memcg: unify slab and other kmem pages charging
[deliverable/linux.git] / include / linux / memcontrol.h
1 /* memcontrol.h - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 */
19
20 #ifndef _LINUX_MEMCONTROL_H
21 #define _LINUX_MEMCONTROL_H
22 #include <linux/cgroup.h>
23 #include <linux/vm_event_item.h>
24 #include <linux/hardirq.h>
25 #include <linux/jump_label.h>
26 #include <linux/page_counter.h>
27 #include <linux/vmpressure.h>
28 #include <linux/eventfd.h>
29 #include <linux/mmzone.h>
30 #include <linux/writeback.h>
31
32 struct mem_cgroup;
33 struct page;
34 struct mm_struct;
35 struct kmem_cache;
36
37 /*
38 * The corresponding mem_cgroup_stat_names is defined in mm/memcontrol.c,
39 * These two lists should keep in accord with each other.
40 */
41 enum mem_cgroup_stat_index {
42 /*
43 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
44 */
45 MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */
46 MEM_CGROUP_STAT_RSS, /* # of pages charged as anon rss */
47 MEM_CGROUP_STAT_RSS_HUGE, /* # of pages charged as anon huge */
48 MEM_CGROUP_STAT_FILE_MAPPED, /* # of pages charged as file rss */
49 MEM_CGROUP_STAT_DIRTY, /* # of dirty pages in page cache */
50 MEM_CGROUP_STAT_WRITEBACK, /* # of pages under writeback */
51 MEM_CGROUP_STAT_SWAP, /* # of pages, swapped out */
52 MEM_CGROUP_STAT_NSTATS,
53 };
54
55 struct mem_cgroup_reclaim_cookie {
56 struct zone *zone;
57 int priority;
58 unsigned int generation;
59 };
60
61 enum mem_cgroup_events_index {
62 MEM_CGROUP_EVENTS_PGPGIN, /* # of pages paged in */
63 MEM_CGROUP_EVENTS_PGPGOUT, /* # of pages paged out */
64 MEM_CGROUP_EVENTS_PGFAULT, /* # of page-faults */
65 MEM_CGROUP_EVENTS_PGMAJFAULT, /* # of major page-faults */
66 MEM_CGROUP_EVENTS_NSTATS,
67 /* default hierarchy events */
68 MEMCG_LOW = MEM_CGROUP_EVENTS_NSTATS,
69 MEMCG_HIGH,
70 MEMCG_MAX,
71 MEMCG_OOM,
72 MEMCG_NR_EVENTS,
73 };
74
75 /*
76 * Per memcg event counter is incremented at every pagein/pageout. With THP,
77 * it will be incremated by the number of pages. This counter is used for
78 * for trigger some periodic events. This is straightforward and better
79 * than using jiffies etc. to handle periodic memcg event.
80 */
81 enum mem_cgroup_events_target {
82 MEM_CGROUP_TARGET_THRESH,
83 MEM_CGROUP_TARGET_SOFTLIMIT,
84 MEM_CGROUP_TARGET_NUMAINFO,
85 MEM_CGROUP_NTARGETS,
86 };
87
88 /*
89 * Bits in struct cg_proto.flags
90 */
91 enum cg_proto_flags {
92 /* Currently active and new sockets should be assigned to cgroups */
93 MEMCG_SOCK_ACTIVE,
94 /* It was ever activated; we must disarm static keys on destruction */
95 MEMCG_SOCK_ACTIVATED,
96 };
97
98 struct cg_proto {
99 struct page_counter memory_allocated; /* Current allocated memory. */
100 struct percpu_counter sockets_allocated; /* Current number of sockets. */
101 int memory_pressure;
102 long sysctl_mem[3];
103 unsigned long flags;
104 /*
105 * memcg field is used to find which memcg we belong directly
106 * Each memcg struct can hold more than one cg_proto, so container_of
107 * won't really cut.
108 *
109 * The elegant solution would be having an inverse function to
110 * proto_cgroup in struct proto, but that means polluting the structure
111 * for everybody, instead of just for memcg users.
112 */
113 struct mem_cgroup *memcg;
114 };
115
116 #ifdef CONFIG_MEMCG
117 struct mem_cgroup_stat_cpu {
118 long count[MEM_CGROUP_STAT_NSTATS];
119 unsigned long events[MEMCG_NR_EVENTS];
120 unsigned long nr_page_events;
121 unsigned long targets[MEM_CGROUP_NTARGETS];
122 };
123
124 struct mem_cgroup_reclaim_iter {
125 struct mem_cgroup *position;
126 /* scan generation, increased every round-trip */
127 unsigned int generation;
128 };
129
130 /*
131 * per-zone information in memory controller.
132 */
133 struct mem_cgroup_per_zone {
134 struct lruvec lruvec;
135 unsigned long lru_size[NR_LRU_LISTS];
136
137 struct mem_cgroup_reclaim_iter iter[DEF_PRIORITY + 1];
138
139 struct rb_node tree_node; /* RB tree node */
140 unsigned long usage_in_excess;/* Set to the value by which */
141 /* the soft limit is exceeded*/
142 bool on_tree;
143 struct mem_cgroup *memcg; /* Back pointer, we cannot */
144 /* use container_of */
145 };
146
147 struct mem_cgroup_per_node {
148 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
149 };
150
151 struct mem_cgroup_threshold {
152 struct eventfd_ctx *eventfd;
153 unsigned long threshold;
154 };
155
156 /* For threshold */
157 struct mem_cgroup_threshold_ary {
158 /* An array index points to threshold just below or equal to usage. */
159 int current_threshold;
160 /* Size of entries[] */
161 unsigned int size;
162 /* Array of thresholds */
163 struct mem_cgroup_threshold entries[0];
164 };
165
166 struct mem_cgroup_thresholds {
167 /* Primary thresholds array */
168 struct mem_cgroup_threshold_ary *primary;
169 /*
170 * Spare threshold array.
171 * This is needed to make mem_cgroup_unregister_event() "never fail".
172 * It must be able to store at least primary->size - 1 entries.
173 */
174 struct mem_cgroup_threshold_ary *spare;
175 };
176
177 /*
178 * The memory controller data structure. The memory controller controls both
179 * page cache and RSS per cgroup. We would eventually like to provide
180 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
181 * to help the administrator determine what knobs to tune.
182 */
183 struct mem_cgroup {
184 struct cgroup_subsys_state css;
185
186 /* Accounted resources */
187 struct page_counter memory;
188 struct page_counter memsw;
189 struct page_counter kmem;
190
191 /* Normal memory consumption range */
192 unsigned long low;
193 unsigned long high;
194
195 unsigned long soft_limit;
196
197 /* vmpressure notifications */
198 struct vmpressure vmpressure;
199
200 /* css_online() has been completed */
201 int initialized;
202
203 /*
204 * Should the accounting and control be hierarchical, per subtree?
205 */
206 bool use_hierarchy;
207
208 /* protected by memcg_oom_lock */
209 bool oom_lock;
210 int under_oom;
211
212 int swappiness;
213 /* OOM-Killer disable */
214 int oom_kill_disable;
215
216 /* protect arrays of thresholds */
217 struct mutex thresholds_lock;
218
219 /* thresholds for memory usage. RCU-protected */
220 struct mem_cgroup_thresholds thresholds;
221
222 /* thresholds for mem+swap usage. RCU-protected */
223 struct mem_cgroup_thresholds memsw_thresholds;
224
225 /* For oom notifier event fd */
226 struct list_head oom_notify;
227
228 /*
229 * Should we move charges of a task when a task is moved into this
230 * mem_cgroup ? And what type of charges should we move ?
231 */
232 unsigned long move_charge_at_immigrate;
233 /*
234 * set > 0 if pages under this cgroup are moving to other cgroup.
235 */
236 atomic_t moving_account;
237 /* taken only while moving_account > 0 */
238 spinlock_t move_lock;
239 struct task_struct *move_lock_task;
240 unsigned long move_lock_flags;
241 /*
242 * percpu counter.
243 */
244 struct mem_cgroup_stat_cpu __percpu *stat;
245
246 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
247 struct cg_proto tcp_mem;
248 #endif
249 #if defined(CONFIG_MEMCG_KMEM)
250 /* Index in the kmem_cache->memcg_params.memcg_caches array */
251 int kmemcg_id;
252 bool kmem_acct_activated;
253 bool kmem_acct_active;
254 #endif
255
256 int last_scanned_node;
257 #if MAX_NUMNODES > 1
258 nodemask_t scan_nodes;
259 atomic_t numainfo_events;
260 atomic_t numainfo_updating;
261 #endif
262
263 #ifdef CONFIG_CGROUP_WRITEBACK
264 struct list_head cgwb_list;
265 struct wb_domain cgwb_domain;
266 #endif
267
268 /* List of events which userspace want to receive */
269 struct list_head event_list;
270 spinlock_t event_list_lock;
271
272 struct mem_cgroup_per_node *nodeinfo[0];
273 /* WARNING: nodeinfo must be the last member here */
274 };
275 extern struct cgroup_subsys_state *mem_cgroup_root_css;
276
277 /**
278 * mem_cgroup_events - count memory events against a cgroup
279 * @memcg: the memory cgroup
280 * @idx: the event index
281 * @nr: the number of events to account for
282 */
283 static inline void mem_cgroup_events(struct mem_cgroup *memcg,
284 enum mem_cgroup_events_index idx,
285 unsigned int nr)
286 {
287 this_cpu_add(memcg->stat->events[idx], nr);
288 }
289
290 bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg);
291
292 int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
293 gfp_t gfp_mask, struct mem_cgroup **memcgp);
294 void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
295 bool lrucare);
296 void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg);
297 void mem_cgroup_uncharge(struct page *page);
298 void mem_cgroup_uncharge_list(struct list_head *page_list);
299
300 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage,
301 bool lrucare);
302
303 struct lruvec *mem_cgroup_zone_lruvec(struct zone *, struct mem_cgroup *);
304 struct lruvec *mem_cgroup_page_lruvec(struct page *, struct zone *);
305
306 bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg);
307 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p);
308 struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg);
309
310 static inline
311 struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *css){
312 return css ? container_of(css, struct mem_cgroup, css) : NULL;
313 }
314
315 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *,
316 struct mem_cgroup *,
317 struct mem_cgroup_reclaim_cookie *);
318 void mem_cgroup_iter_break(struct mem_cgroup *, struct mem_cgroup *);
319
320 static inline bool mem_cgroup_is_descendant(struct mem_cgroup *memcg,
321 struct mem_cgroup *root)
322 {
323 if (root == memcg)
324 return true;
325 if (!root->use_hierarchy)
326 return false;
327 return cgroup_is_descendant(memcg->css.cgroup, root->css.cgroup);
328 }
329
330 static inline bool mm_match_cgroup(struct mm_struct *mm,
331 struct mem_cgroup *memcg)
332 {
333 struct mem_cgroup *task_memcg;
334 bool match = false;
335
336 rcu_read_lock();
337 task_memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
338 if (task_memcg)
339 match = mem_cgroup_is_descendant(task_memcg, memcg);
340 rcu_read_unlock();
341 return match;
342 }
343
344 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page);
345 ino_t page_cgroup_ino(struct page *page);
346
347 static inline bool mem_cgroup_disabled(void)
348 {
349 if (memory_cgrp_subsys.disabled)
350 return true;
351 return false;
352 }
353
354 /*
355 * For memory reclaim.
356 */
357 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg);
358
359 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
360 int nr_pages);
361
362 static inline bool mem_cgroup_lruvec_online(struct lruvec *lruvec)
363 {
364 struct mem_cgroup_per_zone *mz;
365 struct mem_cgroup *memcg;
366
367 if (mem_cgroup_disabled())
368 return true;
369
370 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
371 memcg = mz->memcg;
372
373 return !!(memcg->css.flags & CSS_ONLINE);
374 }
375
376 static inline
377 unsigned long mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
378 {
379 struct mem_cgroup_per_zone *mz;
380
381 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
382 return mz->lru_size[lru];
383 }
384
385 static inline bool mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
386 {
387 unsigned long inactive_ratio;
388 unsigned long inactive;
389 unsigned long active;
390 unsigned long gb;
391
392 inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
393 active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
394
395 gb = (inactive + active) >> (30 - PAGE_SHIFT);
396 if (gb)
397 inactive_ratio = int_sqrt(10 * gb);
398 else
399 inactive_ratio = 1;
400
401 return inactive * inactive_ratio < active;
402 }
403
404 void mem_cgroup_handle_over_high(void);
405
406 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg,
407 struct task_struct *p);
408
409 static inline void mem_cgroup_oom_enable(void)
410 {
411 WARN_ON(current->memcg_may_oom);
412 current->memcg_may_oom = 1;
413 }
414
415 static inline void mem_cgroup_oom_disable(void)
416 {
417 WARN_ON(!current->memcg_may_oom);
418 current->memcg_may_oom = 0;
419 }
420
421 static inline bool task_in_memcg_oom(struct task_struct *p)
422 {
423 return p->memcg_in_oom;
424 }
425
426 bool mem_cgroup_oom_synchronize(bool wait);
427
428 #ifdef CONFIG_MEMCG_SWAP
429 extern int do_swap_account;
430 #endif
431
432 struct mem_cgroup *mem_cgroup_begin_page_stat(struct page *page);
433 void mem_cgroup_end_page_stat(struct mem_cgroup *memcg);
434
435 /**
436 * mem_cgroup_update_page_stat - update page state statistics
437 * @memcg: memcg to account against
438 * @idx: page state item to account
439 * @val: number of pages (positive or negative)
440 *
441 * See mem_cgroup_begin_page_stat() for locking requirements.
442 */
443 static inline void mem_cgroup_update_page_stat(struct mem_cgroup *memcg,
444 enum mem_cgroup_stat_index idx, int val)
445 {
446 VM_BUG_ON(!rcu_read_lock_held());
447
448 if (memcg)
449 this_cpu_add(memcg->stat->count[idx], val);
450 }
451
452 static inline void mem_cgroup_inc_page_stat(struct mem_cgroup *memcg,
453 enum mem_cgroup_stat_index idx)
454 {
455 mem_cgroup_update_page_stat(memcg, idx, 1);
456 }
457
458 static inline void mem_cgroup_dec_page_stat(struct mem_cgroup *memcg,
459 enum mem_cgroup_stat_index idx)
460 {
461 mem_cgroup_update_page_stat(memcg, idx, -1);
462 }
463
464 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
465 gfp_t gfp_mask,
466 unsigned long *total_scanned);
467
468 static inline void mem_cgroup_count_vm_event(struct mm_struct *mm,
469 enum vm_event_item idx)
470 {
471 struct mem_cgroup *memcg;
472
473 if (mem_cgroup_disabled())
474 return;
475
476 rcu_read_lock();
477 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
478 if (unlikely(!memcg))
479 goto out;
480
481 switch (idx) {
482 case PGFAULT:
483 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
484 break;
485 case PGMAJFAULT:
486 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
487 break;
488 default:
489 BUG();
490 }
491 out:
492 rcu_read_unlock();
493 }
494 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
495 void mem_cgroup_split_huge_fixup(struct page *head);
496 #endif
497
498 #else /* CONFIG_MEMCG */
499 struct mem_cgroup;
500
501 static inline void mem_cgroup_events(struct mem_cgroup *memcg,
502 enum mem_cgroup_events_index idx,
503 unsigned int nr)
504 {
505 }
506
507 static inline bool mem_cgroup_low(struct mem_cgroup *root,
508 struct mem_cgroup *memcg)
509 {
510 return false;
511 }
512
513 static inline int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
514 gfp_t gfp_mask,
515 struct mem_cgroup **memcgp)
516 {
517 *memcgp = NULL;
518 return 0;
519 }
520
521 static inline void mem_cgroup_commit_charge(struct page *page,
522 struct mem_cgroup *memcg,
523 bool lrucare)
524 {
525 }
526
527 static inline void mem_cgroup_cancel_charge(struct page *page,
528 struct mem_cgroup *memcg)
529 {
530 }
531
532 static inline void mem_cgroup_uncharge(struct page *page)
533 {
534 }
535
536 static inline void mem_cgroup_uncharge_list(struct list_head *page_list)
537 {
538 }
539
540 static inline void mem_cgroup_migrate(struct page *oldpage,
541 struct page *newpage,
542 bool lrucare)
543 {
544 }
545
546 static inline struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
547 struct mem_cgroup *memcg)
548 {
549 return &zone->lruvec;
550 }
551
552 static inline struct lruvec *mem_cgroup_page_lruvec(struct page *page,
553 struct zone *zone)
554 {
555 return &zone->lruvec;
556 }
557
558 static inline bool mm_match_cgroup(struct mm_struct *mm,
559 struct mem_cgroup *memcg)
560 {
561 return true;
562 }
563
564 static inline bool task_in_mem_cgroup(struct task_struct *task,
565 const struct mem_cgroup *memcg)
566 {
567 return true;
568 }
569
570 static inline struct mem_cgroup *
571 mem_cgroup_iter(struct mem_cgroup *root,
572 struct mem_cgroup *prev,
573 struct mem_cgroup_reclaim_cookie *reclaim)
574 {
575 return NULL;
576 }
577
578 static inline void mem_cgroup_iter_break(struct mem_cgroup *root,
579 struct mem_cgroup *prev)
580 {
581 }
582
583 static inline bool mem_cgroup_disabled(void)
584 {
585 return true;
586 }
587
588 static inline bool
589 mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
590 {
591 return true;
592 }
593
594 static inline bool mem_cgroup_lruvec_online(struct lruvec *lruvec)
595 {
596 return true;
597 }
598
599 static inline unsigned long
600 mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
601 {
602 return 0;
603 }
604
605 static inline void
606 mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
607 int increment)
608 {
609 }
610
611 static inline void
612 mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
613 {
614 }
615
616 static inline struct mem_cgroup *mem_cgroup_begin_page_stat(struct page *page)
617 {
618 return NULL;
619 }
620
621 static inline void mem_cgroup_end_page_stat(struct mem_cgroup *memcg)
622 {
623 }
624
625 static inline void mem_cgroup_handle_over_high(void)
626 {
627 }
628
629 static inline void mem_cgroup_oom_enable(void)
630 {
631 }
632
633 static inline void mem_cgroup_oom_disable(void)
634 {
635 }
636
637 static inline bool task_in_memcg_oom(struct task_struct *p)
638 {
639 return false;
640 }
641
642 static inline bool mem_cgroup_oom_synchronize(bool wait)
643 {
644 return false;
645 }
646
647 static inline void mem_cgroup_inc_page_stat(struct mem_cgroup *memcg,
648 enum mem_cgroup_stat_index idx)
649 {
650 }
651
652 static inline void mem_cgroup_dec_page_stat(struct mem_cgroup *memcg,
653 enum mem_cgroup_stat_index idx)
654 {
655 }
656
657 static inline
658 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
659 gfp_t gfp_mask,
660 unsigned long *total_scanned)
661 {
662 return 0;
663 }
664
665 static inline void mem_cgroup_split_huge_fixup(struct page *head)
666 {
667 }
668
669 static inline
670 void mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
671 {
672 }
673 #endif /* CONFIG_MEMCG */
674
675 enum {
676 UNDER_LIMIT,
677 SOFT_LIMIT,
678 OVER_LIMIT,
679 };
680
681 #ifdef CONFIG_CGROUP_WRITEBACK
682
683 struct list_head *mem_cgroup_cgwb_list(struct mem_cgroup *memcg);
684 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb);
685 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
686 unsigned long *pheadroom, unsigned long *pdirty,
687 unsigned long *pwriteback);
688
689 #else /* CONFIG_CGROUP_WRITEBACK */
690
691 static inline struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
692 {
693 return NULL;
694 }
695
696 static inline void mem_cgroup_wb_stats(struct bdi_writeback *wb,
697 unsigned long *pfilepages,
698 unsigned long *pheadroom,
699 unsigned long *pdirty,
700 unsigned long *pwriteback)
701 {
702 }
703
704 #endif /* CONFIG_CGROUP_WRITEBACK */
705
706 struct sock;
707 #if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
708 void sock_update_memcg(struct sock *sk);
709 void sock_release_memcg(struct sock *sk);
710 #else
711 static inline void sock_update_memcg(struct sock *sk)
712 {
713 }
714 static inline void sock_release_memcg(struct sock *sk)
715 {
716 }
717 #endif /* CONFIG_INET && CONFIG_MEMCG_KMEM */
718
719 #ifdef CONFIG_MEMCG_KMEM
720 extern struct static_key memcg_kmem_enabled_key;
721
722 extern int memcg_nr_cache_ids;
723 void memcg_get_cache_ids(void);
724 void memcg_put_cache_ids(void);
725
726 /*
727 * Helper macro to loop through all memcg-specific caches. Callers must still
728 * check if the cache is valid (it is either valid or NULL).
729 * the slab_mutex must be held when looping through those caches
730 */
731 #define for_each_memcg_cache_index(_idx) \
732 for ((_idx) = 0; (_idx) < memcg_nr_cache_ids; (_idx)++)
733
734 static inline bool memcg_kmem_enabled(void)
735 {
736 return static_key_false(&memcg_kmem_enabled_key);
737 }
738
739 static inline bool memcg_kmem_is_active(struct mem_cgroup *memcg)
740 {
741 return memcg->kmem_acct_active;
742 }
743
744 /*
745 * In general, we'll do everything in our power to not incur in any overhead
746 * for non-memcg users for the kmem functions. Not even a function call, if we
747 * can avoid it.
748 *
749 * Therefore, we'll inline all those functions so that in the best case, we'll
750 * see that kmemcg is off for everybody and proceed quickly. If it is on,
751 * we'll still do most of the flag checking inline. We check a lot of
752 * conditions, but because they are pretty simple, they are expected to be
753 * fast.
754 */
755 int __memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
756 struct mem_cgroup *memcg);
757 int __memcg_kmem_charge(struct page *page, gfp_t gfp, int order);
758 void __memcg_kmem_uncharge(struct page *page, int order);
759
760 /*
761 * helper for acessing a memcg's index. It will be used as an index in the
762 * child cache array in kmem_cache, and also to derive its name. This function
763 * will return -1 when this is not a kmem-limited memcg.
764 */
765 static inline int memcg_cache_id(struct mem_cgroup *memcg)
766 {
767 return memcg ? memcg->kmemcg_id : -1;
768 }
769
770 struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep);
771 void __memcg_kmem_put_cache(struct kmem_cache *cachep);
772
773 struct mem_cgroup *__mem_cgroup_from_kmem(void *ptr);
774
775 static inline bool __memcg_kmem_bypass(gfp_t gfp)
776 {
777 if (!memcg_kmem_enabled())
778 return true;
779 if (gfp & __GFP_NOACCOUNT)
780 return true;
781 if (in_interrupt() || (!current->mm) || (current->flags & PF_KTHREAD))
782 return true;
783 return false;
784 }
785
786 /**
787 * memcg_kmem_charge: charge a kmem page
788 * @page: page to charge
789 * @gfp: reclaim mode
790 * @order: allocation order
791 *
792 * Returns 0 on success, an error code on failure.
793 */
794 static __always_inline int memcg_kmem_charge(struct page *page,
795 gfp_t gfp, int order)
796 {
797 if (__memcg_kmem_bypass(gfp))
798 return 0;
799 return __memcg_kmem_charge(page, gfp, order);
800 }
801
802 /**
803 * memcg_kmem_uncharge: uncharge a kmem page
804 * @page: page to uncharge
805 * @order: allocation order
806 */
807 static __always_inline void memcg_kmem_uncharge(struct page *page, int order)
808 {
809 if (memcg_kmem_enabled())
810 __memcg_kmem_uncharge(page, order);
811 }
812
813 /**
814 * memcg_kmem_get_cache: selects the correct per-memcg cache for allocation
815 * @cachep: the original global kmem cache
816 * @gfp: allocation flags.
817 *
818 * All memory allocated from a per-memcg cache is charged to the owner memcg.
819 */
820 static __always_inline struct kmem_cache *
821 memcg_kmem_get_cache(struct kmem_cache *cachep, gfp_t gfp)
822 {
823 if (__memcg_kmem_bypass(gfp))
824 return cachep;
825 return __memcg_kmem_get_cache(cachep);
826 }
827
828 static __always_inline void memcg_kmem_put_cache(struct kmem_cache *cachep)
829 {
830 if (memcg_kmem_enabled())
831 __memcg_kmem_put_cache(cachep);
832 }
833
834 static __always_inline struct mem_cgroup *mem_cgroup_from_kmem(void *ptr)
835 {
836 if (!memcg_kmem_enabled())
837 return NULL;
838 return __mem_cgroup_from_kmem(ptr);
839 }
840 #else
841 #define for_each_memcg_cache_index(_idx) \
842 for (; NULL; )
843
844 static inline bool memcg_kmem_enabled(void)
845 {
846 return false;
847 }
848
849 static inline bool memcg_kmem_is_active(struct mem_cgroup *memcg)
850 {
851 return false;
852 }
853
854 static inline int memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
855 {
856 return 0;
857 }
858
859 static inline void memcg_kmem_uncharge(struct page *page, int order)
860 {
861 }
862
863 static inline int memcg_cache_id(struct mem_cgroup *memcg)
864 {
865 return -1;
866 }
867
868 static inline void memcg_get_cache_ids(void)
869 {
870 }
871
872 static inline void memcg_put_cache_ids(void)
873 {
874 }
875
876 static inline struct kmem_cache *
877 memcg_kmem_get_cache(struct kmem_cache *cachep, gfp_t gfp)
878 {
879 return cachep;
880 }
881
882 static inline void memcg_kmem_put_cache(struct kmem_cache *cachep)
883 {
884 }
885
886 static inline struct mem_cgroup *mem_cgroup_from_kmem(void *ptr)
887 {
888 return NULL;
889 }
890 #endif /* CONFIG_MEMCG_KMEM */
891 #endif /* _LINUX_MEMCONTROL_H */
892
This page took 0.056998 seconds and 5 git commands to generate.