lists: add "const" qualifier to first arg of list_splice() operations
[deliverable/linux.git] / include / linux / list.h
1 #ifndef _LINUX_LIST_H
2 #define _LINUX_LIST_H
3
4 #ifdef __KERNEL__
5
6 #include <linux/stddef.h>
7 #include <linux/poison.h>
8 #include <linux/prefetch.h>
9 #include <asm/system.h>
10
11 /*
12 * Simple doubly linked list implementation.
13 *
14 * Some of the internal functions ("__xxx") are useful when
15 * manipulating whole lists rather than single entries, as
16 * sometimes we already know the next/prev entries and we can
17 * generate better code by using them directly rather than
18 * using the generic single-entry routines.
19 */
20
21 struct list_head {
22 struct list_head *next, *prev;
23 };
24
25 #define LIST_HEAD_INIT(name) { &(name), &(name) }
26
27 #define LIST_HEAD(name) \
28 struct list_head name = LIST_HEAD_INIT(name)
29
30 static inline void INIT_LIST_HEAD(struct list_head *list)
31 {
32 list->next = list;
33 list->prev = list;
34 }
35
36 /*
37 * Insert a new entry between two known consecutive entries.
38 *
39 * This is only for internal list manipulation where we know
40 * the prev/next entries already!
41 */
42 #ifndef CONFIG_DEBUG_LIST
43 static inline void __list_add(struct list_head *new,
44 struct list_head *prev,
45 struct list_head *next)
46 {
47 next->prev = new;
48 new->next = next;
49 new->prev = prev;
50 prev->next = new;
51 }
52 #else
53 extern void __list_add(struct list_head *new,
54 struct list_head *prev,
55 struct list_head *next);
56 #endif
57
58 /**
59 * list_add - add a new entry
60 * @new: new entry to be added
61 * @head: list head to add it after
62 *
63 * Insert a new entry after the specified head.
64 * This is good for implementing stacks.
65 */
66 #ifndef CONFIG_DEBUG_LIST
67 static inline void list_add(struct list_head *new, struct list_head *head)
68 {
69 __list_add(new, head, head->next);
70 }
71 #else
72 extern void list_add(struct list_head *new, struct list_head *head);
73 #endif
74
75
76 /**
77 * list_add_tail - add a new entry
78 * @new: new entry to be added
79 * @head: list head to add it before
80 *
81 * Insert a new entry before the specified head.
82 * This is useful for implementing queues.
83 */
84 static inline void list_add_tail(struct list_head *new, struct list_head *head)
85 {
86 __list_add(new, head->prev, head);
87 }
88
89 /*
90 * Insert a new entry between two known consecutive entries.
91 *
92 * This is only for internal list manipulation where we know
93 * the prev/next entries already!
94 */
95 static inline void __list_add_rcu(struct list_head * new,
96 struct list_head * prev, struct list_head * next)
97 {
98 new->next = next;
99 new->prev = prev;
100 smp_wmb();
101 next->prev = new;
102 prev->next = new;
103 }
104
105 /**
106 * list_add_rcu - add a new entry to rcu-protected list
107 * @new: new entry to be added
108 * @head: list head to add it after
109 *
110 * Insert a new entry after the specified head.
111 * This is good for implementing stacks.
112 *
113 * The caller must take whatever precautions are necessary
114 * (such as holding appropriate locks) to avoid racing
115 * with another list-mutation primitive, such as list_add_rcu()
116 * or list_del_rcu(), running on this same list.
117 * However, it is perfectly legal to run concurrently with
118 * the _rcu list-traversal primitives, such as
119 * list_for_each_entry_rcu().
120 */
121 static inline void list_add_rcu(struct list_head *new, struct list_head *head)
122 {
123 __list_add_rcu(new, head, head->next);
124 }
125
126 /**
127 * list_add_tail_rcu - add a new entry to rcu-protected list
128 * @new: new entry to be added
129 * @head: list head to add it before
130 *
131 * Insert a new entry before the specified head.
132 * This is useful for implementing queues.
133 *
134 * The caller must take whatever precautions are necessary
135 * (such as holding appropriate locks) to avoid racing
136 * with another list-mutation primitive, such as list_add_tail_rcu()
137 * or list_del_rcu(), running on this same list.
138 * However, it is perfectly legal to run concurrently with
139 * the _rcu list-traversal primitives, such as
140 * list_for_each_entry_rcu().
141 */
142 static inline void list_add_tail_rcu(struct list_head *new,
143 struct list_head *head)
144 {
145 __list_add_rcu(new, head->prev, head);
146 }
147
148 /*
149 * Delete a list entry by making the prev/next entries
150 * point to each other.
151 *
152 * This is only for internal list manipulation where we know
153 * the prev/next entries already!
154 */
155 static inline void __list_del(struct list_head * prev, struct list_head * next)
156 {
157 next->prev = prev;
158 prev->next = next;
159 }
160
161 /**
162 * list_del - deletes entry from list.
163 * @entry: the element to delete from the list.
164 * Note: list_empty() on entry does not return true after this, the entry is
165 * in an undefined state.
166 */
167 #ifndef CONFIG_DEBUG_LIST
168 static inline void list_del(struct list_head *entry)
169 {
170 __list_del(entry->prev, entry->next);
171 entry->next = LIST_POISON1;
172 entry->prev = LIST_POISON2;
173 }
174 #else
175 extern void list_del(struct list_head *entry);
176 #endif
177
178 /**
179 * list_del_rcu - deletes entry from list without re-initialization
180 * @entry: the element to delete from the list.
181 *
182 * Note: list_empty() on entry does not return true after this,
183 * the entry is in an undefined state. It is useful for RCU based
184 * lockfree traversal.
185 *
186 * In particular, it means that we can not poison the forward
187 * pointers that may still be used for walking the list.
188 *
189 * The caller must take whatever precautions are necessary
190 * (such as holding appropriate locks) to avoid racing
191 * with another list-mutation primitive, such as list_del_rcu()
192 * or list_add_rcu(), running on this same list.
193 * However, it is perfectly legal to run concurrently with
194 * the _rcu list-traversal primitives, such as
195 * list_for_each_entry_rcu().
196 *
197 * Note that the caller is not permitted to immediately free
198 * the newly deleted entry. Instead, either synchronize_rcu()
199 * or call_rcu() must be used to defer freeing until an RCU
200 * grace period has elapsed.
201 */
202 static inline void list_del_rcu(struct list_head *entry)
203 {
204 __list_del(entry->prev, entry->next);
205 entry->prev = LIST_POISON2;
206 }
207
208 /**
209 * list_replace - replace old entry by new one
210 * @old : the element to be replaced
211 * @new : the new element to insert
212 *
213 * If @old was empty, it will be overwritten.
214 */
215 static inline void list_replace(struct list_head *old,
216 struct list_head *new)
217 {
218 new->next = old->next;
219 new->next->prev = new;
220 new->prev = old->prev;
221 new->prev->next = new;
222 }
223
224 static inline void list_replace_init(struct list_head *old,
225 struct list_head *new)
226 {
227 list_replace(old, new);
228 INIT_LIST_HEAD(old);
229 }
230
231 /**
232 * list_replace_rcu - replace old entry by new one
233 * @old : the element to be replaced
234 * @new : the new element to insert
235 *
236 * The @old entry will be replaced with the @new entry atomically.
237 * Note: @old should not be empty.
238 */
239 static inline void list_replace_rcu(struct list_head *old,
240 struct list_head *new)
241 {
242 new->next = old->next;
243 new->prev = old->prev;
244 smp_wmb();
245 new->next->prev = new;
246 new->prev->next = new;
247 old->prev = LIST_POISON2;
248 }
249
250 /**
251 * list_del_init - deletes entry from list and reinitialize it.
252 * @entry: the element to delete from the list.
253 */
254 static inline void list_del_init(struct list_head *entry)
255 {
256 __list_del(entry->prev, entry->next);
257 INIT_LIST_HEAD(entry);
258 }
259
260 /**
261 * list_move - delete from one list and add as another's head
262 * @list: the entry to move
263 * @head: the head that will precede our entry
264 */
265 static inline void list_move(struct list_head *list, struct list_head *head)
266 {
267 __list_del(list->prev, list->next);
268 list_add(list, head);
269 }
270
271 /**
272 * list_move_tail - delete from one list and add as another's tail
273 * @list: the entry to move
274 * @head: the head that will follow our entry
275 */
276 static inline void list_move_tail(struct list_head *list,
277 struct list_head *head)
278 {
279 __list_del(list->prev, list->next);
280 list_add_tail(list, head);
281 }
282
283 /**
284 * list_is_last - tests whether @list is the last entry in list @head
285 * @list: the entry to test
286 * @head: the head of the list
287 */
288 static inline int list_is_last(const struct list_head *list,
289 const struct list_head *head)
290 {
291 return list->next == head;
292 }
293
294 /**
295 * list_empty - tests whether a list is empty
296 * @head: the list to test.
297 */
298 static inline int list_empty(const struct list_head *head)
299 {
300 return head->next == head;
301 }
302
303 /**
304 * list_empty_careful - tests whether a list is empty and not being modified
305 * @head: the list to test
306 *
307 * Description:
308 * tests whether a list is empty _and_ checks that no other CPU might be
309 * in the process of modifying either member (next or prev)
310 *
311 * NOTE: using list_empty_careful() without synchronization
312 * can only be safe if the only activity that can happen
313 * to the list entry is list_del_init(). Eg. it cannot be used
314 * if another CPU could re-list_add() it.
315 */
316 static inline int list_empty_careful(const struct list_head *head)
317 {
318 struct list_head *next = head->next;
319 return (next == head) && (next == head->prev);
320 }
321
322 /**
323 * list_is_singular - tests whether a list has just one entry.
324 * @head: the list to test.
325 */
326 static inline int list_is_singular(const struct list_head *head)
327 {
328 return !list_empty(head) && (head->next == head->prev);
329 }
330
331 static inline void __list_splice(const struct list_head *list,
332 struct list_head *head)
333 {
334 struct list_head *first = list->next;
335 struct list_head *last = list->prev;
336 struct list_head *at = head->next;
337
338 first->prev = head;
339 head->next = first;
340
341 last->next = at;
342 at->prev = last;
343 }
344
345 /**
346 * list_splice - join two lists
347 * @list: the new list to add.
348 * @head: the place to add it in the first list.
349 */
350 static inline void list_splice(const struct list_head *list,
351 struct list_head *head)
352 {
353 if (!list_empty(list))
354 __list_splice(list, head);
355 }
356
357 /**
358 * list_splice_init - join two lists and reinitialise the emptied list.
359 * @list: the new list to add.
360 * @head: the place to add it in the first list.
361 *
362 * The list at @list is reinitialised
363 */
364 static inline void list_splice_init(struct list_head *list,
365 struct list_head *head)
366 {
367 if (!list_empty(list)) {
368 __list_splice(list, head);
369 INIT_LIST_HEAD(list);
370 }
371 }
372
373 /**
374 * list_splice_init_rcu - splice an RCU-protected list into an existing list.
375 * @list: the RCU-protected list to splice
376 * @head: the place in the list to splice the first list into
377 * @sync: function to sync: synchronize_rcu(), synchronize_sched(), ...
378 *
379 * @head can be RCU-read traversed concurrently with this function.
380 *
381 * Note that this function blocks.
382 *
383 * Important note: the caller must take whatever action is necessary to
384 * prevent any other updates to @head. In principle, it is possible
385 * to modify the list as soon as sync() begins execution.
386 * If this sort of thing becomes necessary, an alternative version
387 * based on call_rcu() could be created. But only if -really-
388 * needed -- there is no shortage of RCU API members.
389 */
390 static inline void list_splice_init_rcu(struct list_head *list,
391 struct list_head *head,
392 void (*sync)(void))
393 {
394 struct list_head *first = list->next;
395 struct list_head *last = list->prev;
396 struct list_head *at = head->next;
397
398 if (list_empty(head))
399 return;
400
401 /* "first" and "last" tracking list, so initialize it. */
402
403 INIT_LIST_HEAD(list);
404
405 /*
406 * At this point, the list body still points to the source list.
407 * Wait for any readers to finish using the list before splicing
408 * the list body into the new list. Any new readers will see
409 * an empty list.
410 */
411
412 sync();
413
414 /*
415 * Readers are finished with the source list, so perform splice.
416 * The order is important if the new list is global and accessible
417 * to concurrent RCU readers. Note that RCU readers are not
418 * permitted to traverse the prev pointers without excluding
419 * this function.
420 */
421
422 last->next = at;
423 smp_wmb();
424 head->next = first;
425 first->prev = head;
426 at->prev = last;
427 }
428
429 /**
430 * list_entry - get the struct for this entry
431 * @ptr: the &struct list_head pointer.
432 * @type: the type of the struct this is embedded in.
433 * @member: the name of the list_struct within the struct.
434 */
435 #define list_entry(ptr, type, member) \
436 container_of(ptr, type, member)
437
438 /**
439 * list_first_entry - get the first element from a list
440 * @ptr: the list head to take the element from.
441 * @type: the type of the struct this is embedded in.
442 * @member: the name of the list_struct within the struct.
443 *
444 * Note, that list is expected to be not empty.
445 */
446 #define list_first_entry(ptr, type, member) \
447 list_entry((ptr)->next, type, member)
448
449 /**
450 * list_for_each - iterate over a list
451 * @pos: the &struct list_head to use as a loop cursor.
452 * @head: the head for your list.
453 */
454 #define list_for_each(pos, head) \
455 for (pos = (head)->next; prefetch(pos->next), pos != (head); \
456 pos = pos->next)
457
458 /**
459 * __list_for_each - iterate over a list
460 * @pos: the &struct list_head to use as a loop cursor.
461 * @head: the head for your list.
462 *
463 * This variant differs from list_for_each() in that it's the
464 * simplest possible list iteration code, no prefetching is done.
465 * Use this for code that knows the list to be very short (empty
466 * or 1 entry) most of the time.
467 */
468 #define __list_for_each(pos, head) \
469 for (pos = (head)->next; pos != (head); pos = pos->next)
470
471 /**
472 * list_for_each_prev - iterate over a list backwards
473 * @pos: the &struct list_head to use as a loop cursor.
474 * @head: the head for your list.
475 */
476 #define list_for_each_prev(pos, head) \
477 for (pos = (head)->prev; prefetch(pos->prev), pos != (head); \
478 pos = pos->prev)
479
480 /**
481 * list_for_each_safe - iterate over a list safe against removal of list entry
482 * @pos: the &struct list_head to use as a loop cursor.
483 * @n: another &struct list_head to use as temporary storage
484 * @head: the head for your list.
485 */
486 #define list_for_each_safe(pos, n, head) \
487 for (pos = (head)->next, n = pos->next; pos != (head); \
488 pos = n, n = pos->next)
489
490 /**
491 * list_for_each_prev_safe - iterate over a list backwards safe against removal of list entry
492 * @pos: the &struct list_head to use as a loop cursor.
493 * @n: another &struct list_head to use as temporary storage
494 * @head: the head for your list.
495 */
496 #define list_for_each_prev_safe(pos, n, head) \
497 for (pos = (head)->prev, n = pos->prev; \
498 prefetch(pos->prev), pos != (head); \
499 pos = n, n = pos->prev)
500
501 /**
502 * list_for_each_entry - iterate over list of given type
503 * @pos: the type * to use as a loop cursor.
504 * @head: the head for your list.
505 * @member: the name of the list_struct within the struct.
506 */
507 #define list_for_each_entry(pos, head, member) \
508 for (pos = list_entry((head)->next, typeof(*pos), member); \
509 prefetch(pos->member.next), &pos->member != (head); \
510 pos = list_entry(pos->member.next, typeof(*pos), member))
511
512 /**
513 * list_for_each_entry_reverse - iterate backwards over list of given type.
514 * @pos: the type * to use as a loop cursor.
515 * @head: the head for your list.
516 * @member: the name of the list_struct within the struct.
517 */
518 #define list_for_each_entry_reverse(pos, head, member) \
519 for (pos = list_entry((head)->prev, typeof(*pos), member); \
520 prefetch(pos->member.prev), &pos->member != (head); \
521 pos = list_entry(pos->member.prev, typeof(*pos), member))
522
523 /**
524 * list_prepare_entry - prepare a pos entry for use in list_for_each_entry_continue()
525 * @pos: the type * to use as a start point
526 * @head: the head of the list
527 * @member: the name of the list_struct within the struct.
528 *
529 * Prepares a pos entry for use as a start point in list_for_each_entry_continue().
530 */
531 #define list_prepare_entry(pos, head, member) \
532 ((pos) ? : list_entry(head, typeof(*pos), member))
533
534 /**
535 * list_for_each_entry_continue - continue iteration over list of given type
536 * @pos: the type * to use as a loop cursor.
537 * @head: the head for your list.
538 * @member: the name of the list_struct within the struct.
539 *
540 * Continue to iterate over list of given type, continuing after
541 * the current position.
542 */
543 #define list_for_each_entry_continue(pos, head, member) \
544 for (pos = list_entry(pos->member.next, typeof(*pos), member); \
545 prefetch(pos->member.next), &pos->member != (head); \
546 pos = list_entry(pos->member.next, typeof(*pos), member))
547
548 /**
549 * list_for_each_entry_continue_reverse - iterate backwards from the given point
550 * @pos: the type * to use as a loop cursor.
551 * @head: the head for your list.
552 * @member: the name of the list_struct within the struct.
553 *
554 * Start to iterate over list of given type backwards, continuing after
555 * the current position.
556 */
557 #define list_for_each_entry_continue_reverse(pos, head, member) \
558 for (pos = list_entry(pos->member.prev, typeof(*pos), member); \
559 prefetch(pos->member.prev), &pos->member != (head); \
560 pos = list_entry(pos->member.prev, typeof(*pos), member))
561
562 /**
563 * list_for_each_entry_from - iterate over list of given type from the current point
564 * @pos: the type * to use as a loop cursor.
565 * @head: the head for your list.
566 * @member: the name of the list_struct within the struct.
567 *
568 * Iterate over list of given type, continuing from current position.
569 */
570 #define list_for_each_entry_from(pos, head, member) \
571 for (; prefetch(pos->member.next), &pos->member != (head); \
572 pos = list_entry(pos->member.next, typeof(*pos), member))
573
574 /**
575 * list_for_each_entry_safe - iterate over list of given type safe against removal of list entry
576 * @pos: the type * to use as a loop cursor.
577 * @n: another type * to use as temporary storage
578 * @head: the head for your list.
579 * @member: the name of the list_struct within the struct.
580 */
581 #define list_for_each_entry_safe(pos, n, head, member) \
582 for (pos = list_entry((head)->next, typeof(*pos), member), \
583 n = list_entry(pos->member.next, typeof(*pos), member); \
584 &pos->member != (head); \
585 pos = n, n = list_entry(n->member.next, typeof(*n), member))
586
587 /**
588 * list_for_each_entry_safe_continue
589 * @pos: the type * to use as a loop cursor.
590 * @n: another type * to use as temporary storage
591 * @head: the head for your list.
592 * @member: the name of the list_struct within the struct.
593 *
594 * Iterate over list of given type, continuing after current point,
595 * safe against removal of list entry.
596 */
597 #define list_for_each_entry_safe_continue(pos, n, head, member) \
598 for (pos = list_entry(pos->member.next, typeof(*pos), member), \
599 n = list_entry(pos->member.next, typeof(*pos), member); \
600 &pos->member != (head); \
601 pos = n, n = list_entry(n->member.next, typeof(*n), member))
602
603 /**
604 * list_for_each_entry_safe_from
605 * @pos: the type * to use as a loop cursor.
606 * @n: another type * to use as temporary storage
607 * @head: the head for your list.
608 * @member: the name of the list_struct within the struct.
609 *
610 * Iterate over list of given type from current point, safe against
611 * removal of list entry.
612 */
613 #define list_for_each_entry_safe_from(pos, n, head, member) \
614 for (n = list_entry(pos->member.next, typeof(*pos), member); \
615 &pos->member != (head); \
616 pos = n, n = list_entry(n->member.next, typeof(*n), member))
617
618 /**
619 * list_for_each_entry_safe_reverse
620 * @pos: the type * to use as a loop cursor.
621 * @n: another type * to use as temporary storage
622 * @head: the head for your list.
623 * @member: the name of the list_struct within the struct.
624 *
625 * Iterate backwards over list of given type, safe against removal
626 * of list entry.
627 */
628 #define list_for_each_entry_safe_reverse(pos, n, head, member) \
629 for (pos = list_entry((head)->prev, typeof(*pos), member), \
630 n = list_entry(pos->member.prev, typeof(*pos), member); \
631 &pos->member != (head); \
632 pos = n, n = list_entry(n->member.prev, typeof(*n), member))
633
634 /**
635 * list_for_each_rcu - iterate over an rcu-protected list
636 * @pos: the &struct list_head to use as a loop cursor.
637 * @head: the head for your list.
638 *
639 * This list-traversal primitive may safely run concurrently with
640 * the _rcu list-mutation primitives such as list_add_rcu()
641 * as long as the traversal is guarded by rcu_read_lock().
642 */
643 #define list_for_each_rcu(pos, head) \
644 for (pos = rcu_dereference((head)->next); \
645 prefetch(pos->next), pos != (head); \
646 pos = rcu_dereference(pos->next))
647
648 #define __list_for_each_rcu(pos, head) \
649 for (pos = rcu_dereference((head)->next); \
650 pos != (head); \
651 pos = rcu_dereference(pos->next))
652
653 /**
654 * list_for_each_entry_rcu - iterate over rcu list of given type
655 * @pos: the type * to use as a loop cursor.
656 * @head: the head for your list.
657 * @member: the name of the list_struct within the struct.
658 *
659 * This list-traversal primitive may safely run concurrently with
660 * the _rcu list-mutation primitives such as list_add_rcu()
661 * as long as the traversal is guarded by rcu_read_lock().
662 */
663 #define list_for_each_entry_rcu(pos, head, member) \
664 for (pos = list_entry(rcu_dereference((head)->next), typeof(*pos), member); \
665 prefetch(pos->member.next), &pos->member != (head); \
666 pos = list_entry(rcu_dereference(pos->member.next), typeof(*pos), member))
667
668
669 /**
670 * list_for_each_continue_rcu
671 * @pos: the &struct list_head to use as a loop cursor.
672 * @head: the head for your list.
673 *
674 * Iterate over an rcu-protected list, continuing after current point.
675 *
676 * This list-traversal primitive may safely run concurrently with
677 * the _rcu list-mutation primitives such as list_add_rcu()
678 * as long as the traversal is guarded by rcu_read_lock().
679 */
680 #define list_for_each_continue_rcu(pos, head) \
681 for ((pos) = rcu_dereference((pos)->next); \
682 prefetch((pos)->next), (pos) != (head); \
683 (pos) = rcu_dereference((pos)->next))
684
685 /*
686 * Double linked lists with a single pointer list head.
687 * Mostly useful for hash tables where the two pointer list head is
688 * too wasteful.
689 * You lose the ability to access the tail in O(1).
690 */
691
692 struct hlist_head {
693 struct hlist_node *first;
694 };
695
696 struct hlist_node {
697 struct hlist_node *next, **pprev;
698 };
699
700 #define HLIST_HEAD_INIT { .first = NULL }
701 #define HLIST_HEAD(name) struct hlist_head name = { .first = NULL }
702 #define INIT_HLIST_HEAD(ptr) ((ptr)->first = NULL)
703 static inline void INIT_HLIST_NODE(struct hlist_node *h)
704 {
705 h->next = NULL;
706 h->pprev = NULL;
707 }
708
709 static inline int hlist_unhashed(const struct hlist_node *h)
710 {
711 return !h->pprev;
712 }
713
714 static inline int hlist_empty(const struct hlist_head *h)
715 {
716 return !h->first;
717 }
718
719 static inline void __hlist_del(struct hlist_node *n)
720 {
721 struct hlist_node *next = n->next;
722 struct hlist_node **pprev = n->pprev;
723 *pprev = next;
724 if (next)
725 next->pprev = pprev;
726 }
727
728 static inline void hlist_del(struct hlist_node *n)
729 {
730 __hlist_del(n);
731 n->next = LIST_POISON1;
732 n->pprev = LIST_POISON2;
733 }
734
735 /**
736 * hlist_del_rcu - deletes entry from hash list without re-initialization
737 * @n: the element to delete from the hash list.
738 *
739 * Note: list_unhashed() on entry does not return true after this,
740 * the entry is in an undefined state. It is useful for RCU based
741 * lockfree traversal.
742 *
743 * In particular, it means that we can not poison the forward
744 * pointers that may still be used for walking the hash list.
745 *
746 * The caller must take whatever precautions are necessary
747 * (such as holding appropriate locks) to avoid racing
748 * with another list-mutation primitive, such as hlist_add_head_rcu()
749 * or hlist_del_rcu(), running on this same list.
750 * However, it is perfectly legal to run concurrently with
751 * the _rcu list-traversal primitives, such as
752 * hlist_for_each_entry().
753 */
754 static inline void hlist_del_rcu(struct hlist_node *n)
755 {
756 __hlist_del(n);
757 n->pprev = LIST_POISON2;
758 }
759
760 static inline void hlist_del_init(struct hlist_node *n)
761 {
762 if (!hlist_unhashed(n)) {
763 __hlist_del(n);
764 INIT_HLIST_NODE(n);
765 }
766 }
767
768 /**
769 * hlist_replace_rcu - replace old entry by new one
770 * @old : the element to be replaced
771 * @new : the new element to insert
772 *
773 * The @old entry will be replaced with the @new entry atomically.
774 */
775 static inline void hlist_replace_rcu(struct hlist_node *old,
776 struct hlist_node *new)
777 {
778 struct hlist_node *next = old->next;
779
780 new->next = next;
781 new->pprev = old->pprev;
782 smp_wmb();
783 if (next)
784 new->next->pprev = &new->next;
785 *new->pprev = new;
786 old->pprev = LIST_POISON2;
787 }
788
789 static inline void hlist_add_head(struct hlist_node *n, struct hlist_head *h)
790 {
791 struct hlist_node *first = h->first;
792 n->next = first;
793 if (first)
794 first->pprev = &n->next;
795 h->first = n;
796 n->pprev = &h->first;
797 }
798
799
800 /**
801 * hlist_add_head_rcu
802 * @n: the element to add to the hash list.
803 * @h: the list to add to.
804 *
805 * Description:
806 * Adds the specified element to the specified hlist,
807 * while permitting racing traversals.
808 *
809 * The caller must take whatever precautions are necessary
810 * (such as holding appropriate locks) to avoid racing
811 * with another list-mutation primitive, such as hlist_add_head_rcu()
812 * or hlist_del_rcu(), running on this same list.
813 * However, it is perfectly legal to run concurrently with
814 * the _rcu list-traversal primitives, such as
815 * hlist_for_each_entry_rcu(), used to prevent memory-consistency
816 * problems on Alpha CPUs. Regardless of the type of CPU, the
817 * list-traversal primitive must be guarded by rcu_read_lock().
818 */
819 static inline void hlist_add_head_rcu(struct hlist_node *n,
820 struct hlist_head *h)
821 {
822 struct hlist_node *first = h->first;
823 n->next = first;
824 n->pprev = &h->first;
825 smp_wmb();
826 if (first)
827 first->pprev = &n->next;
828 h->first = n;
829 }
830
831 /* next must be != NULL */
832 static inline void hlist_add_before(struct hlist_node *n,
833 struct hlist_node *next)
834 {
835 n->pprev = next->pprev;
836 n->next = next;
837 next->pprev = &n->next;
838 *(n->pprev) = n;
839 }
840
841 static inline void hlist_add_after(struct hlist_node *n,
842 struct hlist_node *next)
843 {
844 next->next = n->next;
845 n->next = next;
846 next->pprev = &n->next;
847
848 if(next->next)
849 next->next->pprev = &next->next;
850 }
851
852 /**
853 * hlist_add_before_rcu
854 * @n: the new element to add to the hash list.
855 * @next: the existing element to add the new element before.
856 *
857 * Description:
858 * Adds the specified element to the specified hlist
859 * before the specified node while permitting racing traversals.
860 *
861 * The caller must take whatever precautions are necessary
862 * (such as holding appropriate locks) to avoid racing
863 * with another list-mutation primitive, such as hlist_add_head_rcu()
864 * or hlist_del_rcu(), running on this same list.
865 * However, it is perfectly legal to run concurrently with
866 * the _rcu list-traversal primitives, such as
867 * hlist_for_each_entry_rcu(), used to prevent memory-consistency
868 * problems on Alpha CPUs.
869 */
870 static inline void hlist_add_before_rcu(struct hlist_node *n,
871 struct hlist_node *next)
872 {
873 n->pprev = next->pprev;
874 n->next = next;
875 smp_wmb();
876 next->pprev = &n->next;
877 *(n->pprev) = n;
878 }
879
880 /**
881 * hlist_add_after_rcu
882 * @prev: the existing element to add the new element after.
883 * @n: the new element to add to the hash list.
884 *
885 * Description:
886 * Adds the specified element to the specified hlist
887 * after the specified node while permitting racing traversals.
888 *
889 * The caller must take whatever precautions are necessary
890 * (such as holding appropriate locks) to avoid racing
891 * with another list-mutation primitive, such as hlist_add_head_rcu()
892 * or hlist_del_rcu(), running on this same list.
893 * However, it is perfectly legal to run concurrently with
894 * the _rcu list-traversal primitives, such as
895 * hlist_for_each_entry_rcu(), used to prevent memory-consistency
896 * problems on Alpha CPUs.
897 */
898 static inline void hlist_add_after_rcu(struct hlist_node *prev,
899 struct hlist_node *n)
900 {
901 n->next = prev->next;
902 n->pprev = &prev->next;
903 smp_wmb();
904 prev->next = n;
905 if (n->next)
906 n->next->pprev = &n->next;
907 }
908
909 #define hlist_entry(ptr, type, member) container_of(ptr,type,member)
910
911 #define hlist_for_each(pos, head) \
912 for (pos = (head)->first; pos && ({ prefetch(pos->next); 1; }); \
913 pos = pos->next)
914
915 #define hlist_for_each_safe(pos, n, head) \
916 for (pos = (head)->first; pos && ({ n = pos->next; 1; }); \
917 pos = n)
918
919 /**
920 * hlist_for_each_entry - iterate over list of given type
921 * @tpos: the type * to use as a loop cursor.
922 * @pos: the &struct hlist_node to use as a loop cursor.
923 * @head: the head for your list.
924 * @member: the name of the hlist_node within the struct.
925 */
926 #define hlist_for_each_entry(tpos, pos, head, member) \
927 for (pos = (head)->first; \
928 pos && ({ prefetch(pos->next); 1;}) && \
929 ({ tpos = hlist_entry(pos, typeof(*tpos), member); 1;}); \
930 pos = pos->next)
931
932 /**
933 * hlist_for_each_entry_continue - iterate over a hlist continuing after current point
934 * @tpos: the type * to use as a loop cursor.
935 * @pos: the &struct hlist_node to use as a loop cursor.
936 * @member: the name of the hlist_node within the struct.
937 */
938 #define hlist_for_each_entry_continue(tpos, pos, member) \
939 for (pos = (pos)->next; \
940 pos && ({ prefetch(pos->next); 1;}) && \
941 ({ tpos = hlist_entry(pos, typeof(*tpos), member); 1;}); \
942 pos = pos->next)
943
944 /**
945 * hlist_for_each_entry_from - iterate over a hlist continuing from current point
946 * @tpos: the type * to use as a loop cursor.
947 * @pos: the &struct hlist_node to use as a loop cursor.
948 * @member: the name of the hlist_node within the struct.
949 */
950 #define hlist_for_each_entry_from(tpos, pos, member) \
951 for (; pos && ({ prefetch(pos->next); 1;}) && \
952 ({ tpos = hlist_entry(pos, typeof(*tpos), member); 1;}); \
953 pos = pos->next)
954
955 /**
956 * hlist_for_each_entry_safe - iterate over list of given type safe against removal of list entry
957 * @tpos: the type * to use as a loop cursor.
958 * @pos: the &struct hlist_node to use as a loop cursor.
959 * @n: another &struct hlist_node to use as temporary storage
960 * @head: the head for your list.
961 * @member: the name of the hlist_node within the struct.
962 */
963 #define hlist_for_each_entry_safe(tpos, pos, n, head, member) \
964 for (pos = (head)->first; \
965 pos && ({ n = pos->next; 1; }) && \
966 ({ tpos = hlist_entry(pos, typeof(*tpos), member); 1;}); \
967 pos = n)
968
969 /**
970 * hlist_for_each_entry_rcu - iterate over rcu list of given type
971 * @tpos: the type * to use as a loop cursor.
972 * @pos: the &struct hlist_node to use as a loop cursor.
973 * @head: the head for your list.
974 * @member: the name of the hlist_node within the struct.
975 *
976 * This list-traversal primitive may safely run concurrently with
977 * the _rcu list-mutation primitives such as hlist_add_head_rcu()
978 * as long as the traversal is guarded by rcu_read_lock().
979 */
980 #define hlist_for_each_entry_rcu(tpos, pos, head, member) \
981 for (pos = rcu_dereference((head)->first); \
982 pos && ({ prefetch(pos->next); 1;}) && \
983 ({ tpos = hlist_entry(pos, typeof(*tpos), member); 1;}); \
984 pos = rcu_dereference(pos->next))
985
986 #else
987 #warning "don't include kernel headers in userspace"
988 #endif /* __KERNEL__ */
989 #endif
This page took 0.052725 seconds and 6 git commands to generate.