VM_PKT_ADD_XFER_PAGESET = 0x2,
657 VM_PKT_RM_XFER_PAGESET = 0x3,
658 VM_PKT_ESTABLISH_GPADL = 0x4,
659 VM_PKT_TEARDOWN_GPADL = 0x5,
660 VM_PKT_DATA_INBAND = 0x6,
661 VM_PKT_DATA_USING_XFER_PAGES = 0x7,
662 VM_PKT_DATA_USING_GPADL = 0x8,
663 VM_PKT_DATA_USING_GPA_DIRECT = 0x9,
664 VM_PKT_CANCEL_REQUEST = 0xa,
665 VM_PKT_COMP = 0xb,
666 VM_PKT_DATA_USING_ADDITIONAL_PKT = 0xc,
667 VM_PKT_ADDITIONAL_DATA = 0xd
668 };
669
670 #define VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED 1
671
672
673 /* Version 1 messages */
674 enum vmbus_channel_message_type {
675 CHANNELMSG_INVALID = 0,
676 CHANNELMSG_OFFERCHANNEL = 1,
677 CHANNELMSG_RESCIND_CHANNELOFFER = 2,
678 CHANNELMSG_REQUESTOFFERS = 3,
679 CHANNELMSG_ALLOFFERS_DELIVERED = 4,
680 CHANNELMSG_OPENCHANNEL = 5,
681 CHANNELMSG_OPENCHANNEL_RESULT = 6,
682 CHANNELMSG_CLOSECHANNEL = 7,
683 CHANNELMSG_GPADL_HEADER = 8,
684 CHANNELMSG_GPADL_BODY = 9,
685 CHANNELMSG_GPADL_CREATED = 10,
686 CHANNELMSG_GPADL_TEARDOWN = 11,
687 CHANNELMSG_GPADL_TORNDOWN = 12,
688 CHANNELMSG_RELID_RELEASED = 13,
689 CHANNELMSG_INITIATE_CONTACT = 14,
690 CHANNELMSG_VERSION_RESPONSE = 15,
691 CHANNELMSG_UNLOAD = 16,
692 #ifdef VMBUS_FEATURE_PARENT_OR_PEER_MEMORY_MAPPED_INTO_A_CHILD
693 CHANNELMSG_VIEWRANGE_ADD = 17,
694 CHANNELMSG_VIEWRANGE_REMOVE = 18,
695 #endif
696 CHANNELMSG_COUNT
697 };
698
699 struct vmbus_channel_message_header {
700 enum vmbus_channel_message_type msgtype;
701 u32 padding;
702 } __packed;
703
704 /* Query VMBus Version parameters */
705 struct vmbus_channel_query_vmbus_version {
706 struct vmbus_channel_message_header header;
707 u32 version;
708 } __packed;
709
710 /* VMBus Version Supported parameters */
711 struct vmbus_channel_version_supported {
712 struct vmbus_channel_message_header header;
713 u8 version_supported;
714 } __packed;
715
716 /* Offer Channel parameters */
717 struct vmbus_channel_offer_channel {
718 struct vmbus_channel_message_header header;
719 struct vmbus_channel_offer offer;
720 u32 child_relid;
721 u8 monitorid;
722 /*
723 * win7 and beyond splits this field into a bit field.
724 */
725 u8 monitor_allocated:1;
726 u8 reserved:7;
727 /*
728 * These are new fields added in win7 and later.
729 * Do not access these fields without checking the
730 * negotiated protocol.
731 *
732 * If "is_dedicated_interrupt" is set, we must not set the
733 * associated bit in the channel bitmap while sending the
734 * interrupt to the host.
735 *
736 * connection_id is to be used in signaling the host.
737 */
738 u16 is_dedicated_interrupt:1;
739 u16 reserved1:15;
740 u32 connection_id;
741 } __packed;
742
743 /* Rescind Offer parameters */
744 struct vmbus_channel_rescind_offer {
745 struct vmbus_channel_message_header header;
746 u32 child_relid;
747 } __packed;
748
749 /*
750 * Request Offer -- no parameters, SynIC message contains the partition ID
751 * Set Snoop -- no parameters, SynIC message contains the partition ID
752 * Clear Snoop -- no parameters, SynIC message contains the partition ID
753 * All Offers Delivered -- no parameters, SynIC message contains the partition
754 * ID
755 * Flush Client -- no parameters, SynIC message contains the partition ID
756 */
757
758 /* Open Channel parameters */
759 struct vmbus_channel_open_channel {
760 struct vmbus_channel_message_header header;
761
762 /* Identifies the specific VMBus channel that is being opened. */
763 u32 child_relid;
764
765 /* ID making a particular open request at a channel offer unique. */
766 u32 openid;
767
768 /* GPADL for the channel's ring buffer. */
769 u32 ringbuffer_gpadlhandle;
770
771 /*
772 * Starting with win8, this field will be used to specify
773 * the target virtual processor on which to deliver the interrupt for
774 * the host to guest communication.
775 * Prior to win8, incoming channel interrupts would only
776 * be delivered on cpu 0. Setting this value to 0 would
777 * preserve the earlier behavior.
778 */
779 u32 target_vp;
780
781 /*
782 * The upstream ring buffer begins at offset zero in the memory
783 * described by RingBufferGpadlHandle. The downstream ring buffer
784 * follows it at this offset (in pages).
785 */
786 u32 downstream_ringbuffer_pageoffset;
787
788 /* User-specific data to be passed along to the server endpoint. */
789 unsigned char userdata[MAX_USER_DEFINED_BYTES];
790 } __packed;
791
792 /* Open Channel Result parameters */
793 struct vmbus_channel_open_result {
794 struct vmbus_channel_message_header header;
795 u32 child_relid;
796 u32 openid;
797 u32 status;
798 } __packed;
799
800 /* Close channel parameters; */
801 struct vmbus_channel_close_channel {
802 struct vmbus_channel_message_header header;
803 u32 child_relid;
804 } __packed;
805
806 /* Channel Message GPADL */
807 #define GPADL_TYPE_RING_BUFFER 1
808 #define GPADL_TYPE_SERVER_SAVE_AREA 2
809 #define GPADL_TYPE_TRANSACTION 8
810
811 /*
812 * The number of PFNs in a GPADL message is defined by the number of
813 * pages that would be spanned by ByteCount and ByteOffset. If the
814 * implied number of PFNs won't fit in this packet, there will be a
815 * follow-up packet that contains more.
816 */
817 struct vmbus_channel_gpadl_header {
818 struct vmbus_channel_message_header header;
819 u32 child_relid;
820 u32 gpadl;
821 u16 range_buflen;
822 u16 rangecount;
823 struct gpa_range range[0];
824 } __packed;
825
826 /* This is the followup packet that contains more PFNs. */
827 struct vmbus_channel_gpadl_body {
828 struct vmbus_channel_message_header header;
829 u32 msgnumber;
830 u32 gpadl;
831 u64 pfn[0];
832 } __packed;
833
834 struct vmbus_channel_gpadl_created {
835 struct vmbus_channel_message_header header;
836 u32 child_relid;
837 u32 gpadl;
838 u32 creation_status;
839 } __packed;
840
841 struct vmbus_channel_gpadl_teardown {
842 struct vmbus_channel_message_header header;
843 u32 child_relid;
844 u32 gpadl;
845 } __packed;
846
847 struct vmbus_channel_gpadl_torndown {
848 struct vmbus_channel_message_header header;
849 u32 gpadl;
850 } __packed;
851
852 #ifdef VMBUS_FEATURE_PARENT_OR_PEER_MEMORY_MAPPED_INTO_A_CHILD
853 struct vmbus_channel_view_range_add {
854 struct vmbus_channel_message_header header;
855 PHYSICAL_ADDRESS viewrange_base;
856 u64 viewrange_length;
857 u32 child_relid;
858 } __packed;
859
860 struct vmbus_channel_view_range_remove {
861 struct vmbus_channel_message_header header;
862 PHYSICAL_ADDRESS viewrange_base;
863 u32 child_relid;
864 } __packed;
865 #endif
866
867 struct vmbus_channel_relid_released {
868 struct vmbus_channel_message_header header;
869 u32 child_relid;
870 } __packed;
871
872 struct vmbus_channel_initiate_contact {
873 struct vmbus_channel_message_header header;
874 u32 vmbus_version_requested;
875 u32 padding2;
876 u64 interrupt_page;
877 u64 monitor_page1;
878 u64 monitor_page2;
879 } __packed;
880
881 struct vmbus_channel_version_response {
882 struct vmbus_channel_message_header header;
883 u8 version_supported;
884 } __packed;
885
886 enum vmbus_channel_state {
887 CHANNEL_OFFER_STATE,
888 CHANNEL_OPENING_STATE,
889 CHANNEL_OPEN_STATE,
890 CHANNEL_OPENED_STATE,
891 };
892
893 /*
894 * Represents each channel msg on the vmbus connection This is a
895 * variable-size data structure depending on the msg type itself
896 */
897 struct vmbus_channel_msginfo {
898 /* Bookkeeping stuff */
899 struct list_head msglistentry;
900
901 /* So far, this is only used to handle gpadl body message */
902 struct list_head submsglist;
903
904 /* Synchronize the request/response if needed */
905 struct completion waitevent;
906 union {
907 struct vmbus_channel_version_supported version_supported;
908 struct vmbus_channel_open_result open_result;
909 struct vmbus_channel_gpadl_torndown gpadl_torndown;
910 struct vmbus_channel_gpadl_created gpadl_created;
911 struct vmbus_channel_version_response version_response;
912 } response;
913
914 u32 msgsize;
915 /*
916 * The channel message that goes out on the "wire".
917 * It will contain at minimum the VMBUS_CHANNEL_MESSAGE_HEADER header
918 */
919 unsigned char msg[0];
920 };
921
922 struct vmbus_close_msg {
923 struct vmbus_channel_msginfo info;
924 struct vmbus_channel_close_channel msg;
925 };
926
927 /* Define connection identifier type. */
928 union hv_connection_id {
929 u32 asu32;
930 struct {
931 u32 id:24;
932 u32 reserved:8;
933 } u;
934 };
935
936 /* Definition of the hv_signal_event hypercall input structure. */
937 struct hv_input_signal_event {
938 union hv_connection_id connectionid;
939 u16 flag_number;
940 u16 rsvdz;
941 };
942
943 struct hv_input_signal_event_buffer {
944 u64 align8;
945 struct hv_input_signal_event event;
946 };
947
948 struct vmbus_channel {
949 struct list_head listentry;
950
951 struct hv_device *device_obj;
952
953 struct work_struct work;
954
955 enum vmbus_channel_state state;
956
957 struct vmbus_channel_offer_channel offermsg;
958 /*
959 * These are based on the OfferMsg.MonitorId.
960 * Save it here for easy access.
961 */
962 u8 monitor_grp;
963 u8 monitor_bit;
964
965 u32 ringbuffer_gpadlhandle;
966
967 /* Allocated memory for ring buffer */
968 void *ringbuffer_pages;
969 u32 ringbuffer_pagecount;
970 struct hv_ring_buffer_info outbound; /* send to parent */
971 struct hv_ring_buffer_info inbound; /* receive from parent */
972 spinlock_t inbound_lock;
973 struct workqueue_struct *controlwq;
974
975 struct vmbus_close_msg close_msg;
976
977 /* Channel callback are invoked in this workqueue context */
978 /* HANDLE dataWorkQueue; */
979
980 void (*onchannel_callback)(void *context);
981 void *channel_callback_context;
982
983 /*
984 * A channel can be marked for efficient (batched)
985 * reading:
986 * If batched_reading is set to "true", we read until the
987 * channel is empty and hold off interrupts from the host
988 * during the entire read process.
989 * If batched_reading is set to "false", the client is not
990 * going to perform batched reading.
991 *
992 * By default we will enable batched reading; specific
993 * drivers that don't want this behavior can turn it off.
994 */
995
996 bool batched_reading;
997
998 bool is_dedicated_interrupt;
999 struct hv_input_signal_event_buffer sig_buf;
1000 struct hv_input_signal_event *sig_event;
1001
1002 /*
1003 * Starting with win8, this field will be used to specify
1004 * the target virtual processor on which to deliver the interrupt for
1005 * the host to guest communication.
1006 * Prior to win8, incoming channel interrupts would only
1007 * be delivered on cpu 0. Setting this value to 0 would
1008 * preserve the earlier behavior.
1009 */
1010 u32 target_vp;
1011 /*
1012 * Support for sub-channels. For high performance devices,
1013 * it will be useful to have multiple sub-channels to support
1014 * a scalable communication infrastructure with the host.
1015 * The support for sub-channels is implemented as an extention
1016 * to the current infrastructure.
1017 * The initial offer is considered the primary channel and this
1018 * offer message will indicate if the host supports sub-channels.
1019 * The guest is free to ask for sub-channels to be offerred and can
1020 * open these sub-channels as a normal "primary" channel. However,
1021 * all sub-channels will have the same type and instance guids as the
1022 * primary channel. Requests sent on a given channel will result in a
1023 * response on the same channel.
1024 */
1025
1026 /*
1027 * Sub-channel creation callback. This callback will be called in
1028 * process context when a sub-channel offer is received from the host.
1029 * The guest can open the sub-channel in the context of this callback.
1030 */
1031 void (*sc_creation_callback)(struct vmbus_channel *new_sc);
1032
1033 spinlock_t sc_lock;
1034 /*
1035 * All Sub-channels of a primary channel are linked here.
1036 */
1037 struct list_head sc_list;
1038 /*
1039 * The primary channel this sub-channel belongs to.
1040 * This will be NULL for the primary channel.
1041 */
1042 struct vmbus_channel *primary_channel;
1043 };
1044
1045 static inline void set_channel_read_state(struct vmbus_channel *c, bool state)
1046 {
1047 c->batched_reading = state;
1048 }
1049
1050 void vmbus_onmessage(void *context);
1051
1052 int vmbus_request_offers(void);
1053
1054 /*
1055 * APIs for managing sub-channels.
1056 */
1057
1058 void vmbus_set_sc_create_callback(struct vmbus_channel *primary_channel,
1059 void (*sc_cr_cb)(struct vmbus_channel *new_sc));
1060
1061 /*
1062 * Retrieve the (sub) channel on which to send an outgoing request.
1063 * When a primary channel has multiple sub-channels, we choose a
1064 * channel whose VCPU binding is closest to the VCPU on which
1065 * this call is being made.
1066 */
1067 struct vmbus_channel *vmbus_get_outgoing_channel(struct vmbus_channel *primary);
1068
1069 /*
1070 * Check if sub-channels have already been offerred. This API will be useful
1071 * when the driver is unloaded after establishing sub-channels. In this case,
1072 * when the driver is re-loaded, the driver would have to check if the
1073 * subchannels have already been established before attempting to request
1074 * the creation of sub-channels.
1075 * This function returns TRUE to indicate that subchannels have already been
1076 * created.
1077 * This function should be invoked after setting the callback function for
1078 * sub-channel creation.
1079 */
1080 bool vmbus_are_subchannels_present(struct vmbus_channel *primary);
1081
1082 /* The format must be the same as struct vmdata_gpa_direct */
1083 struct vmbus_channel_packet_page_buffer {
1084 u16 type;
1085 u16 dataoffset8;
1086 u16 length8;
1087 u16 flags;
1088 u64 transactionid;
1089 u32 reserved;
1090 u32 rangecount;
1091 struct hv_page_buffer range[MAX_PAGE_BUFFER_COUNT];
1092 } __packed;
1093
1094 /* The format must be the same as struct vmdata_gpa_direct */
1095 struct vmbus_channel_packet_multipage_buffer {
1096 u16 type;
1097 u16 dataoffset8;
1098 u16 length8;
1099 u16 flags;
1100 u64 transactionid;
1101 u32 reserved;
1102 u32 rangecount; /* Always 1 in this case */
1103 struct hv_multipage_buffer range;
1104 } __packed;
1105
1106
1107 extern int vmbus_open(struct vmbus_channel *channel,
1108 u32 send_ringbuffersize,
1109 u32 recv_ringbuffersize,
1110 void *userdata,
1111 u32 userdatalen,
1112 void(*onchannel_callback)(void *context),
1113 void *context);
1114
1115 extern void vmbus_close(struct vmbus_channel *channel);
1116
1117 extern int vmbus_sendpacket(struct vmbus_channel *channel,
1118 const void *buffer,
1119 u32 bufferLen,
1120 u64 requestid,
1121 enum vmbus_packet_type type,
1122 u32 flags);
1123
1124 extern int vmbus_sendpacket_pagebuffer(struct vmbus_channel *channel,
1125 struct hv_page_buffer pagebuffers[],
1126 u32 pagecount,
1127 void *buffer,
1128 u32 bufferlen,
1129 u64 requestid);
1130
1131 extern int vmbus_sendpacket_multipagebuffer(struct vmbus_channel *channel,
1132 struct hv_multipage_buffer *mpb,
1133 void *buffer,
1134 u32 bufferlen,
1135 u64 requestid);
1136
1137 extern int vmbus_establish_gpadl(struct vmbus_channel *channel,
1138 void *kbuffer,
1139 u32 size,
1140 u32 *gpadl_handle);
1141
1142 extern int vmbus_teardown_gpadl(struct vmbus_channel *channel,
1143 u32 gpadl_handle);
1144
1145 extern int vmbus_recvpacket(struct vmbus_channel *channel,
1146 void *buffer,
1147 u32 bufferlen,
1148 u32 *buffer_actual_len,
1149 u64 *requestid);
1150
1151 extern int vmbus_recvpacket_raw(struct vmbus_channel *channel,
1152 void *buffer,
1153 u32 bufferlen,
1154 u32 *buffer_actual_len,
1155 u64 *requestid);
1156
1157
1158 extern void vmbus_ontimer(unsigned long data);
1159
1160 /* Base driver object */
1161 struct hv_driver {
1162 const char *name;
1163
1164 /* the device type supported by this driver */
1165 uuid_le dev_type;
1166 const struct hv_vmbus_device_id *id_table;
1167
1168 struct device_driver driver;
1169
1170 int (*probe)(struct hv_device *, const struct hv_vmbus_device_id *);
1171 int (*remove)(struct hv_device *);
1172 void (*shutdown)(struct hv_device *);
1173
1174 };
1175
1176 /* Base device object */
1177 struct hv_device {
1178 /* the device type id of this device */
1179 uuid_le dev_type;
1180
1181 /* the device instance id of this device */
1182 uuid_le dev_instance;
1183
1184 struct device device;
1185
1186 struct vmbus_channel *channel;
1187 };
1188
1189
1190 static inline struct hv_device *device_to_hv_device(struct device *d)
1191 {
1192 return container_of(d, struct hv_device, device);
1193 }
1194
1195 static inline struct hv_driver *drv_to_hv_drv(struct device_driver *d)
1196 {
1197 return container_of(d, struct hv_driver, driver);
1198 }
1199
1200 static inline void hv_set_drvdata(struct hv_device *dev, void *data)
1201 {
1202 dev_set_drvdata(&dev->device, data);
1203 }
1204
1205 static inline void *hv_get_drvdata(struct hv_device *dev)
1206 {
1207 return dev_get_drvdata(&dev->device);
1208 }
1209
1210 /* Vmbus interface */
1211 #define vmbus_driver_register(driver) \
1212 __vmbus_driver_register(driver, THIS_MODULE, KBUILD_MODNAME)
1213 int __must_check __vmbus_driver_register(struct hv_driver *hv_driver,
1214 struct module *owner,
1215 const char *mod_name);
1216 void vmbus_driver_unregister(struct hv_driver *hv_driver);
1217
1218 /**
1219 * VMBUS_DEVICE - macro used to describe a specific hyperv vmbus device
1220 *
1221 * This macro is used to create a struct hv_vmbus_device_id that matches a
1222 * specific device.
1223 */
1224 #define VMBUS_DEVICE(g0, g1, g2, g3, g4, g5, g6, g7, \
1225 g8, g9, ga, gb, gc, gd, ge, gf) \
1226 .guid = { g0, g1, g2, g3, g4, g5, g6, g7, \
1227 g8, g9, ga, gb, gc, gd, ge, gf },
1228
1229 /*
1230 * GUID definitions of various offer types - services offered to the guest.
1231 */
1232
1233 /*
1234 * Network GUID
1235 * {f8615163-df3e-46c5-913f-f2d2f965ed0e}
1236 */
1237 #define HV_NIC_GUID \
1238 .guid = { \
1239 0x63, 0x51, 0x61, 0xf8, 0x3e, 0xdf, 0xc5, 0x46, \
1240 0x91, 0x3f, 0xf2, 0xd2, 0xf9, 0x65, 0xed, 0x0e \
1241 }
1242
1243 /*
1244 * IDE GUID
1245 * {32412632-86cb-44a2-9b5c-50d1417354f5}
1246 */
1247 #define HV_IDE_GUID \
1248 .guid = { \
1249 0x32, 0x26, 0x41, 0x32, 0xcb, 0x86, 0xa2, 0x44, \
1250 0x9b, 0x5c, 0x50, 0xd1, 0x41, 0x73, 0x54, 0xf5 \
1251 }
1252
1253 /*
1254 * SCSI GUID
1255 * {ba6163d9-04a1-4d29-b605-72e2ffb1dc7f}
1256 */
1257 #define HV_SCSI_GUID \
1258 .guid = { \
1259 0xd9, 0x63, 0x61, 0xba, 0xa1, 0x04, 0x29, 0x4d, \
1260 0xb6, 0x05, 0x72, 0xe2, 0xff, 0xb1, 0xdc, 0x7f \
1261 }
1262
1263 /*
1264 * Shutdown GUID
1265 * {0e0b6031-5213-4934-818b-38d90ced39db}
1266 */
1267 #define HV_SHUTDOWN_GUID \
1268 .guid = { \
1269 0x31, 0x60, 0x0b, 0x0e, 0x13, 0x52, 0x34, 0x49, \
1270 0x81, 0x8b, 0x38, 0xd9, 0x0c, 0xed, 0x39, 0xdb \
1271 }
1272
1273 /*
1274 * Time Synch GUID
1275 * {9527E630-D0AE-497b-ADCE-E80AB0175CAF}
1276 */
1277 #define HV_TS_GUID \
1278 .guid = { \
1279 0x30, 0xe6, 0x27, 0x95, 0xae, 0xd0, 0x7b, 0x49, \
1280 0xad, 0xce, 0xe8, 0x0a, 0xb0, 0x17, 0x5c, 0xaf \
1281 }
1282
1283 /*
1284 * Heartbeat GUID
1285 * {57164f39-9115-4e78-ab55-382f3bd5422d}
1286 */
1287 #define HV_HEART_BEAT_GUID \
1288 .guid = { \
1289 0x39, 0x4f, 0x16, 0x57, 0x15, 0x91, 0x78, 0x4e, \
1290 0xab, 0x55, 0x38, 0x2f, 0x3b, 0xd5, 0x42, 0x2d \
1291 }
1292
1293 /*
1294 * KVP GUID
1295 * {a9a0f4e7-5a45-4d96-b827-8a841e8c03e6}
1296 */
1297 #define HV_KVP_GUID \
1298 .guid = { \
1299 0xe7, 0xf4, 0xa0, 0xa9, 0x45, 0x5a, 0x96, 0x4d, \
1300 0xb8, 0x27, 0x8a, 0x84, 0x1e, 0x8c, 0x3, 0xe6 \
1301 }
1302
1303 /*
1304 * Dynamic memory GUID
1305 * {525074dc-8985-46e2-8057-a307dc18a502}
1306 */
1307 #define HV_DM_GUID \
1308 .guid = { \
1309 0xdc, 0x74, 0x50, 0X52, 0x85, 0x89, 0xe2, 0x46, \
1310 0x80, 0x57, 0xa3, 0x07, 0xdc, 0x18, 0xa5, 0x02 \
1311 }
1312
1313 /*
1314 * Mouse GUID
1315 * {cfa8b69e-5b4a-4cc0-b98b-8ba1a1f3f95a}
1316 */
1317 #define HV_MOUSE_GUID \
1318 .guid = { \
1319 0x9e, 0xb6, 0xa8, 0xcf, 0x4a, 0x5b, 0xc0, 0x4c, \
1320 0xb9, 0x8b, 0x8b, 0xa1, 0xa1, 0xf3, 0xf9, 0x5a \
1321 }
1322
1323 /*
1324 * VSS (Backup/Restore) GUID
1325 */
1326 #define HV_VSS_GUID \
1327 .guid = { \
1328 0x29, 0x2e, 0xfa, 0x35, 0x23, 0xea, 0x36, 0x42, \
1329 0x96, 0xae, 0x3a, 0x6e, 0xba, 0xcb, 0xa4, 0x40 \
1330 }
1331 /*
1332 * Synthetic Video GUID
1333 * {DA0A7802-E377-4aac-8E77-0558EB1073F8}
1334 */
1335 #define HV_SYNTHVID_GUID \
1336 .guid = { \
1337 0x02, 0x78, 0x0a, 0xda, 0x77, 0xe3, 0xac, 0x4a, \
1338 0x8e, 0x77, 0x05, 0x58, 0xeb, 0x10, 0x73, 0xf8 \
1339 }
1340
1341 /*
1342 * Synthetic FC GUID
1343 * {2f9bcc4a-0069-4af3-b76b-6fd0be528cda}
1344 */
1345 #define HV_SYNTHFC_GUID \
1346 .guid = { \
1347 0x4A, 0xCC, 0x9B, 0x2F, 0x69, 0x00, 0xF3, 0x4A, \
1348 0xB7, 0x6B, 0x6F, 0xD0, 0xBE, 0x52, 0x8C, 0xDA \
1349 }
1350
1351 /*
1352 * Common header for Hyper-V ICs
1353 */
1354
1355 #define ICMSGTYPE_NEGOTIATE 0
1356 #define ICMSGTYPE_HEARTBEAT 1
1357 #define ICMSGTYPE_KVPEXCHANGE 2
1358 #define ICMSGTYPE_SHUTDOWN 3
1359 #define ICMSGTYPE_TIMESYNC 4
1360 #define ICMSGTYPE_VSS 5
1361
1362 #define ICMSGHDRFLAG_TRANSACTION 1
1363 #define ICMSGHDRFLAG_REQUEST 2
1364 #define ICMSGHDRFLAG_RESPONSE 4
1365
1366
1367 /*
1368 * While we want to handle util services as regular devices,
1369 * there is only one instance of each of these services; so
1370 * we statically allocate the service specific state.
1371 */
1372
1373 struct hv_util_service {
1374 u8 *recv_buffer;
1375 void (*util_cb)(void *);
1376 int (*util_init)(struct hv_util_service *);
1377 void (*util_deinit)(void);
1378 };
1379
1380 struct vmbuspipe_hdr {
1381 u32 flags;
1382 u32 msgsize;
1383 } __packed;
1384
1385 struct ic_version {
1386 u16 major;
1387 u16 minor;
1388 } __packed;
1389
1390 struct icmsg_hdr {
1391 struct ic_version icverframe;
1392 u16 icmsgtype;
1393 struct ic_version icvermsg;
1394 u16 icmsgsize;
1395 u32 status;
1396 u8 ictransaction_id;
1397 u8 icflags;
1398 u8 reserved[2];
1399 } __packed;
1400
1401 struct icmsg_negotiate {
1402 u16 icframe_vercnt;
1403 u16 icmsg_vercnt;
1404 u32 reserved;
1405 struct ic_version icversion_data[1]; /* any size array */
1406 } __packed;
1407
1408 struct shutdown_msg_data {
1409 u32 reason_code;
1410 u32 timeout_seconds;
1411 u32 flags;
1412 u8 display_message[2048];
1413 } __packed;
1414
1415 struct heartbeat_msg_data {
1416 u64 seq_num;
1417 u32 reserved[8];
1418 } __packed;
1419
1420 /* Time Sync IC defs */
1421 #define ICTIMESYNCFLAG_PROBE 0
1422 #define ICTIMESYNCFLAG_SYNC 1
1423 #define ICTIMESYNCFLAG_SAMPLE 2
1424
1425 #ifdef __x86_64__
1426 #define WLTIMEDELTA 116444736000000000L /* in 100ns unit */
1427 #else
1428 #define WLTIMEDELTA 116444736000000000LL
1429 #endif
1430
1431 struct ictimesync_data {
1432 u64 parenttime;
1433 u64 childtime;
1434 u64 roundtriptime;
1435 u8 flags;
1436 } __packed;
1437
1438 struct hyperv_service_callback {
1439 u8 msg_type;
1440 char *log_msg;
1441 uuid_le data;
1442 struct vmbus_channel *channel;
1443 void (*callback) (void *context);
1444 };
1445
1446 #define MAX_SRV_VER 0x7ffffff
1447 extern bool vmbus_prep_negotiate_resp(struct icmsg_hdr *,
1448 struct icmsg_negotiate *, u8 *, int,
1449 int);
1450
1451 int hv_kvp_init(struct hv_util_service *);
1452 void hv_kvp_deinit(void);
1453 void hv_kvp_onchannelcallback(void *);
1454
1455 int hv_vss_init(struct hv_util_service *);
1456 void hv_vss_deinit(void);
1457 void hv_vss_onchannelcallback(void *);
1458
1459 /*
1460 * Negotiated version with the Host.
1461 */
1462
1463 extern __u32 vmbus_proto_version;
1464
1465 #endif /* __KERNEL__ */
1466 #endif /* _HYPERV_H */
This page took 0.078251 seconds and 6 git commands to generate.