include/linux: Remove all users of FASTCALL() macro
[deliverable/linux.git] / include / linux / mm.h
1 #ifndef _LINUX_MM_H
2 #define _LINUX_MM_H
3
4 #include <linux/errno.h>
5
6 #ifdef __KERNEL__
7
8 #include <linux/gfp.h>
9 #include <linux/list.h>
10 #include <linux/mmzone.h>
11 #include <linux/rbtree.h>
12 #include <linux/prio_tree.h>
13 #include <linux/debug_locks.h>
14 #include <linux/mm_types.h>
15
16 struct mempolicy;
17 struct anon_vma;
18 struct file_ra_state;
19 struct user_struct;
20 struct writeback_control;
21
22 #ifndef CONFIG_DISCONTIGMEM /* Don't use mapnrs, do it properly */
23 extern unsigned long max_mapnr;
24 #endif
25
26 extern unsigned long num_physpages;
27 extern void * high_memory;
28 extern int page_cluster;
29
30 #ifdef CONFIG_SYSCTL
31 extern int sysctl_legacy_va_layout;
32 #else
33 #define sysctl_legacy_va_layout 0
34 #endif
35
36 extern unsigned long mmap_min_addr;
37
38 #include <asm/page.h>
39 #include <asm/pgtable.h>
40 #include <asm/processor.h>
41
42 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
43
44 /*
45 * Linux kernel virtual memory manager primitives.
46 * The idea being to have a "virtual" mm in the same way
47 * we have a virtual fs - giving a cleaner interface to the
48 * mm details, and allowing different kinds of memory mappings
49 * (from shared memory to executable loading to arbitrary
50 * mmap() functions).
51 */
52
53 extern struct kmem_cache *vm_area_cachep;
54
55 /*
56 * This struct defines the per-mm list of VMAs for uClinux. If CONFIG_MMU is
57 * disabled, then there's a single shared list of VMAs maintained by the
58 * system, and mm's subscribe to these individually
59 */
60 struct vm_list_struct {
61 struct vm_list_struct *next;
62 struct vm_area_struct *vma;
63 };
64
65 #ifndef CONFIG_MMU
66 extern struct rb_root nommu_vma_tree;
67 extern struct rw_semaphore nommu_vma_sem;
68
69 extern unsigned int kobjsize(const void *objp);
70 #endif
71
72 /*
73 * vm_flags..
74 */
75 #define VM_READ 0x00000001 /* currently active flags */
76 #define VM_WRITE 0x00000002
77 #define VM_EXEC 0x00000004
78 #define VM_SHARED 0x00000008
79
80 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
81 #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
82 #define VM_MAYWRITE 0x00000020
83 #define VM_MAYEXEC 0x00000040
84 #define VM_MAYSHARE 0x00000080
85
86 #define VM_GROWSDOWN 0x00000100 /* general info on the segment */
87 #define VM_GROWSUP 0x00000200
88 #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
89 #define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
90
91 #define VM_EXECUTABLE 0x00001000
92 #define VM_LOCKED 0x00002000
93 #define VM_IO 0x00004000 /* Memory mapped I/O or similar */
94
95 /* Used by sys_madvise() */
96 #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
97 #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
98
99 #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
100 #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
101 #define VM_RESERVED 0x00080000 /* Count as reserved_vm like IO */
102 #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
103 #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
104 #define VM_NONLINEAR 0x00800000 /* Is non-linear (remap_file_pages) */
105 #define VM_MAPPED_COPY 0x01000000 /* T if mapped copy of data (nommu mmap) */
106 #define VM_INSERTPAGE 0x02000000 /* The vma has had "vm_insert_page()" done on it */
107 #define VM_ALWAYSDUMP 0x04000000 /* Always include in core dumps */
108
109 #define VM_CAN_NONLINEAR 0x08000000 /* Has ->fault & does nonlinear pages */
110
111 #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
112 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
113 #endif
114
115 #ifdef CONFIG_STACK_GROWSUP
116 #define VM_STACK_FLAGS (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
117 #else
118 #define VM_STACK_FLAGS (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
119 #endif
120
121 #define VM_READHINTMASK (VM_SEQ_READ | VM_RAND_READ)
122 #define VM_ClearReadHint(v) (v)->vm_flags &= ~VM_READHINTMASK
123 #define VM_NormalReadHint(v) (!((v)->vm_flags & VM_READHINTMASK))
124 #define VM_SequentialReadHint(v) ((v)->vm_flags & VM_SEQ_READ)
125 #define VM_RandomReadHint(v) ((v)->vm_flags & VM_RAND_READ)
126
127 /*
128 * mapping from the currently active vm_flags protection bits (the
129 * low four bits) to a page protection mask..
130 */
131 extern pgprot_t protection_map[16];
132
133 #define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */
134 #define FAULT_FLAG_NONLINEAR 0x02 /* Fault was via a nonlinear mapping */
135
136
137 /*
138 * vm_fault is filled by the the pagefault handler and passed to the vma's
139 * ->fault function. The vma's ->fault is responsible for returning a bitmask
140 * of VM_FAULT_xxx flags that give details about how the fault was handled.
141 *
142 * pgoff should be used in favour of virtual_address, if possible. If pgoff
143 * is used, one may set VM_CAN_NONLINEAR in the vma->vm_flags to get nonlinear
144 * mapping support.
145 */
146 struct vm_fault {
147 unsigned int flags; /* FAULT_FLAG_xxx flags */
148 pgoff_t pgoff; /* Logical page offset based on vma */
149 void __user *virtual_address; /* Faulting virtual address */
150
151 struct page *page; /* ->fault handlers should return a
152 * page here, unless VM_FAULT_NOPAGE
153 * is set (which is also implied by
154 * VM_FAULT_ERROR).
155 */
156 };
157
158 /*
159 * These are the virtual MM functions - opening of an area, closing and
160 * unmapping it (needed to keep files on disk up-to-date etc), pointer
161 * to the functions called when a no-page or a wp-page exception occurs.
162 */
163 struct vm_operations_struct {
164 void (*open)(struct vm_area_struct * area);
165 void (*close)(struct vm_area_struct * area);
166 int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf);
167 struct page *(*nopage)(struct vm_area_struct *area,
168 unsigned long address, int *type);
169 unsigned long (*nopfn)(struct vm_area_struct *area,
170 unsigned long address);
171
172 /* notification that a previously read-only page is about to become
173 * writable, if an error is returned it will cause a SIGBUS */
174 int (*page_mkwrite)(struct vm_area_struct *vma, struct page *page);
175 #ifdef CONFIG_NUMA
176 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
177 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
178 unsigned long addr);
179 int (*migrate)(struct vm_area_struct *vma, const nodemask_t *from,
180 const nodemask_t *to, unsigned long flags);
181 #endif
182 };
183
184 struct mmu_gather;
185 struct inode;
186
187 #define page_private(page) ((page)->private)
188 #define set_page_private(page, v) ((page)->private = (v))
189
190 /*
191 * FIXME: take this include out, include page-flags.h in
192 * files which need it (119 of them)
193 */
194 #include <linux/page-flags.h>
195
196 #ifdef CONFIG_DEBUG_VM
197 #define VM_BUG_ON(cond) BUG_ON(cond)
198 #else
199 #define VM_BUG_ON(condition) do { } while(0)
200 #endif
201
202 /*
203 * Methods to modify the page usage count.
204 *
205 * What counts for a page usage:
206 * - cache mapping (page->mapping)
207 * - private data (page->private)
208 * - page mapped in a task's page tables, each mapping
209 * is counted separately
210 *
211 * Also, many kernel routines increase the page count before a critical
212 * routine so they can be sure the page doesn't go away from under them.
213 */
214
215 /*
216 * Drop a ref, return true if the refcount fell to zero (the page has no users)
217 */
218 static inline int put_page_testzero(struct page *page)
219 {
220 VM_BUG_ON(atomic_read(&page->_count) == 0);
221 return atomic_dec_and_test(&page->_count);
222 }
223
224 /*
225 * Try to grab a ref unless the page has a refcount of zero, return false if
226 * that is the case.
227 */
228 static inline int get_page_unless_zero(struct page *page)
229 {
230 VM_BUG_ON(PageTail(page));
231 return atomic_inc_not_zero(&page->_count);
232 }
233
234 /* Support for virtually mapped pages */
235 struct page *vmalloc_to_page(const void *addr);
236 unsigned long vmalloc_to_pfn(const void *addr);
237
238 /* Determine if an address is within the vmalloc range */
239 static inline int is_vmalloc_addr(const void *x)
240 {
241 unsigned long addr = (unsigned long)x;
242
243 return addr >= VMALLOC_START && addr < VMALLOC_END;
244 }
245
246 static inline struct page *compound_head(struct page *page)
247 {
248 if (unlikely(PageTail(page)))
249 return page->first_page;
250 return page;
251 }
252
253 static inline int page_count(struct page *page)
254 {
255 return atomic_read(&compound_head(page)->_count);
256 }
257
258 static inline void get_page(struct page *page)
259 {
260 page = compound_head(page);
261 VM_BUG_ON(atomic_read(&page->_count) == 0);
262 atomic_inc(&page->_count);
263 }
264
265 static inline struct page *virt_to_head_page(const void *x)
266 {
267 struct page *page = virt_to_page(x);
268 return compound_head(page);
269 }
270
271 /*
272 * Setup the page count before being freed into the page allocator for
273 * the first time (boot or memory hotplug)
274 */
275 static inline void init_page_count(struct page *page)
276 {
277 atomic_set(&page->_count, 1);
278 }
279
280 void put_page(struct page *page);
281 void put_pages_list(struct list_head *pages);
282
283 void split_page(struct page *page, unsigned int order);
284
285 /*
286 * Compound pages have a destructor function. Provide a
287 * prototype for that function and accessor functions.
288 * These are _only_ valid on the head of a PG_compound page.
289 */
290 typedef void compound_page_dtor(struct page *);
291
292 static inline void set_compound_page_dtor(struct page *page,
293 compound_page_dtor *dtor)
294 {
295 page[1].lru.next = (void *)dtor;
296 }
297
298 static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
299 {
300 return (compound_page_dtor *)page[1].lru.next;
301 }
302
303 static inline int compound_order(struct page *page)
304 {
305 if (!PageHead(page))
306 return 0;
307 return (unsigned long)page[1].lru.prev;
308 }
309
310 static inline void set_compound_order(struct page *page, unsigned long order)
311 {
312 page[1].lru.prev = (void *)order;
313 }
314
315 /*
316 * Multiple processes may "see" the same page. E.g. for untouched
317 * mappings of /dev/null, all processes see the same page full of
318 * zeroes, and text pages of executables and shared libraries have
319 * only one copy in memory, at most, normally.
320 *
321 * For the non-reserved pages, page_count(page) denotes a reference count.
322 * page_count() == 0 means the page is free. page->lru is then used for
323 * freelist management in the buddy allocator.
324 * page_count() > 0 means the page has been allocated.
325 *
326 * Pages are allocated by the slab allocator in order to provide memory
327 * to kmalloc and kmem_cache_alloc. In this case, the management of the
328 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
329 * unless a particular usage is carefully commented. (the responsibility of
330 * freeing the kmalloc memory is the caller's, of course).
331 *
332 * A page may be used by anyone else who does a __get_free_page().
333 * In this case, page_count still tracks the references, and should only
334 * be used through the normal accessor functions. The top bits of page->flags
335 * and page->virtual store page management information, but all other fields
336 * are unused and could be used privately, carefully. The management of this
337 * page is the responsibility of the one who allocated it, and those who have
338 * subsequently been given references to it.
339 *
340 * The other pages (we may call them "pagecache pages") are completely
341 * managed by the Linux memory manager: I/O, buffers, swapping etc.
342 * The following discussion applies only to them.
343 *
344 * A pagecache page contains an opaque `private' member, which belongs to the
345 * page's address_space. Usually, this is the address of a circular list of
346 * the page's disk buffers. PG_private must be set to tell the VM to call
347 * into the filesystem to release these pages.
348 *
349 * A page may belong to an inode's memory mapping. In this case, page->mapping
350 * is the pointer to the inode, and page->index is the file offset of the page,
351 * in units of PAGE_CACHE_SIZE.
352 *
353 * If pagecache pages are not associated with an inode, they are said to be
354 * anonymous pages. These may become associated with the swapcache, and in that
355 * case PG_swapcache is set, and page->private is an offset into the swapcache.
356 *
357 * In either case (swapcache or inode backed), the pagecache itself holds one
358 * reference to the page. Setting PG_private should also increment the
359 * refcount. The each user mapping also has a reference to the page.
360 *
361 * The pagecache pages are stored in a per-mapping radix tree, which is
362 * rooted at mapping->page_tree, and indexed by offset.
363 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
364 * lists, we instead now tag pages as dirty/writeback in the radix tree.
365 *
366 * All pagecache pages may be subject to I/O:
367 * - inode pages may need to be read from disk,
368 * - inode pages which have been modified and are MAP_SHARED may need
369 * to be written back to the inode on disk,
370 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
371 * modified may need to be swapped out to swap space and (later) to be read
372 * back into memory.
373 */
374
375 /*
376 * The zone field is never updated after free_area_init_core()
377 * sets it, so none of the operations on it need to be atomic.
378 */
379
380
381 /*
382 * page->flags layout:
383 *
384 * There are three possibilities for how page->flags get
385 * laid out. The first is for the normal case, without
386 * sparsemem. The second is for sparsemem when there is
387 * plenty of space for node and section. The last is when
388 * we have run out of space and have to fall back to an
389 * alternate (slower) way of determining the node.
390 *
391 * No sparsemem: | NODE | ZONE | ... | FLAGS |
392 * with space for node: | SECTION | NODE | ZONE | ... | FLAGS |
393 * no space for node: | SECTION | ZONE | ... | FLAGS |
394 */
395 #ifdef CONFIG_SPARSEMEM
396 #define SECTIONS_WIDTH SECTIONS_SHIFT
397 #else
398 #define SECTIONS_WIDTH 0
399 #endif
400
401 #define ZONES_WIDTH ZONES_SHIFT
402
403 #if SECTIONS_WIDTH+ZONES_WIDTH+NODES_SHIFT <= FLAGS_RESERVED
404 #define NODES_WIDTH NODES_SHIFT
405 #else
406 #define NODES_WIDTH 0
407 #endif
408
409 /* Page flags: | [SECTION] | [NODE] | ZONE | ... | FLAGS | */
410 #define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
411 #define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
412 #define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
413
414 /*
415 * We are going to use the flags for the page to node mapping if its in
416 * there. This includes the case where there is no node, so it is implicit.
417 */
418 #if !(NODES_WIDTH > 0 || NODES_SHIFT == 0)
419 #define NODE_NOT_IN_PAGE_FLAGS
420 #endif
421
422 #ifndef PFN_SECTION_SHIFT
423 #define PFN_SECTION_SHIFT 0
424 #endif
425
426 /*
427 * Define the bit shifts to access each section. For non-existant
428 * sections we define the shift as 0; that plus a 0 mask ensures
429 * the compiler will optimise away reference to them.
430 */
431 #define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
432 #define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
433 #define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
434
435 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allcator */
436 #ifdef NODE_NOT_IN_PAGEFLAGS
437 #define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
438 #define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
439 SECTIONS_PGOFF : ZONES_PGOFF)
440 #else
441 #define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
442 #define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
443 NODES_PGOFF : ZONES_PGOFF)
444 #endif
445
446 #define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
447
448 #if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > FLAGS_RESERVED
449 #error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > FLAGS_RESERVED
450 #endif
451
452 #define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
453 #define NODES_MASK ((1UL << NODES_WIDTH) - 1)
454 #define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
455 #define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
456
457 static inline enum zone_type page_zonenum(struct page *page)
458 {
459 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
460 }
461
462 /*
463 * The identification function is only used by the buddy allocator for
464 * determining if two pages could be buddies. We are not really
465 * identifying a zone since we could be using a the section number
466 * id if we have not node id available in page flags.
467 * We guarantee only that it will return the same value for two
468 * combinable pages in a zone.
469 */
470 static inline int page_zone_id(struct page *page)
471 {
472 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
473 }
474
475 static inline int zone_to_nid(struct zone *zone)
476 {
477 #ifdef CONFIG_NUMA
478 return zone->node;
479 #else
480 return 0;
481 #endif
482 }
483
484 #ifdef NODE_NOT_IN_PAGE_FLAGS
485 extern int page_to_nid(struct page *page);
486 #else
487 static inline int page_to_nid(struct page *page)
488 {
489 return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
490 }
491 #endif
492
493 static inline struct zone *page_zone(struct page *page)
494 {
495 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
496 }
497
498 static inline unsigned long page_to_section(struct page *page)
499 {
500 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
501 }
502
503 static inline void set_page_zone(struct page *page, enum zone_type zone)
504 {
505 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
506 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
507 }
508
509 static inline void set_page_node(struct page *page, unsigned long node)
510 {
511 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
512 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
513 }
514
515 static inline void set_page_section(struct page *page, unsigned long section)
516 {
517 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
518 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
519 }
520
521 static inline void set_page_links(struct page *page, enum zone_type zone,
522 unsigned long node, unsigned long pfn)
523 {
524 set_page_zone(page, zone);
525 set_page_node(page, node);
526 set_page_section(page, pfn_to_section_nr(pfn));
527 }
528
529 /*
530 * If a hint addr is less than mmap_min_addr change hint to be as
531 * low as possible but still greater than mmap_min_addr
532 */
533 static inline unsigned long round_hint_to_min(unsigned long hint)
534 {
535 #ifdef CONFIG_SECURITY
536 hint &= PAGE_MASK;
537 if (((void *)hint != NULL) &&
538 (hint < mmap_min_addr))
539 return PAGE_ALIGN(mmap_min_addr);
540 #endif
541 return hint;
542 }
543
544 /*
545 * Some inline functions in vmstat.h depend on page_zone()
546 */
547 #include <linux/vmstat.h>
548
549 static __always_inline void *lowmem_page_address(struct page *page)
550 {
551 return __va(page_to_pfn(page) << PAGE_SHIFT);
552 }
553
554 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
555 #define HASHED_PAGE_VIRTUAL
556 #endif
557
558 #if defined(WANT_PAGE_VIRTUAL)
559 #define page_address(page) ((page)->virtual)
560 #define set_page_address(page, address) \
561 do { \
562 (page)->virtual = (address); \
563 } while(0)
564 #define page_address_init() do { } while(0)
565 #endif
566
567 #if defined(HASHED_PAGE_VIRTUAL)
568 void *page_address(struct page *page);
569 void set_page_address(struct page *page, void *virtual);
570 void page_address_init(void);
571 #endif
572
573 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
574 #define page_address(page) lowmem_page_address(page)
575 #define set_page_address(page, address) do { } while(0)
576 #define page_address_init() do { } while(0)
577 #endif
578
579 /*
580 * On an anonymous page mapped into a user virtual memory area,
581 * page->mapping points to its anon_vma, not to a struct address_space;
582 * with the PAGE_MAPPING_ANON bit set to distinguish it.
583 *
584 * Please note that, confusingly, "page_mapping" refers to the inode
585 * address_space which maps the page from disk; whereas "page_mapped"
586 * refers to user virtual address space into which the page is mapped.
587 */
588 #define PAGE_MAPPING_ANON 1
589
590 extern struct address_space swapper_space;
591 static inline struct address_space *page_mapping(struct page *page)
592 {
593 struct address_space *mapping = page->mapping;
594
595 VM_BUG_ON(PageSlab(page));
596 if (unlikely(PageSwapCache(page)))
597 mapping = &swapper_space;
598 else if (unlikely((unsigned long)mapping & PAGE_MAPPING_ANON))
599 mapping = NULL;
600 return mapping;
601 }
602
603 static inline int PageAnon(struct page *page)
604 {
605 return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0;
606 }
607
608 /*
609 * Return the pagecache index of the passed page. Regular pagecache pages
610 * use ->index whereas swapcache pages use ->private
611 */
612 static inline pgoff_t page_index(struct page *page)
613 {
614 if (unlikely(PageSwapCache(page)))
615 return page_private(page);
616 return page->index;
617 }
618
619 /*
620 * The atomic page->_mapcount, like _count, starts from -1:
621 * so that transitions both from it and to it can be tracked,
622 * using atomic_inc_and_test and atomic_add_negative(-1).
623 */
624 static inline void reset_page_mapcount(struct page *page)
625 {
626 atomic_set(&(page)->_mapcount, -1);
627 }
628
629 static inline int page_mapcount(struct page *page)
630 {
631 return atomic_read(&(page)->_mapcount) + 1;
632 }
633
634 /*
635 * Return true if this page is mapped into pagetables.
636 */
637 static inline int page_mapped(struct page *page)
638 {
639 return atomic_read(&(page)->_mapcount) >= 0;
640 }
641
642 /*
643 * Error return values for the *_nopage functions
644 */
645 #define NOPAGE_SIGBUS (NULL)
646 #define NOPAGE_OOM ((struct page *) (-1))
647
648 /*
649 * Error return values for the *_nopfn functions
650 */
651 #define NOPFN_SIGBUS ((unsigned long) -1)
652 #define NOPFN_OOM ((unsigned long) -2)
653 #define NOPFN_REFAULT ((unsigned long) -3)
654
655 /*
656 * Different kinds of faults, as returned by handle_mm_fault().
657 * Used to decide whether a process gets delivered SIGBUS or
658 * just gets major/minor fault counters bumped up.
659 */
660
661 #define VM_FAULT_MINOR 0 /* For backwards compat. Remove me quickly. */
662
663 #define VM_FAULT_OOM 0x0001
664 #define VM_FAULT_SIGBUS 0x0002
665 #define VM_FAULT_MAJOR 0x0004
666 #define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */
667
668 #define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */
669 #define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */
670
671 #define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS)
672
673 #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
674
675 extern void show_free_areas(void);
676
677 #ifdef CONFIG_SHMEM
678 int shmem_lock(struct file *file, int lock, struct user_struct *user);
679 #else
680 static inline int shmem_lock(struct file *file, int lock,
681 struct user_struct *user)
682 {
683 return 0;
684 }
685 #endif
686 struct file *shmem_file_setup(char *name, loff_t size, unsigned long flags);
687
688 int shmem_zero_setup(struct vm_area_struct *);
689
690 #ifndef CONFIG_MMU
691 extern unsigned long shmem_get_unmapped_area(struct file *file,
692 unsigned long addr,
693 unsigned long len,
694 unsigned long pgoff,
695 unsigned long flags);
696 #endif
697
698 extern int can_do_mlock(void);
699 extern int user_shm_lock(size_t, struct user_struct *);
700 extern void user_shm_unlock(size_t, struct user_struct *);
701
702 /*
703 * Parameter block passed down to zap_pte_range in exceptional cases.
704 */
705 struct zap_details {
706 struct vm_area_struct *nonlinear_vma; /* Check page->index if set */
707 struct address_space *check_mapping; /* Check page->mapping if set */
708 pgoff_t first_index; /* Lowest page->index to unmap */
709 pgoff_t last_index; /* Highest page->index to unmap */
710 spinlock_t *i_mmap_lock; /* For unmap_mapping_range: */
711 unsigned long truncate_count; /* Compare vm_truncate_count */
712 };
713
714 struct page *vm_normal_page(struct vm_area_struct *, unsigned long, pte_t);
715 unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
716 unsigned long size, struct zap_details *);
717 unsigned long unmap_vmas(struct mmu_gather **tlb,
718 struct vm_area_struct *start_vma, unsigned long start_addr,
719 unsigned long end_addr, unsigned long *nr_accounted,
720 struct zap_details *);
721
722 /**
723 * mm_walk - callbacks for walk_page_range
724 * @pgd_entry: if set, called for each non-empty PGD (top-level) entry
725 * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry
726 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
727 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
728 * @pte_hole: if set, called for each hole at all levels
729 *
730 * (see walk_page_range for more details)
731 */
732 struct mm_walk {
733 int (*pgd_entry)(pgd_t *, unsigned long, unsigned long, void *);
734 int (*pud_entry)(pud_t *, unsigned long, unsigned long, void *);
735 int (*pmd_entry)(pmd_t *, unsigned long, unsigned long, void *);
736 int (*pte_entry)(pte_t *, unsigned long, unsigned long, void *);
737 int (*pte_hole)(unsigned long, unsigned long, void *);
738 };
739
740 int walk_page_range(const struct mm_struct *, unsigned long addr,
741 unsigned long end, const struct mm_walk *walk,
742 void *private);
743 void free_pgd_range(struct mmu_gather **tlb, unsigned long addr,
744 unsigned long end, unsigned long floor, unsigned long ceiling);
745 void free_pgtables(struct mmu_gather **tlb, struct vm_area_struct *start_vma,
746 unsigned long floor, unsigned long ceiling);
747 int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
748 struct vm_area_struct *vma);
749 void unmap_mapping_range(struct address_space *mapping,
750 loff_t const holebegin, loff_t const holelen, int even_cows);
751
752 static inline void unmap_shared_mapping_range(struct address_space *mapping,
753 loff_t const holebegin, loff_t const holelen)
754 {
755 unmap_mapping_range(mapping, holebegin, holelen, 0);
756 }
757
758 extern int vmtruncate(struct inode * inode, loff_t offset);
759 extern int vmtruncate_range(struct inode * inode, loff_t offset, loff_t end);
760
761 #ifdef CONFIG_MMU
762 extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
763 unsigned long address, int write_access);
764 #else
765 static inline int handle_mm_fault(struct mm_struct *mm,
766 struct vm_area_struct *vma, unsigned long address,
767 int write_access)
768 {
769 /* should never happen if there's no MMU */
770 BUG();
771 return VM_FAULT_SIGBUS;
772 }
773 #endif
774
775 extern int make_pages_present(unsigned long addr, unsigned long end);
776 extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write);
777
778 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm, unsigned long start,
779 int len, int write, int force, struct page **pages, struct vm_area_struct **vmas);
780 void print_bad_pte(struct vm_area_struct *, pte_t, unsigned long);
781
782 extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
783 extern void do_invalidatepage(struct page *page, unsigned long offset);
784
785 int __set_page_dirty_nobuffers(struct page *page);
786 int __set_page_dirty_no_writeback(struct page *page);
787 int redirty_page_for_writepage(struct writeback_control *wbc,
788 struct page *page);
789 int set_page_dirty(struct page *page);
790 int set_page_dirty_lock(struct page *page);
791 int clear_page_dirty_for_io(struct page *page);
792
793 extern unsigned long move_page_tables(struct vm_area_struct *vma,
794 unsigned long old_addr, struct vm_area_struct *new_vma,
795 unsigned long new_addr, unsigned long len);
796 extern unsigned long do_mremap(unsigned long addr,
797 unsigned long old_len, unsigned long new_len,
798 unsigned long flags, unsigned long new_addr);
799 extern int mprotect_fixup(struct vm_area_struct *vma,
800 struct vm_area_struct **pprev, unsigned long start,
801 unsigned long end, unsigned long newflags);
802
803 /*
804 * A callback you can register to apply pressure to ageable caches.
805 *
806 * 'shrink' is passed a count 'nr_to_scan' and a 'gfpmask'. It should
807 * look through the least-recently-used 'nr_to_scan' entries and
808 * attempt to free them up. It should return the number of objects
809 * which remain in the cache. If it returns -1, it means it cannot do
810 * any scanning at this time (eg. there is a risk of deadlock).
811 *
812 * The 'gfpmask' refers to the allocation we are currently trying to
813 * fulfil.
814 *
815 * Note that 'shrink' will be passed nr_to_scan == 0 when the VM is
816 * querying the cache size, so a fastpath for that case is appropriate.
817 */
818 struct shrinker {
819 int (*shrink)(int nr_to_scan, gfp_t gfp_mask);
820 int seeks; /* seeks to recreate an obj */
821
822 /* These are for internal use */
823 struct list_head list;
824 long nr; /* objs pending delete */
825 };
826 #define DEFAULT_SEEKS 2 /* A good number if you don't know better. */
827 extern void register_shrinker(struct shrinker *);
828 extern void unregister_shrinker(struct shrinker *);
829
830 int vma_wants_writenotify(struct vm_area_struct *vma);
831
832 extern pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr, spinlock_t **ptl);
833
834 #ifdef __PAGETABLE_PUD_FOLDED
835 static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd,
836 unsigned long address)
837 {
838 return 0;
839 }
840 #else
841 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
842 #endif
843
844 #ifdef __PAGETABLE_PMD_FOLDED
845 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
846 unsigned long address)
847 {
848 return 0;
849 }
850 #else
851 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
852 #endif
853
854 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address);
855 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
856
857 /*
858 * The following ifdef needed to get the 4level-fixup.h header to work.
859 * Remove it when 4level-fixup.h has been removed.
860 */
861 #if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
862 static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
863 {
864 return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))?
865 NULL: pud_offset(pgd, address);
866 }
867
868 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
869 {
870 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
871 NULL: pmd_offset(pud, address);
872 }
873 #endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
874
875 #if NR_CPUS >= CONFIG_SPLIT_PTLOCK_CPUS
876 /*
877 * We tuck a spinlock to guard each pagetable page into its struct page,
878 * at page->private, with BUILD_BUG_ON to make sure that this will not
879 * overflow into the next struct page (as it might with DEBUG_SPINLOCK).
880 * When freeing, reset page->mapping so free_pages_check won't complain.
881 */
882 #define __pte_lockptr(page) &((page)->ptl)
883 #define pte_lock_init(_page) do { \
884 spin_lock_init(__pte_lockptr(_page)); \
885 } while (0)
886 #define pte_lock_deinit(page) ((page)->mapping = NULL)
887 #define pte_lockptr(mm, pmd) ({(void)(mm); __pte_lockptr(pmd_page(*(pmd)));})
888 #else
889 /*
890 * We use mm->page_table_lock to guard all pagetable pages of the mm.
891 */
892 #define pte_lock_init(page) do {} while (0)
893 #define pte_lock_deinit(page) do {} while (0)
894 #define pte_lockptr(mm, pmd) ({(void)(pmd); &(mm)->page_table_lock;})
895 #endif /* NR_CPUS < CONFIG_SPLIT_PTLOCK_CPUS */
896
897 static inline void pgtable_page_ctor(struct page *page)
898 {
899 pte_lock_init(page);
900 inc_zone_page_state(page, NR_PAGETABLE);
901 }
902
903 static inline void pgtable_page_dtor(struct page *page)
904 {
905 pte_lock_deinit(page);
906 dec_zone_page_state(page, NR_PAGETABLE);
907 }
908
909 #define pte_offset_map_lock(mm, pmd, address, ptlp) \
910 ({ \
911 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
912 pte_t *__pte = pte_offset_map(pmd, address); \
913 *(ptlp) = __ptl; \
914 spin_lock(__ptl); \
915 __pte; \
916 })
917
918 #define pte_unmap_unlock(pte, ptl) do { \
919 spin_unlock(ptl); \
920 pte_unmap(pte); \
921 } while (0)
922
923 #define pte_alloc_map(mm, pmd, address) \
924 ((unlikely(!pmd_present(*(pmd))) && __pte_alloc(mm, pmd, address))? \
925 NULL: pte_offset_map(pmd, address))
926
927 #define pte_alloc_map_lock(mm, pmd, address, ptlp) \
928 ((unlikely(!pmd_present(*(pmd))) && __pte_alloc(mm, pmd, address))? \
929 NULL: pte_offset_map_lock(mm, pmd, address, ptlp))
930
931 #define pte_alloc_kernel(pmd, address) \
932 ((unlikely(!pmd_present(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
933 NULL: pte_offset_kernel(pmd, address))
934
935 extern void free_area_init(unsigned long * zones_size);
936 extern void free_area_init_node(int nid, pg_data_t *pgdat,
937 unsigned long * zones_size, unsigned long zone_start_pfn,
938 unsigned long *zholes_size);
939 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
940 /*
941 * With CONFIG_ARCH_POPULATES_NODE_MAP set, an architecture may initialise its
942 * zones, allocate the backing mem_map and account for memory holes in a more
943 * architecture independent manner. This is a substitute for creating the
944 * zone_sizes[] and zholes_size[] arrays and passing them to
945 * free_area_init_node()
946 *
947 * An architecture is expected to register range of page frames backed by
948 * physical memory with add_active_range() before calling
949 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
950 * usage, an architecture is expected to do something like
951 *
952 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
953 * max_highmem_pfn};
954 * for_each_valid_physical_page_range()
955 * add_active_range(node_id, start_pfn, end_pfn)
956 * free_area_init_nodes(max_zone_pfns);
957 *
958 * If the architecture guarantees that there are no holes in the ranges
959 * registered with add_active_range(), free_bootmem_active_regions()
960 * will call free_bootmem_node() for each registered physical page range.
961 * Similarly sparse_memory_present_with_active_regions() calls
962 * memory_present() for each range when SPARSEMEM is enabled.
963 *
964 * See mm/page_alloc.c for more information on each function exposed by
965 * CONFIG_ARCH_POPULATES_NODE_MAP
966 */
967 extern void free_area_init_nodes(unsigned long *max_zone_pfn);
968 extern void add_active_range(unsigned int nid, unsigned long start_pfn,
969 unsigned long end_pfn);
970 extern void shrink_active_range(unsigned int nid, unsigned long old_end_pfn,
971 unsigned long new_end_pfn);
972 extern void push_node_boundaries(unsigned int nid, unsigned long start_pfn,
973 unsigned long end_pfn);
974 extern void remove_all_active_ranges(void);
975 extern unsigned long absent_pages_in_range(unsigned long start_pfn,
976 unsigned long end_pfn);
977 extern void get_pfn_range_for_nid(unsigned int nid,
978 unsigned long *start_pfn, unsigned long *end_pfn);
979 extern unsigned long find_min_pfn_with_active_regions(void);
980 extern unsigned long find_max_pfn_with_active_regions(void);
981 extern void free_bootmem_with_active_regions(int nid,
982 unsigned long max_low_pfn);
983 extern void sparse_memory_present_with_active_regions(int nid);
984 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
985 extern int early_pfn_to_nid(unsigned long pfn);
986 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
987 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
988 extern void set_dma_reserve(unsigned long new_dma_reserve);
989 extern void memmap_init_zone(unsigned long, int, unsigned long,
990 unsigned long, enum memmap_context);
991 extern void setup_per_zone_pages_min(void);
992 extern void mem_init(void);
993 extern void show_mem(void);
994 extern void si_meminfo(struct sysinfo * val);
995 extern void si_meminfo_node(struct sysinfo *val, int nid);
996
997 #ifdef CONFIG_NUMA
998 extern void setup_per_cpu_pageset(void);
999 #else
1000 static inline void setup_per_cpu_pageset(void) {}
1001 #endif
1002
1003 /* prio_tree.c */
1004 void vma_prio_tree_add(struct vm_area_struct *, struct vm_area_struct *old);
1005 void vma_prio_tree_insert(struct vm_area_struct *, struct prio_tree_root *);
1006 void vma_prio_tree_remove(struct vm_area_struct *, struct prio_tree_root *);
1007 struct vm_area_struct *vma_prio_tree_next(struct vm_area_struct *vma,
1008 struct prio_tree_iter *iter);
1009
1010 #define vma_prio_tree_foreach(vma, iter, root, begin, end) \
1011 for (prio_tree_iter_init(iter, root, begin, end), vma = NULL; \
1012 (vma = vma_prio_tree_next(vma, iter)); )
1013
1014 static inline void vma_nonlinear_insert(struct vm_area_struct *vma,
1015 struct list_head *list)
1016 {
1017 vma->shared.vm_set.parent = NULL;
1018 list_add_tail(&vma->shared.vm_set.list, list);
1019 }
1020
1021 /* mmap.c */
1022 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
1023 extern void vma_adjust(struct vm_area_struct *vma, unsigned long start,
1024 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert);
1025 extern struct vm_area_struct *vma_merge(struct mm_struct *,
1026 struct vm_area_struct *prev, unsigned long addr, unsigned long end,
1027 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
1028 struct mempolicy *);
1029 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
1030 extern int split_vma(struct mm_struct *,
1031 struct vm_area_struct *, unsigned long addr, int new_below);
1032 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
1033 extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
1034 struct rb_node **, struct rb_node *);
1035 extern void unlink_file_vma(struct vm_area_struct *);
1036 extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
1037 unsigned long addr, unsigned long len, pgoff_t pgoff);
1038 extern void exit_mmap(struct mm_struct *);
1039 extern int may_expand_vm(struct mm_struct *mm, unsigned long npages);
1040 extern int install_special_mapping(struct mm_struct *mm,
1041 unsigned long addr, unsigned long len,
1042 unsigned long flags, struct page **pages);
1043
1044 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
1045
1046 extern unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
1047 unsigned long len, unsigned long prot,
1048 unsigned long flag, unsigned long pgoff);
1049 extern unsigned long mmap_region(struct file *file, unsigned long addr,
1050 unsigned long len, unsigned long flags,
1051 unsigned int vm_flags, unsigned long pgoff,
1052 int accountable);
1053
1054 static inline unsigned long do_mmap(struct file *file, unsigned long addr,
1055 unsigned long len, unsigned long prot,
1056 unsigned long flag, unsigned long offset)
1057 {
1058 unsigned long ret = -EINVAL;
1059 if ((offset + PAGE_ALIGN(len)) < offset)
1060 goto out;
1061 if (!(offset & ~PAGE_MASK))
1062 ret = do_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT);
1063 out:
1064 return ret;
1065 }
1066
1067 extern int do_munmap(struct mm_struct *, unsigned long, size_t);
1068
1069 extern unsigned long do_brk(unsigned long, unsigned long);
1070
1071 /* filemap.c */
1072 extern unsigned long page_unuse(struct page *);
1073 extern void truncate_inode_pages(struct address_space *, loff_t);
1074 extern void truncate_inode_pages_range(struct address_space *,
1075 loff_t lstart, loff_t lend);
1076
1077 /* generic vm_area_ops exported for stackable file systems */
1078 extern int filemap_fault(struct vm_area_struct *, struct vm_fault *);
1079
1080 /* mm/page-writeback.c */
1081 int write_one_page(struct page *page, int wait);
1082
1083 /* readahead.c */
1084 #define VM_MAX_READAHEAD 128 /* kbytes */
1085 #define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */
1086
1087 int do_page_cache_readahead(struct address_space *mapping, struct file *filp,
1088 pgoff_t offset, unsigned long nr_to_read);
1089 int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
1090 pgoff_t offset, unsigned long nr_to_read);
1091
1092 void page_cache_sync_readahead(struct address_space *mapping,
1093 struct file_ra_state *ra,
1094 struct file *filp,
1095 pgoff_t offset,
1096 unsigned long size);
1097
1098 void page_cache_async_readahead(struct address_space *mapping,
1099 struct file_ra_state *ra,
1100 struct file *filp,
1101 struct page *pg,
1102 pgoff_t offset,
1103 unsigned long size);
1104
1105 unsigned long max_sane_readahead(unsigned long nr);
1106
1107 /* Do stack extension */
1108 extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
1109 #ifdef CONFIG_IA64
1110 extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
1111 #endif
1112 extern int expand_stack_downwards(struct vm_area_struct *vma,
1113 unsigned long address);
1114
1115 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
1116 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
1117 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
1118 struct vm_area_struct **pprev);
1119
1120 /* Look up the first VMA which intersects the interval start_addr..end_addr-1,
1121 NULL if none. Assume start_addr < end_addr. */
1122 static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
1123 {
1124 struct vm_area_struct * vma = find_vma(mm,start_addr);
1125
1126 if (vma && end_addr <= vma->vm_start)
1127 vma = NULL;
1128 return vma;
1129 }
1130
1131 static inline unsigned long vma_pages(struct vm_area_struct *vma)
1132 {
1133 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
1134 }
1135
1136 pgprot_t vm_get_page_prot(unsigned long vm_flags);
1137 struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
1138 int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
1139 unsigned long pfn, unsigned long size, pgprot_t);
1140 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
1141 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1142 unsigned long pfn);
1143
1144 struct page *follow_page(struct vm_area_struct *, unsigned long address,
1145 unsigned int foll_flags);
1146 #define FOLL_WRITE 0x01 /* check pte is writable */
1147 #define FOLL_TOUCH 0x02 /* mark page accessed */
1148 #define FOLL_GET 0x04 /* do get_page on page */
1149 #define FOLL_ANON 0x08 /* give ZERO_PAGE if no pgtable */
1150
1151 typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
1152 void *data);
1153 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
1154 unsigned long size, pte_fn_t fn, void *data);
1155
1156 #ifdef CONFIG_PROC_FS
1157 void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long);
1158 #else
1159 static inline void vm_stat_account(struct mm_struct *mm,
1160 unsigned long flags, struct file *file, long pages)
1161 {
1162 }
1163 #endif /* CONFIG_PROC_FS */
1164
1165 #ifdef CONFIG_DEBUG_PAGEALLOC
1166 extern int debug_pagealloc_enabled;
1167
1168 extern void kernel_map_pages(struct page *page, int numpages, int enable);
1169
1170 static inline void enable_debug_pagealloc(void)
1171 {
1172 debug_pagealloc_enabled = 1;
1173 }
1174 #else
1175 static inline void
1176 kernel_map_pages(struct page *page, int numpages, int enable) {}
1177 static inline void enable_debug_pagealloc(void)
1178 {
1179 }
1180 #endif
1181
1182 extern struct vm_area_struct *get_gate_vma(struct task_struct *tsk);
1183 #ifdef __HAVE_ARCH_GATE_AREA
1184 int in_gate_area_no_task(unsigned long addr);
1185 int in_gate_area(struct task_struct *task, unsigned long addr);
1186 #else
1187 int in_gate_area_no_task(unsigned long addr);
1188 #define in_gate_area(task, addr) ({(void)task; in_gate_area_no_task(addr);})
1189 #endif /* __HAVE_ARCH_GATE_AREA */
1190
1191 int drop_caches_sysctl_handler(struct ctl_table *, int, struct file *,
1192 void __user *, size_t *, loff_t *);
1193 unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask,
1194 unsigned long lru_pages);
1195 void drop_pagecache(void);
1196 void drop_slab(void);
1197
1198 #ifndef CONFIG_MMU
1199 #define randomize_va_space 0
1200 #else
1201 extern int randomize_va_space;
1202 #endif
1203
1204 const char * arch_vma_name(struct vm_area_struct *vma);
1205 void print_vma_addr(char *prefix, unsigned long rip);
1206
1207 struct page *sparse_mem_map_populate(unsigned long pnum, int nid);
1208 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
1209 pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node);
1210 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
1211 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
1212 void *vmemmap_alloc_block(unsigned long size, int node);
1213 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
1214 int vmemmap_populate_basepages(struct page *start_page,
1215 unsigned long pages, int node);
1216 int vmemmap_populate(struct page *start_page, unsigned long pages, int node);
1217
1218 #endif /* __KERNEL__ */
1219 #endif /* _LINUX_MM_H */
This page took 0.05688 seconds and 5 git commands to generate.