ARM: configs: keystone: sync to savedefconfig
[deliverable/linux.git] / include / linux / memcontrol.h
1 /* memcontrol.h - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 */
19
20 #ifndef _LINUX_MEMCONTROL_H
21 #define _LINUX_MEMCONTROL_H
22 #include <linux/cgroup.h>
23 #include <linux/vm_event_item.h>
24 #include <linux/hardirq.h>
25 #include <linux/jump_label.h>
26 #include <linux/page_counter.h>
27 #include <linux/vmpressure.h>
28 #include <linux/eventfd.h>
29 #include <linux/mmzone.h>
30 #include <linux/writeback.h>
31
32 struct mem_cgroup;
33 struct page;
34 struct mm_struct;
35 struct kmem_cache;
36
37 /*
38 * The corresponding mem_cgroup_stat_names is defined in mm/memcontrol.c,
39 * These two lists should keep in accord with each other.
40 */
41 enum mem_cgroup_stat_index {
42 /*
43 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
44 */
45 MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */
46 MEM_CGROUP_STAT_RSS, /* # of pages charged as anon rss */
47 MEM_CGROUP_STAT_RSS_HUGE, /* # of pages charged as anon huge */
48 MEM_CGROUP_STAT_FILE_MAPPED, /* # of pages charged as file rss */
49 MEM_CGROUP_STAT_DIRTY, /* # of dirty pages in page cache */
50 MEM_CGROUP_STAT_WRITEBACK, /* # of pages under writeback */
51 MEM_CGROUP_STAT_SWAP, /* # of pages, swapped out */
52 MEM_CGROUP_STAT_NSTATS,
53 };
54
55 struct mem_cgroup_reclaim_cookie {
56 struct zone *zone;
57 int priority;
58 unsigned int generation;
59 };
60
61 enum mem_cgroup_events_index {
62 MEM_CGROUP_EVENTS_PGPGIN, /* # of pages paged in */
63 MEM_CGROUP_EVENTS_PGPGOUT, /* # of pages paged out */
64 MEM_CGROUP_EVENTS_PGFAULT, /* # of page-faults */
65 MEM_CGROUP_EVENTS_PGMAJFAULT, /* # of major page-faults */
66 MEM_CGROUP_EVENTS_NSTATS,
67 /* default hierarchy events */
68 MEMCG_LOW = MEM_CGROUP_EVENTS_NSTATS,
69 MEMCG_HIGH,
70 MEMCG_MAX,
71 MEMCG_OOM,
72 MEMCG_NR_EVENTS,
73 };
74
75 /*
76 * Per memcg event counter is incremented at every pagein/pageout. With THP,
77 * it will be incremated by the number of pages. This counter is used for
78 * for trigger some periodic events. This is straightforward and better
79 * than using jiffies etc. to handle periodic memcg event.
80 */
81 enum mem_cgroup_events_target {
82 MEM_CGROUP_TARGET_THRESH,
83 MEM_CGROUP_TARGET_SOFTLIMIT,
84 MEM_CGROUP_TARGET_NUMAINFO,
85 MEM_CGROUP_NTARGETS,
86 };
87
88 /*
89 * Bits in struct cg_proto.flags
90 */
91 enum cg_proto_flags {
92 /* Currently active and new sockets should be assigned to cgroups */
93 MEMCG_SOCK_ACTIVE,
94 /* It was ever activated; we must disarm static keys on destruction */
95 MEMCG_SOCK_ACTIVATED,
96 };
97
98 struct cg_proto {
99 struct page_counter memory_allocated; /* Current allocated memory. */
100 struct percpu_counter sockets_allocated; /* Current number of sockets. */
101 int memory_pressure;
102 long sysctl_mem[3];
103 unsigned long flags;
104 /*
105 * memcg field is used to find which memcg we belong directly
106 * Each memcg struct can hold more than one cg_proto, so container_of
107 * won't really cut.
108 *
109 * The elegant solution would be having an inverse function to
110 * proto_cgroup in struct proto, but that means polluting the structure
111 * for everybody, instead of just for memcg users.
112 */
113 struct mem_cgroup *memcg;
114 };
115
116 #ifdef CONFIG_MEMCG
117 struct mem_cgroup_stat_cpu {
118 long count[MEM_CGROUP_STAT_NSTATS];
119 unsigned long events[MEMCG_NR_EVENTS];
120 unsigned long nr_page_events;
121 unsigned long targets[MEM_CGROUP_NTARGETS];
122 };
123
124 struct mem_cgroup_reclaim_iter {
125 struct mem_cgroup *position;
126 /* scan generation, increased every round-trip */
127 unsigned int generation;
128 };
129
130 /*
131 * per-zone information in memory controller.
132 */
133 struct mem_cgroup_per_zone {
134 struct lruvec lruvec;
135 unsigned long lru_size[NR_LRU_LISTS];
136
137 struct mem_cgroup_reclaim_iter iter[DEF_PRIORITY + 1];
138
139 struct rb_node tree_node; /* RB tree node */
140 unsigned long usage_in_excess;/* Set to the value by which */
141 /* the soft limit is exceeded*/
142 bool on_tree;
143 struct mem_cgroup *memcg; /* Back pointer, we cannot */
144 /* use container_of */
145 };
146
147 struct mem_cgroup_per_node {
148 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
149 };
150
151 struct mem_cgroup_threshold {
152 struct eventfd_ctx *eventfd;
153 unsigned long threshold;
154 };
155
156 /* For threshold */
157 struct mem_cgroup_threshold_ary {
158 /* An array index points to threshold just below or equal to usage. */
159 int current_threshold;
160 /* Size of entries[] */
161 unsigned int size;
162 /* Array of thresholds */
163 struct mem_cgroup_threshold entries[0];
164 };
165
166 struct mem_cgroup_thresholds {
167 /* Primary thresholds array */
168 struct mem_cgroup_threshold_ary *primary;
169 /*
170 * Spare threshold array.
171 * This is needed to make mem_cgroup_unregister_event() "never fail".
172 * It must be able to store at least primary->size - 1 entries.
173 */
174 struct mem_cgroup_threshold_ary *spare;
175 };
176
177 /*
178 * The memory controller data structure. The memory controller controls both
179 * page cache and RSS per cgroup. We would eventually like to provide
180 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
181 * to help the administrator determine what knobs to tune.
182 */
183 struct mem_cgroup {
184 struct cgroup_subsys_state css;
185
186 /* Accounted resources */
187 struct page_counter memory;
188 struct page_counter memsw;
189 struct page_counter kmem;
190
191 /* Normal memory consumption range */
192 unsigned long low;
193 unsigned long high;
194
195 unsigned long soft_limit;
196
197 /* vmpressure notifications */
198 struct vmpressure vmpressure;
199
200 /* css_online() has been completed */
201 int initialized;
202
203 /*
204 * Should the accounting and control be hierarchical, per subtree?
205 */
206 bool use_hierarchy;
207
208 /* protected by memcg_oom_lock */
209 bool oom_lock;
210 int under_oom;
211
212 int swappiness;
213 /* OOM-Killer disable */
214 int oom_kill_disable;
215
216 /* protect arrays of thresholds */
217 struct mutex thresholds_lock;
218
219 /* thresholds for memory usage. RCU-protected */
220 struct mem_cgroup_thresholds thresholds;
221
222 /* thresholds for mem+swap usage. RCU-protected */
223 struct mem_cgroup_thresholds memsw_thresholds;
224
225 /* For oom notifier event fd */
226 struct list_head oom_notify;
227
228 /*
229 * Should we move charges of a task when a task is moved into this
230 * mem_cgroup ? And what type of charges should we move ?
231 */
232 unsigned long move_charge_at_immigrate;
233 /*
234 * set > 0 if pages under this cgroup are moving to other cgroup.
235 */
236 atomic_t moving_account;
237 /* taken only while moving_account > 0 */
238 spinlock_t move_lock;
239 struct task_struct *move_lock_task;
240 unsigned long move_lock_flags;
241 /*
242 * percpu counter.
243 */
244 struct mem_cgroup_stat_cpu __percpu *stat;
245 spinlock_t pcp_counter_lock;
246
247 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
248 struct cg_proto tcp_mem;
249 #endif
250 #if defined(CONFIG_MEMCG_KMEM)
251 /* Index in the kmem_cache->memcg_params.memcg_caches array */
252 int kmemcg_id;
253 bool kmem_acct_activated;
254 bool kmem_acct_active;
255 #endif
256
257 int last_scanned_node;
258 #if MAX_NUMNODES > 1
259 nodemask_t scan_nodes;
260 atomic_t numainfo_events;
261 atomic_t numainfo_updating;
262 #endif
263
264 #ifdef CONFIG_CGROUP_WRITEBACK
265 struct list_head cgwb_list;
266 struct wb_domain cgwb_domain;
267 #endif
268
269 /* List of events which userspace want to receive */
270 struct list_head event_list;
271 spinlock_t event_list_lock;
272
273 struct mem_cgroup_per_node *nodeinfo[0];
274 /* WARNING: nodeinfo must be the last member here */
275 };
276 extern struct cgroup_subsys_state *mem_cgroup_root_css;
277
278 /**
279 * mem_cgroup_events - count memory events against a cgroup
280 * @memcg: the memory cgroup
281 * @idx: the event index
282 * @nr: the number of events to account for
283 */
284 static inline void mem_cgroup_events(struct mem_cgroup *memcg,
285 enum mem_cgroup_events_index idx,
286 unsigned int nr)
287 {
288 this_cpu_add(memcg->stat->events[idx], nr);
289 }
290
291 bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg);
292
293 int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
294 gfp_t gfp_mask, struct mem_cgroup **memcgp);
295 void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
296 bool lrucare);
297 void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg);
298 void mem_cgroup_uncharge(struct page *page);
299 void mem_cgroup_uncharge_list(struct list_head *page_list);
300
301 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage,
302 bool lrucare);
303
304 struct lruvec *mem_cgroup_zone_lruvec(struct zone *, struct mem_cgroup *);
305 struct lruvec *mem_cgroup_page_lruvec(struct page *, struct zone *);
306
307 bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg);
308 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p);
309 struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg);
310
311 static inline
312 struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *css){
313 return css ? container_of(css, struct mem_cgroup, css) : NULL;
314 }
315
316 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *,
317 struct mem_cgroup *,
318 struct mem_cgroup_reclaim_cookie *);
319 void mem_cgroup_iter_break(struct mem_cgroup *, struct mem_cgroup *);
320
321 static inline bool mem_cgroup_is_descendant(struct mem_cgroup *memcg,
322 struct mem_cgroup *root)
323 {
324 if (root == memcg)
325 return true;
326 if (!root->use_hierarchy)
327 return false;
328 return cgroup_is_descendant(memcg->css.cgroup, root->css.cgroup);
329 }
330
331 static inline bool mm_match_cgroup(struct mm_struct *mm,
332 struct mem_cgroup *memcg)
333 {
334 struct mem_cgroup *task_memcg;
335 bool match = false;
336
337 rcu_read_lock();
338 task_memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
339 if (task_memcg)
340 match = mem_cgroup_is_descendant(task_memcg, memcg);
341 rcu_read_unlock();
342 return match;
343 }
344
345 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page);
346 ino_t page_cgroup_ino(struct page *page);
347
348 static inline bool mem_cgroup_disabled(void)
349 {
350 if (memory_cgrp_subsys.disabled)
351 return true;
352 return false;
353 }
354
355 /*
356 * For memory reclaim.
357 */
358 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg);
359
360 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
361 int nr_pages);
362
363 static inline bool mem_cgroup_lruvec_online(struct lruvec *lruvec)
364 {
365 struct mem_cgroup_per_zone *mz;
366 struct mem_cgroup *memcg;
367
368 if (mem_cgroup_disabled())
369 return true;
370
371 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
372 memcg = mz->memcg;
373
374 return !!(memcg->css.flags & CSS_ONLINE);
375 }
376
377 static inline
378 unsigned long mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
379 {
380 struct mem_cgroup_per_zone *mz;
381
382 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
383 return mz->lru_size[lru];
384 }
385
386 static inline int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
387 {
388 unsigned long inactive_ratio;
389 unsigned long inactive;
390 unsigned long active;
391 unsigned long gb;
392
393 inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
394 active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
395
396 gb = (inactive + active) >> (30 - PAGE_SHIFT);
397 if (gb)
398 inactive_ratio = int_sqrt(10 * gb);
399 else
400 inactive_ratio = 1;
401
402 return inactive * inactive_ratio < active;
403 }
404
405 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg,
406 struct task_struct *p);
407
408 static inline void mem_cgroup_oom_enable(void)
409 {
410 WARN_ON(current->memcg_oom.may_oom);
411 current->memcg_oom.may_oom = 1;
412 }
413
414 static inline void mem_cgroup_oom_disable(void)
415 {
416 WARN_ON(!current->memcg_oom.may_oom);
417 current->memcg_oom.may_oom = 0;
418 }
419
420 static inline bool task_in_memcg_oom(struct task_struct *p)
421 {
422 return p->memcg_oom.memcg;
423 }
424
425 bool mem_cgroup_oom_synchronize(bool wait);
426
427 #ifdef CONFIG_MEMCG_SWAP
428 extern int do_swap_account;
429 #endif
430
431 struct mem_cgroup *mem_cgroup_begin_page_stat(struct page *page);
432 void mem_cgroup_end_page_stat(struct mem_cgroup *memcg);
433
434 /**
435 * mem_cgroup_update_page_stat - update page state statistics
436 * @memcg: memcg to account against
437 * @idx: page state item to account
438 * @val: number of pages (positive or negative)
439 *
440 * See mem_cgroup_begin_page_stat() for locking requirements.
441 */
442 static inline void mem_cgroup_update_page_stat(struct mem_cgroup *memcg,
443 enum mem_cgroup_stat_index idx, int val)
444 {
445 VM_BUG_ON(!rcu_read_lock_held());
446
447 if (memcg)
448 this_cpu_add(memcg->stat->count[idx], val);
449 }
450
451 static inline void mem_cgroup_inc_page_stat(struct mem_cgroup *memcg,
452 enum mem_cgroup_stat_index idx)
453 {
454 mem_cgroup_update_page_stat(memcg, idx, 1);
455 }
456
457 static inline void mem_cgroup_dec_page_stat(struct mem_cgroup *memcg,
458 enum mem_cgroup_stat_index idx)
459 {
460 mem_cgroup_update_page_stat(memcg, idx, -1);
461 }
462
463 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
464 gfp_t gfp_mask,
465 unsigned long *total_scanned);
466
467 static inline void mem_cgroup_count_vm_event(struct mm_struct *mm,
468 enum vm_event_item idx)
469 {
470 struct mem_cgroup *memcg;
471
472 if (mem_cgroup_disabled())
473 return;
474
475 rcu_read_lock();
476 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
477 if (unlikely(!memcg))
478 goto out;
479
480 switch (idx) {
481 case PGFAULT:
482 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
483 break;
484 case PGMAJFAULT:
485 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
486 break;
487 default:
488 BUG();
489 }
490 out:
491 rcu_read_unlock();
492 }
493 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
494 void mem_cgroup_split_huge_fixup(struct page *head);
495 #endif
496
497 #else /* CONFIG_MEMCG */
498 struct mem_cgroup;
499
500 static inline void mem_cgroup_events(struct mem_cgroup *memcg,
501 enum mem_cgroup_events_index idx,
502 unsigned int nr)
503 {
504 }
505
506 static inline bool mem_cgroup_low(struct mem_cgroup *root,
507 struct mem_cgroup *memcg)
508 {
509 return false;
510 }
511
512 static inline int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
513 gfp_t gfp_mask,
514 struct mem_cgroup **memcgp)
515 {
516 *memcgp = NULL;
517 return 0;
518 }
519
520 static inline void mem_cgroup_commit_charge(struct page *page,
521 struct mem_cgroup *memcg,
522 bool lrucare)
523 {
524 }
525
526 static inline void mem_cgroup_cancel_charge(struct page *page,
527 struct mem_cgroup *memcg)
528 {
529 }
530
531 static inline void mem_cgroup_uncharge(struct page *page)
532 {
533 }
534
535 static inline void mem_cgroup_uncharge_list(struct list_head *page_list)
536 {
537 }
538
539 static inline void mem_cgroup_migrate(struct page *oldpage,
540 struct page *newpage,
541 bool lrucare)
542 {
543 }
544
545 static inline struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
546 struct mem_cgroup *memcg)
547 {
548 return &zone->lruvec;
549 }
550
551 static inline struct lruvec *mem_cgroup_page_lruvec(struct page *page,
552 struct zone *zone)
553 {
554 return &zone->lruvec;
555 }
556
557 static inline bool mm_match_cgroup(struct mm_struct *mm,
558 struct mem_cgroup *memcg)
559 {
560 return true;
561 }
562
563 static inline bool task_in_mem_cgroup(struct task_struct *task,
564 const struct mem_cgroup *memcg)
565 {
566 return true;
567 }
568
569 static inline struct mem_cgroup *
570 mem_cgroup_iter(struct mem_cgroup *root,
571 struct mem_cgroup *prev,
572 struct mem_cgroup_reclaim_cookie *reclaim)
573 {
574 return NULL;
575 }
576
577 static inline void mem_cgroup_iter_break(struct mem_cgroup *root,
578 struct mem_cgroup *prev)
579 {
580 }
581
582 static inline bool mem_cgroup_disabled(void)
583 {
584 return true;
585 }
586
587 static inline int
588 mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
589 {
590 return 1;
591 }
592
593 static inline bool mem_cgroup_lruvec_online(struct lruvec *lruvec)
594 {
595 return true;
596 }
597
598 static inline unsigned long
599 mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
600 {
601 return 0;
602 }
603
604 static inline void
605 mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
606 int increment)
607 {
608 }
609
610 static inline void
611 mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
612 {
613 }
614
615 static inline struct mem_cgroup *mem_cgroup_begin_page_stat(struct page *page)
616 {
617 return NULL;
618 }
619
620 static inline void mem_cgroup_end_page_stat(struct mem_cgroup *memcg)
621 {
622 }
623
624 static inline void mem_cgroup_oom_enable(void)
625 {
626 }
627
628 static inline void mem_cgroup_oom_disable(void)
629 {
630 }
631
632 static inline bool task_in_memcg_oom(struct task_struct *p)
633 {
634 return false;
635 }
636
637 static inline bool mem_cgroup_oom_synchronize(bool wait)
638 {
639 return false;
640 }
641
642 static inline void mem_cgroup_inc_page_stat(struct mem_cgroup *memcg,
643 enum mem_cgroup_stat_index idx)
644 {
645 }
646
647 static inline void mem_cgroup_dec_page_stat(struct mem_cgroup *memcg,
648 enum mem_cgroup_stat_index idx)
649 {
650 }
651
652 static inline
653 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
654 gfp_t gfp_mask,
655 unsigned long *total_scanned)
656 {
657 return 0;
658 }
659
660 static inline void mem_cgroup_split_huge_fixup(struct page *head)
661 {
662 }
663
664 static inline
665 void mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
666 {
667 }
668 #endif /* CONFIG_MEMCG */
669
670 enum {
671 UNDER_LIMIT,
672 SOFT_LIMIT,
673 OVER_LIMIT,
674 };
675
676 #ifdef CONFIG_CGROUP_WRITEBACK
677
678 struct list_head *mem_cgroup_cgwb_list(struct mem_cgroup *memcg);
679 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb);
680 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pavail,
681 unsigned long *pdirty, unsigned long *pwriteback);
682
683 #else /* CONFIG_CGROUP_WRITEBACK */
684
685 static inline struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
686 {
687 return NULL;
688 }
689
690 static inline void mem_cgroup_wb_stats(struct bdi_writeback *wb,
691 unsigned long *pavail,
692 unsigned long *pdirty,
693 unsigned long *pwriteback)
694 {
695 }
696
697 #endif /* CONFIG_CGROUP_WRITEBACK */
698
699 struct sock;
700 #if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
701 void sock_update_memcg(struct sock *sk);
702 void sock_release_memcg(struct sock *sk);
703 #else
704 static inline void sock_update_memcg(struct sock *sk)
705 {
706 }
707 static inline void sock_release_memcg(struct sock *sk)
708 {
709 }
710 #endif /* CONFIG_INET && CONFIG_MEMCG_KMEM */
711
712 #ifdef CONFIG_MEMCG_KMEM
713 extern struct static_key memcg_kmem_enabled_key;
714
715 extern int memcg_nr_cache_ids;
716 void memcg_get_cache_ids(void);
717 void memcg_put_cache_ids(void);
718
719 /*
720 * Helper macro to loop through all memcg-specific caches. Callers must still
721 * check if the cache is valid (it is either valid or NULL).
722 * the slab_mutex must be held when looping through those caches
723 */
724 #define for_each_memcg_cache_index(_idx) \
725 for ((_idx) = 0; (_idx) < memcg_nr_cache_ids; (_idx)++)
726
727 static inline bool memcg_kmem_enabled(void)
728 {
729 return static_key_false(&memcg_kmem_enabled_key);
730 }
731
732 static inline bool memcg_kmem_is_active(struct mem_cgroup *memcg)
733 {
734 return memcg->kmem_acct_active;
735 }
736
737 /*
738 * In general, we'll do everything in our power to not incur in any overhead
739 * for non-memcg users for the kmem functions. Not even a function call, if we
740 * can avoid it.
741 *
742 * Therefore, we'll inline all those functions so that in the best case, we'll
743 * see that kmemcg is off for everybody and proceed quickly. If it is on,
744 * we'll still do most of the flag checking inline. We check a lot of
745 * conditions, but because they are pretty simple, they are expected to be
746 * fast.
747 */
748 bool __memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **memcg,
749 int order);
750 void __memcg_kmem_commit_charge(struct page *page,
751 struct mem_cgroup *memcg, int order);
752 void __memcg_kmem_uncharge_pages(struct page *page, int order);
753
754 /*
755 * helper for acessing a memcg's index. It will be used as an index in the
756 * child cache array in kmem_cache, and also to derive its name. This function
757 * will return -1 when this is not a kmem-limited memcg.
758 */
759 static inline int memcg_cache_id(struct mem_cgroup *memcg)
760 {
761 return memcg ? memcg->kmemcg_id : -1;
762 }
763
764 struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep);
765 void __memcg_kmem_put_cache(struct kmem_cache *cachep);
766
767 struct mem_cgroup *__mem_cgroup_from_kmem(void *ptr);
768
769 int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp,
770 unsigned long nr_pages);
771 void memcg_uncharge_kmem(struct mem_cgroup *memcg, unsigned long nr_pages);
772
773 /**
774 * memcg_kmem_newpage_charge: verify if a new kmem allocation is allowed.
775 * @gfp: the gfp allocation flags.
776 * @memcg: a pointer to the memcg this was charged against.
777 * @order: allocation order.
778 *
779 * returns true if the memcg where the current task belongs can hold this
780 * allocation.
781 *
782 * We return true automatically if this allocation is not to be accounted to
783 * any memcg.
784 */
785 static inline bool
786 memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **memcg, int order)
787 {
788 if (!memcg_kmem_enabled())
789 return true;
790
791 if (gfp & __GFP_NOACCOUNT)
792 return true;
793 /*
794 * __GFP_NOFAIL allocations will move on even if charging is not
795 * possible. Therefore we don't even try, and have this allocation
796 * unaccounted. We could in theory charge it forcibly, but we hope
797 * those allocations are rare, and won't be worth the trouble.
798 */
799 if (gfp & __GFP_NOFAIL)
800 return true;
801 if (in_interrupt() || (!current->mm) || (current->flags & PF_KTHREAD))
802 return true;
803
804 /* If the test is dying, just let it go. */
805 if (unlikely(fatal_signal_pending(current)))
806 return true;
807
808 return __memcg_kmem_newpage_charge(gfp, memcg, order);
809 }
810
811 /**
812 * memcg_kmem_uncharge_pages: uncharge pages from memcg
813 * @page: pointer to struct page being freed
814 * @order: allocation order.
815 */
816 static inline void
817 memcg_kmem_uncharge_pages(struct page *page, int order)
818 {
819 if (memcg_kmem_enabled())
820 __memcg_kmem_uncharge_pages(page, order);
821 }
822
823 /**
824 * memcg_kmem_commit_charge: embeds correct memcg in a page
825 * @page: pointer to struct page recently allocated
826 * @memcg: the memcg structure we charged against
827 * @order: allocation order.
828 *
829 * Needs to be called after memcg_kmem_newpage_charge, regardless of success or
830 * failure of the allocation. if @page is NULL, this function will revert the
831 * charges. Otherwise, it will commit @page to @memcg.
832 */
833 static inline void
834 memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg, int order)
835 {
836 if (memcg_kmem_enabled() && memcg)
837 __memcg_kmem_commit_charge(page, memcg, order);
838 }
839
840 /**
841 * memcg_kmem_get_cache: selects the correct per-memcg cache for allocation
842 * @cachep: the original global kmem cache
843 * @gfp: allocation flags.
844 *
845 * All memory allocated from a per-memcg cache is charged to the owner memcg.
846 */
847 static __always_inline struct kmem_cache *
848 memcg_kmem_get_cache(struct kmem_cache *cachep, gfp_t gfp)
849 {
850 if (!memcg_kmem_enabled())
851 return cachep;
852 if (gfp & __GFP_NOACCOUNT)
853 return cachep;
854 if (gfp & __GFP_NOFAIL)
855 return cachep;
856 if (in_interrupt() || (!current->mm) || (current->flags & PF_KTHREAD))
857 return cachep;
858 if (unlikely(fatal_signal_pending(current)))
859 return cachep;
860
861 return __memcg_kmem_get_cache(cachep);
862 }
863
864 static __always_inline void memcg_kmem_put_cache(struct kmem_cache *cachep)
865 {
866 if (memcg_kmem_enabled())
867 __memcg_kmem_put_cache(cachep);
868 }
869
870 static __always_inline struct mem_cgroup *mem_cgroup_from_kmem(void *ptr)
871 {
872 if (!memcg_kmem_enabled())
873 return NULL;
874 return __mem_cgroup_from_kmem(ptr);
875 }
876 #else
877 #define for_each_memcg_cache_index(_idx) \
878 for (; NULL; )
879
880 static inline bool memcg_kmem_enabled(void)
881 {
882 return false;
883 }
884
885 static inline bool memcg_kmem_is_active(struct mem_cgroup *memcg)
886 {
887 return false;
888 }
889
890 static inline bool
891 memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **memcg, int order)
892 {
893 return true;
894 }
895
896 static inline void memcg_kmem_uncharge_pages(struct page *page, int order)
897 {
898 }
899
900 static inline void
901 memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg, int order)
902 {
903 }
904
905 static inline int memcg_cache_id(struct mem_cgroup *memcg)
906 {
907 return -1;
908 }
909
910 static inline void memcg_get_cache_ids(void)
911 {
912 }
913
914 static inline void memcg_put_cache_ids(void)
915 {
916 }
917
918 static inline struct kmem_cache *
919 memcg_kmem_get_cache(struct kmem_cache *cachep, gfp_t gfp)
920 {
921 return cachep;
922 }
923
924 static inline void memcg_kmem_put_cache(struct kmem_cache *cachep)
925 {
926 }
927
928 static inline struct mem_cgroup *mem_cgroup_from_kmem(void *ptr)
929 {
930 return NULL;
931 }
932 #endif /* CONFIG_MEMCG_KMEM */
933 #endif /* _LINUX_MEMCONTROL_H */
934
This page took 0.066216 seconds and 5 git commands to generate.