mm: drop support of non-linear mapping from fault codepath
[deliverable/linux.git] / include / linux / mm.h
1 #ifndef _LINUX_MM_H
2 #define _LINUX_MM_H
3
4 #include <linux/errno.h>
5
6 #ifdef __KERNEL__
7
8 #include <linux/mmdebug.h>
9 #include <linux/gfp.h>
10 #include <linux/bug.h>
11 #include <linux/list.h>
12 #include <linux/mmzone.h>
13 #include <linux/rbtree.h>
14 #include <linux/atomic.h>
15 #include <linux/debug_locks.h>
16 #include <linux/mm_types.h>
17 #include <linux/range.h>
18 #include <linux/pfn.h>
19 #include <linux/bit_spinlock.h>
20 #include <linux/shrinker.h>
21 #include <linux/resource.h>
22 #include <linux/page_ext.h>
23
24 struct mempolicy;
25 struct anon_vma;
26 struct anon_vma_chain;
27 struct file_ra_state;
28 struct user_struct;
29 struct writeback_control;
30
31 #ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */
32 extern unsigned long max_mapnr;
33
34 static inline void set_max_mapnr(unsigned long limit)
35 {
36 max_mapnr = limit;
37 }
38 #else
39 static inline void set_max_mapnr(unsigned long limit) { }
40 #endif
41
42 extern unsigned long totalram_pages;
43 extern void * high_memory;
44 extern int page_cluster;
45
46 #ifdef CONFIG_SYSCTL
47 extern int sysctl_legacy_va_layout;
48 #else
49 #define sysctl_legacy_va_layout 0
50 #endif
51
52 #include <asm/page.h>
53 #include <asm/pgtable.h>
54 #include <asm/processor.h>
55
56 #ifndef __pa_symbol
57 #define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0))
58 #endif
59
60 /*
61 * To prevent common memory management code establishing
62 * a zero page mapping on a read fault.
63 * This macro should be defined within <asm/pgtable.h>.
64 * s390 does this to prevent multiplexing of hardware bits
65 * related to the physical page in case of virtualization.
66 */
67 #ifndef mm_forbids_zeropage
68 #define mm_forbids_zeropage(X) (0)
69 #endif
70
71 extern unsigned long sysctl_user_reserve_kbytes;
72 extern unsigned long sysctl_admin_reserve_kbytes;
73
74 extern int sysctl_overcommit_memory;
75 extern int sysctl_overcommit_ratio;
76 extern unsigned long sysctl_overcommit_kbytes;
77
78 extern int overcommit_ratio_handler(struct ctl_table *, int, void __user *,
79 size_t *, loff_t *);
80 extern int overcommit_kbytes_handler(struct ctl_table *, int, void __user *,
81 size_t *, loff_t *);
82
83 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
84
85 /* to align the pointer to the (next) page boundary */
86 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
87
88 /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
89 #define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)addr, PAGE_SIZE)
90
91 /*
92 * Linux kernel virtual memory manager primitives.
93 * The idea being to have a "virtual" mm in the same way
94 * we have a virtual fs - giving a cleaner interface to the
95 * mm details, and allowing different kinds of memory mappings
96 * (from shared memory to executable loading to arbitrary
97 * mmap() functions).
98 */
99
100 extern struct kmem_cache *vm_area_cachep;
101
102 #ifndef CONFIG_MMU
103 extern struct rb_root nommu_region_tree;
104 extern struct rw_semaphore nommu_region_sem;
105
106 extern unsigned int kobjsize(const void *objp);
107 #endif
108
109 /*
110 * vm_flags in vm_area_struct, see mm_types.h.
111 */
112 #define VM_NONE 0x00000000
113
114 #define VM_READ 0x00000001 /* currently active flags */
115 #define VM_WRITE 0x00000002
116 #define VM_EXEC 0x00000004
117 #define VM_SHARED 0x00000008
118
119 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
120 #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
121 #define VM_MAYWRITE 0x00000020
122 #define VM_MAYEXEC 0x00000040
123 #define VM_MAYSHARE 0x00000080
124
125 #define VM_GROWSDOWN 0x00000100 /* general info on the segment */
126 #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
127 #define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
128
129 #define VM_LOCKED 0x00002000
130 #define VM_IO 0x00004000 /* Memory mapped I/O or similar */
131
132 /* Used by sys_madvise() */
133 #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
134 #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
135
136 #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
137 #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
138 #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
139 #define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
140 #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
141 #define VM_NONLINEAR 0x00800000 /* Is non-linear (remap_file_pages) */
142 #define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
143 #define VM_ARCH_2 0x02000000
144 #define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
145
146 #ifdef CONFIG_MEM_SOFT_DIRTY
147 # define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */
148 #else
149 # define VM_SOFTDIRTY 0
150 #endif
151
152 #define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
153 #define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
154 #define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
155 #define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
156
157 #if defined(CONFIG_X86)
158 # define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
159 #elif defined(CONFIG_PPC)
160 # define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
161 #elif defined(CONFIG_PARISC)
162 # define VM_GROWSUP VM_ARCH_1
163 #elif defined(CONFIG_METAG)
164 # define VM_GROWSUP VM_ARCH_1
165 #elif defined(CONFIG_IA64)
166 # define VM_GROWSUP VM_ARCH_1
167 #elif !defined(CONFIG_MMU)
168 # define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
169 #endif
170
171 #if defined(CONFIG_X86)
172 /* MPX specific bounds table or bounds directory */
173 # define VM_MPX VM_ARCH_2
174 #endif
175
176 #ifndef VM_GROWSUP
177 # define VM_GROWSUP VM_NONE
178 #endif
179
180 /* Bits set in the VMA until the stack is in its final location */
181 #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
182
183 #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
184 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
185 #endif
186
187 #ifdef CONFIG_STACK_GROWSUP
188 #define VM_STACK_FLAGS (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
189 #else
190 #define VM_STACK_FLAGS (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
191 #endif
192
193 /*
194 * Special vmas that are non-mergable, non-mlock()able.
195 * Note: mm/huge_memory.c VM_NO_THP depends on this definition.
196 */
197 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
198
199 /* This mask defines which mm->def_flags a process can inherit its parent */
200 #define VM_INIT_DEF_MASK VM_NOHUGEPAGE
201
202 /*
203 * mapping from the currently active vm_flags protection bits (the
204 * low four bits) to a page protection mask..
205 */
206 extern pgprot_t protection_map[16];
207
208 #define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */
209 #define FAULT_FLAG_MKWRITE 0x02 /* Fault was mkwrite of existing pte */
210 #define FAULT_FLAG_ALLOW_RETRY 0x04 /* Retry fault if blocking */
211 #define FAULT_FLAG_RETRY_NOWAIT 0x08 /* Don't drop mmap_sem and wait when retrying */
212 #define FAULT_FLAG_KILLABLE 0x10 /* The fault task is in SIGKILL killable region */
213 #define FAULT_FLAG_TRIED 0x20 /* Second try */
214 #define FAULT_FLAG_USER 0x40 /* The fault originated in userspace */
215
216 /*
217 * vm_fault is filled by the the pagefault handler and passed to the vma's
218 * ->fault function. The vma's ->fault is responsible for returning a bitmask
219 * of VM_FAULT_xxx flags that give details about how the fault was handled.
220 *
221 * pgoff should be used in favour of virtual_address, if possible.
222 */
223 struct vm_fault {
224 unsigned int flags; /* FAULT_FLAG_xxx flags */
225 pgoff_t pgoff; /* Logical page offset based on vma */
226 void __user *virtual_address; /* Faulting virtual address */
227
228 struct page *page; /* ->fault handlers should return a
229 * page here, unless VM_FAULT_NOPAGE
230 * is set (which is also implied by
231 * VM_FAULT_ERROR).
232 */
233 /* for ->map_pages() only */
234 pgoff_t max_pgoff; /* map pages for offset from pgoff till
235 * max_pgoff inclusive */
236 pte_t *pte; /* pte entry associated with ->pgoff */
237 };
238
239 /*
240 * These are the virtual MM functions - opening of an area, closing and
241 * unmapping it (needed to keep files on disk up-to-date etc), pointer
242 * to the functions called when a no-page or a wp-page exception occurs.
243 */
244 struct vm_operations_struct {
245 void (*open)(struct vm_area_struct * area);
246 void (*close)(struct vm_area_struct * area);
247 int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf);
248 void (*map_pages)(struct vm_area_struct *vma, struct vm_fault *vmf);
249
250 /* notification that a previously read-only page is about to become
251 * writable, if an error is returned it will cause a SIGBUS */
252 int (*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
253
254 /* called by access_process_vm when get_user_pages() fails, typically
255 * for use by special VMAs that can switch between memory and hardware
256 */
257 int (*access)(struct vm_area_struct *vma, unsigned long addr,
258 void *buf, int len, int write);
259
260 /* Called by the /proc/PID/maps code to ask the vma whether it
261 * has a special name. Returning non-NULL will also cause this
262 * vma to be dumped unconditionally. */
263 const char *(*name)(struct vm_area_struct *vma);
264
265 #ifdef CONFIG_NUMA
266 /*
267 * set_policy() op must add a reference to any non-NULL @new mempolicy
268 * to hold the policy upon return. Caller should pass NULL @new to
269 * remove a policy and fall back to surrounding context--i.e. do not
270 * install a MPOL_DEFAULT policy, nor the task or system default
271 * mempolicy.
272 */
273 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
274
275 /*
276 * get_policy() op must add reference [mpol_get()] to any policy at
277 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
278 * in mm/mempolicy.c will do this automatically.
279 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
280 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
281 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
282 * must return NULL--i.e., do not "fallback" to task or system default
283 * policy.
284 */
285 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
286 unsigned long addr);
287 #endif
288 /* called by sys_remap_file_pages() to populate non-linear mapping */
289 int (*remap_pages)(struct vm_area_struct *vma, unsigned long addr,
290 unsigned long size, pgoff_t pgoff);
291 };
292
293 struct mmu_gather;
294 struct inode;
295
296 #define page_private(page) ((page)->private)
297 #define set_page_private(page, v) ((page)->private = (v))
298
299 /* It's valid only if the page is free path or free_list */
300 static inline void set_freepage_migratetype(struct page *page, int migratetype)
301 {
302 page->index = migratetype;
303 }
304
305 /* It's valid only if the page is free path or free_list */
306 static inline int get_freepage_migratetype(struct page *page)
307 {
308 return page->index;
309 }
310
311 /*
312 * FIXME: take this include out, include page-flags.h in
313 * files which need it (119 of them)
314 */
315 #include <linux/page-flags.h>
316 #include <linux/huge_mm.h>
317
318 /*
319 * Methods to modify the page usage count.
320 *
321 * What counts for a page usage:
322 * - cache mapping (page->mapping)
323 * - private data (page->private)
324 * - page mapped in a task's page tables, each mapping
325 * is counted separately
326 *
327 * Also, many kernel routines increase the page count before a critical
328 * routine so they can be sure the page doesn't go away from under them.
329 */
330
331 /*
332 * Drop a ref, return true if the refcount fell to zero (the page has no users)
333 */
334 static inline int put_page_testzero(struct page *page)
335 {
336 VM_BUG_ON_PAGE(atomic_read(&page->_count) == 0, page);
337 return atomic_dec_and_test(&page->_count);
338 }
339
340 /*
341 * Try to grab a ref unless the page has a refcount of zero, return false if
342 * that is the case.
343 * This can be called when MMU is off so it must not access
344 * any of the virtual mappings.
345 */
346 static inline int get_page_unless_zero(struct page *page)
347 {
348 return atomic_inc_not_zero(&page->_count);
349 }
350
351 /*
352 * Try to drop a ref unless the page has a refcount of one, return false if
353 * that is the case.
354 * This is to make sure that the refcount won't become zero after this drop.
355 * This can be called when MMU is off so it must not access
356 * any of the virtual mappings.
357 */
358 static inline int put_page_unless_one(struct page *page)
359 {
360 return atomic_add_unless(&page->_count, -1, 1);
361 }
362
363 extern int page_is_ram(unsigned long pfn);
364 extern int region_is_ram(resource_size_t phys_addr, unsigned long size);
365
366 /* Support for virtually mapped pages */
367 struct page *vmalloc_to_page(const void *addr);
368 unsigned long vmalloc_to_pfn(const void *addr);
369
370 /*
371 * Determine if an address is within the vmalloc range
372 *
373 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
374 * is no special casing required.
375 */
376 static inline int is_vmalloc_addr(const void *x)
377 {
378 #ifdef CONFIG_MMU
379 unsigned long addr = (unsigned long)x;
380
381 return addr >= VMALLOC_START && addr < VMALLOC_END;
382 #else
383 return 0;
384 #endif
385 }
386 #ifdef CONFIG_MMU
387 extern int is_vmalloc_or_module_addr(const void *x);
388 #else
389 static inline int is_vmalloc_or_module_addr(const void *x)
390 {
391 return 0;
392 }
393 #endif
394
395 extern void kvfree(const void *addr);
396
397 static inline void compound_lock(struct page *page)
398 {
399 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
400 VM_BUG_ON_PAGE(PageSlab(page), page);
401 bit_spin_lock(PG_compound_lock, &page->flags);
402 #endif
403 }
404
405 static inline void compound_unlock(struct page *page)
406 {
407 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
408 VM_BUG_ON_PAGE(PageSlab(page), page);
409 bit_spin_unlock(PG_compound_lock, &page->flags);
410 #endif
411 }
412
413 static inline unsigned long compound_lock_irqsave(struct page *page)
414 {
415 unsigned long uninitialized_var(flags);
416 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
417 local_irq_save(flags);
418 compound_lock(page);
419 #endif
420 return flags;
421 }
422
423 static inline void compound_unlock_irqrestore(struct page *page,
424 unsigned long flags)
425 {
426 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
427 compound_unlock(page);
428 local_irq_restore(flags);
429 #endif
430 }
431
432 static inline struct page *compound_head_by_tail(struct page *tail)
433 {
434 struct page *head = tail->first_page;
435
436 /*
437 * page->first_page may be a dangling pointer to an old
438 * compound page, so recheck that it is still a tail
439 * page before returning.
440 */
441 smp_rmb();
442 if (likely(PageTail(tail)))
443 return head;
444 return tail;
445 }
446
447 /*
448 * Since either compound page could be dismantled asynchronously in THP
449 * or we access asynchronously arbitrary positioned struct page, there
450 * would be tail flag race. To handle this race, we should call
451 * smp_rmb() before checking tail flag. compound_head_by_tail() did it.
452 */
453 static inline struct page *compound_head(struct page *page)
454 {
455 if (unlikely(PageTail(page)))
456 return compound_head_by_tail(page);
457 return page;
458 }
459
460 /*
461 * If we access compound page synchronously such as access to
462 * allocated page, there is no need to handle tail flag race, so we can
463 * check tail flag directly without any synchronization primitive.
464 */
465 static inline struct page *compound_head_fast(struct page *page)
466 {
467 if (unlikely(PageTail(page)))
468 return page->first_page;
469 return page;
470 }
471
472 /*
473 * The atomic page->_mapcount, starts from -1: so that transitions
474 * both from it and to it can be tracked, using atomic_inc_and_test
475 * and atomic_add_negative(-1).
476 */
477 static inline void page_mapcount_reset(struct page *page)
478 {
479 atomic_set(&(page)->_mapcount, -1);
480 }
481
482 static inline int page_mapcount(struct page *page)
483 {
484 return atomic_read(&(page)->_mapcount) + 1;
485 }
486
487 static inline int page_count(struct page *page)
488 {
489 return atomic_read(&compound_head(page)->_count);
490 }
491
492 #ifdef CONFIG_HUGETLB_PAGE
493 extern int PageHeadHuge(struct page *page_head);
494 #else /* CONFIG_HUGETLB_PAGE */
495 static inline int PageHeadHuge(struct page *page_head)
496 {
497 return 0;
498 }
499 #endif /* CONFIG_HUGETLB_PAGE */
500
501 static inline bool __compound_tail_refcounted(struct page *page)
502 {
503 return !PageSlab(page) && !PageHeadHuge(page);
504 }
505
506 /*
507 * This takes a head page as parameter and tells if the
508 * tail page reference counting can be skipped.
509 *
510 * For this to be safe, PageSlab and PageHeadHuge must remain true on
511 * any given page where they return true here, until all tail pins
512 * have been released.
513 */
514 static inline bool compound_tail_refcounted(struct page *page)
515 {
516 VM_BUG_ON_PAGE(!PageHead(page), page);
517 return __compound_tail_refcounted(page);
518 }
519
520 static inline void get_huge_page_tail(struct page *page)
521 {
522 /*
523 * __split_huge_page_refcount() cannot run from under us.
524 */
525 VM_BUG_ON_PAGE(!PageTail(page), page);
526 VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
527 VM_BUG_ON_PAGE(atomic_read(&page->_count) != 0, page);
528 if (compound_tail_refcounted(page->first_page))
529 atomic_inc(&page->_mapcount);
530 }
531
532 extern bool __get_page_tail(struct page *page);
533
534 static inline void get_page(struct page *page)
535 {
536 if (unlikely(PageTail(page)))
537 if (likely(__get_page_tail(page)))
538 return;
539 /*
540 * Getting a normal page or the head of a compound page
541 * requires to already have an elevated page->_count.
542 */
543 VM_BUG_ON_PAGE(atomic_read(&page->_count) <= 0, page);
544 atomic_inc(&page->_count);
545 }
546
547 static inline struct page *virt_to_head_page(const void *x)
548 {
549 struct page *page = virt_to_page(x);
550
551 /*
552 * We don't need to worry about synchronization of tail flag
553 * when we call virt_to_head_page() since it is only called for
554 * already allocated page and this page won't be freed until
555 * this virt_to_head_page() is finished. So use _fast variant.
556 */
557 return compound_head_fast(page);
558 }
559
560 /*
561 * Setup the page count before being freed into the page allocator for
562 * the first time (boot or memory hotplug)
563 */
564 static inline void init_page_count(struct page *page)
565 {
566 atomic_set(&page->_count, 1);
567 }
568
569 /*
570 * PageBuddy() indicate that the page is free and in the buddy system
571 * (see mm/page_alloc.c).
572 *
573 * PAGE_BUDDY_MAPCOUNT_VALUE must be <= -2 but better not too close to
574 * -2 so that an underflow of the page_mapcount() won't be mistaken
575 * for a genuine PAGE_BUDDY_MAPCOUNT_VALUE. -128 can be created very
576 * efficiently by most CPU architectures.
577 */
578 #define PAGE_BUDDY_MAPCOUNT_VALUE (-128)
579
580 static inline int PageBuddy(struct page *page)
581 {
582 return atomic_read(&page->_mapcount) == PAGE_BUDDY_MAPCOUNT_VALUE;
583 }
584
585 static inline void __SetPageBuddy(struct page *page)
586 {
587 VM_BUG_ON_PAGE(atomic_read(&page->_mapcount) != -1, page);
588 atomic_set(&page->_mapcount, PAGE_BUDDY_MAPCOUNT_VALUE);
589 }
590
591 static inline void __ClearPageBuddy(struct page *page)
592 {
593 VM_BUG_ON_PAGE(!PageBuddy(page), page);
594 atomic_set(&page->_mapcount, -1);
595 }
596
597 #define PAGE_BALLOON_MAPCOUNT_VALUE (-256)
598
599 static inline int PageBalloon(struct page *page)
600 {
601 return atomic_read(&page->_mapcount) == PAGE_BALLOON_MAPCOUNT_VALUE;
602 }
603
604 static inline void __SetPageBalloon(struct page *page)
605 {
606 VM_BUG_ON_PAGE(atomic_read(&page->_mapcount) != -1, page);
607 atomic_set(&page->_mapcount, PAGE_BALLOON_MAPCOUNT_VALUE);
608 }
609
610 static inline void __ClearPageBalloon(struct page *page)
611 {
612 VM_BUG_ON_PAGE(!PageBalloon(page), page);
613 atomic_set(&page->_mapcount, -1);
614 }
615
616 void put_page(struct page *page);
617 void put_pages_list(struct list_head *pages);
618
619 void split_page(struct page *page, unsigned int order);
620 int split_free_page(struct page *page);
621
622 /*
623 * Compound pages have a destructor function. Provide a
624 * prototype for that function and accessor functions.
625 * These are _only_ valid on the head of a PG_compound page.
626 */
627 typedef void compound_page_dtor(struct page *);
628
629 static inline void set_compound_page_dtor(struct page *page,
630 compound_page_dtor *dtor)
631 {
632 page[1].lru.next = (void *)dtor;
633 }
634
635 static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
636 {
637 return (compound_page_dtor *)page[1].lru.next;
638 }
639
640 static inline int compound_order(struct page *page)
641 {
642 if (!PageHead(page))
643 return 0;
644 return (unsigned long)page[1].lru.prev;
645 }
646
647 static inline void set_compound_order(struct page *page, unsigned long order)
648 {
649 page[1].lru.prev = (void *)order;
650 }
651
652 #ifdef CONFIG_MMU
653 /*
654 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
655 * servicing faults for write access. In the normal case, do always want
656 * pte_mkwrite. But get_user_pages can cause write faults for mappings
657 * that do not have writing enabled, when used by access_process_vm.
658 */
659 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
660 {
661 if (likely(vma->vm_flags & VM_WRITE))
662 pte = pte_mkwrite(pte);
663 return pte;
664 }
665
666 void do_set_pte(struct vm_area_struct *vma, unsigned long address,
667 struct page *page, pte_t *pte, bool write, bool anon);
668 #endif
669
670 /*
671 * Multiple processes may "see" the same page. E.g. for untouched
672 * mappings of /dev/null, all processes see the same page full of
673 * zeroes, and text pages of executables and shared libraries have
674 * only one copy in memory, at most, normally.
675 *
676 * For the non-reserved pages, page_count(page) denotes a reference count.
677 * page_count() == 0 means the page is free. page->lru is then used for
678 * freelist management in the buddy allocator.
679 * page_count() > 0 means the page has been allocated.
680 *
681 * Pages are allocated by the slab allocator in order to provide memory
682 * to kmalloc and kmem_cache_alloc. In this case, the management of the
683 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
684 * unless a particular usage is carefully commented. (the responsibility of
685 * freeing the kmalloc memory is the caller's, of course).
686 *
687 * A page may be used by anyone else who does a __get_free_page().
688 * In this case, page_count still tracks the references, and should only
689 * be used through the normal accessor functions. The top bits of page->flags
690 * and page->virtual store page management information, but all other fields
691 * are unused and could be used privately, carefully. The management of this
692 * page is the responsibility of the one who allocated it, and those who have
693 * subsequently been given references to it.
694 *
695 * The other pages (we may call them "pagecache pages") are completely
696 * managed by the Linux memory manager: I/O, buffers, swapping etc.
697 * The following discussion applies only to them.
698 *
699 * A pagecache page contains an opaque `private' member, which belongs to the
700 * page's address_space. Usually, this is the address of a circular list of
701 * the page's disk buffers. PG_private must be set to tell the VM to call
702 * into the filesystem to release these pages.
703 *
704 * A page may belong to an inode's memory mapping. In this case, page->mapping
705 * is the pointer to the inode, and page->index is the file offset of the page,
706 * in units of PAGE_CACHE_SIZE.
707 *
708 * If pagecache pages are not associated with an inode, they are said to be
709 * anonymous pages. These may become associated with the swapcache, and in that
710 * case PG_swapcache is set, and page->private is an offset into the swapcache.
711 *
712 * In either case (swapcache or inode backed), the pagecache itself holds one
713 * reference to the page. Setting PG_private should also increment the
714 * refcount. The each user mapping also has a reference to the page.
715 *
716 * The pagecache pages are stored in a per-mapping radix tree, which is
717 * rooted at mapping->page_tree, and indexed by offset.
718 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
719 * lists, we instead now tag pages as dirty/writeback in the radix tree.
720 *
721 * All pagecache pages may be subject to I/O:
722 * - inode pages may need to be read from disk,
723 * - inode pages which have been modified and are MAP_SHARED may need
724 * to be written back to the inode on disk,
725 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
726 * modified may need to be swapped out to swap space and (later) to be read
727 * back into memory.
728 */
729
730 /*
731 * The zone field is never updated after free_area_init_core()
732 * sets it, so none of the operations on it need to be atomic.
733 */
734
735 /* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
736 #define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
737 #define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
738 #define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
739 #define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH)
740
741 /*
742 * Define the bit shifts to access each section. For non-existent
743 * sections we define the shift as 0; that plus a 0 mask ensures
744 * the compiler will optimise away reference to them.
745 */
746 #define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
747 #define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
748 #define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
749 #define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
750
751 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
752 #ifdef NODE_NOT_IN_PAGE_FLAGS
753 #define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
754 #define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
755 SECTIONS_PGOFF : ZONES_PGOFF)
756 #else
757 #define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
758 #define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
759 NODES_PGOFF : ZONES_PGOFF)
760 #endif
761
762 #define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
763
764 #if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
765 #error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
766 #endif
767
768 #define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
769 #define NODES_MASK ((1UL << NODES_WIDTH) - 1)
770 #define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
771 #define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1)
772 #define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
773
774 static inline enum zone_type page_zonenum(const struct page *page)
775 {
776 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
777 }
778
779 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
780 #define SECTION_IN_PAGE_FLAGS
781 #endif
782
783 /*
784 * The identification function is mainly used by the buddy allocator for
785 * determining if two pages could be buddies. We are not really identifying
786 * the zone since we could be using the section number id if we do not have
787 * node id available in page flags.
788 * We only guarantee that it will return the same value for two combinable
789 * pages in a zone.
790 */
791 static inline int page_zone_id(struct page *page)
792 {
793 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
794 }
795
796 static inline int zone_to_nid(struct zone *zone)
797 {
798 #ifdef CONFIG_NUMA
799 return zone->node;
800 #else
801 return 0;
802 #endif
803 }
804
805 #ifdef NODE_NOT_IN_PAGE_FLAGS
806 extern int page_to_nid(const struct page *page);
807 #else
808 static inline int page_to_nid(const struct page *page)
809 {
810 return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
811 }
812 #endif
813
814 #ifdef CONFIG_NUMA_BALANCING
815 static inline int cpu_pid_to_cpupid(int cpu, int pid)
816 {
817 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
818 }
819
820 static inline int cpupid_to_pid(int cpupid)
821 {
822 return cpupid & LAST__PID_MASK;
823 }
824
825 static inline int cpupid_to_cpu(int cpupid)
826 {
827 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
828 }
829
830 static inline int cpupid_to_nid(int cpupid)
831 {
832 return cpu_to_node(cpupid_to_cpu(cpupid));
833 }
834
835 static inline bool cpupid_pid_unset(int cpupid)
836 {
837 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
838 }
839
840 static inline bool cpupid_cpu_unset(int cpupid)
841 {
842 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
843 }
844
845 static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
846 {
847 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
848 }
849
850 #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
851 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
852 static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
853 {
854 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
855 }
856
857 static inline int page_cpupid_last(struct page *page)
858 {
859 return page->_last_cpupid;
860 }
861 static inline void page_cpupid_reset_last(struct page *page)
862 {
863 page->_last_cpupid = -1 & LAST_CPUPID_MASK;
864 }
865 #else
866 static inline int page_cpupid_last(struct page *page)
867 {
868 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
869 }
870
871 extern int page_cpupid_xchg_last(struct page *page, int cpupid);
872
873 static inline void page_cpupid_reset_last(struct page *page)
874 {
875 int cpupid = (1 << LAST_CPUPID_SHIFT) - 1;
876
877 page->flags &= ~(LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT);
878 page->flags |= (cpupid & LAST_CPUPID_MASK) << LAST_CPUPID_PGSHIFT;
879 }
880 #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
881 #else /* !CONFIG_NUMA_BALANCING */
882 static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
883 {
884 return page_to_nid(page); /* XXX */
885 }
886
887 static inline int page_cpupid_last(struct page *page)
888 {
889 return page_to_nid(page); /* XXX */
890 }
891
892 static inline int cpupid_to_nid(int cpupid)
893 {
894 return -1;
895 }
896
897 static inline int cpupid_to_pid(int cpupid)
898 {
899 return -1;
900 }
901
902 static inline int cpupid_to_cpu(int cpupid)
903 {
904 return -1;
905 }
906
907 static inline int cpu_pid_to_cpupid(int nid, int pid)
908 {
909 return -1;
910 }
911
912 static inline bool cpupid_pid_unset(int cpupid)
913 {
914 return 1;
915 }
916
917 static inline void page_cpupid_reset_last(struct page *page)
918 {
919 }
920
921 static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
922 {
923 return false;
924 }
925 #endif /* CONFIG_NUMA_BALANCING */
926
927 static inline struct zone *page_zone(const struct page *page)
928 {
929 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
930 }
931
932 #ifdef SECTION_IN_PAGE_FLAGS
933 static inline void set_page_section(struct page *page, unsigned long section)
934 {
935 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
936 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
937 }
938
939 static inline unsigned long page_to_section(const struct page *page)
940 {
941 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
942 }
943 #endif
944
945 static inline void set_page_zone(struct page *page, enum zone_type zone)
946 {
947 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
948 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
949 }
950
951 static inline void set_page_node(struct page *page, unsigned long node)
952 {
953 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
954 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
955 }
956
957 static inline void set_page_links(struct page *page, enum zone_type zone,
958 unsigned long node, unsigned long pfn)
959 {
960 set_page_zone(page, zone);
961 set_page_node(page, node);
962 #ifdef SECTION_IN_PAGE_FLAGS
963 set_page_section(page, pfn_to_section_nr(pfn));
964 #endif
965 }
966
967 /*
968 * Some inline functions in vmstat.h depend on page_zone()
969 */
970 #include <linux/vmstat.h>
971
972 static __always_inline void *lowmem_page_address(const struct page *page)
973 {
974 return __va(PFN_PHYS(page_to_pfn(page)));
975 }
976
977 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
978 #define HASHED_PAGE_VIRTUAL
979 #endif
980
981 #if defined(WANT_PAGE_VIRTUAL)
982 static inline void *page_address(const struct page *page)
983 {
984 return page->virtual;
985 }
986 static inline void set_page_address(struct page *page, void *address)
987 {
988 page->virtual = address;
989 }
990 #define page_address_init() do { } while(0)
991 #endif
992
993 #if defined(HASHED_PAGE_VIRTUAL)
994 void *page_address(const struct page *page);
995 void set_page_address(struct page *page, void *virtual);
996 void page_address_init(void);
997 #endif
998
999 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
1000 #define page_address(page) lowmem_page_address(page)
1001 #define set_page_address(page, address) do { } while(0)
1002 #define page_address_init() do { } while(0)
1003 #endif
1004
1005 /*
1006 * On an anonymous page mapped into a user virtual memory area,
1007 * page->mapping points to its anon_vma, not to a struct address_space;
1008 * with the PAGE_MAPPING_ANON bit set to distinguish it. See rmap.h.
1009 *
1010 * On an anonymous page in a VM_MERGEABLE area, if CONFIG_KSM is enabled,
1011 * the PAGE_MAPPING_KSM bit may be set along with the PAGE_MAPPING_ANON bit;
1012 * and then page->mapping points, not to an anon_vma, but to a private
1013 * structure which KSM associates with that merged page. See ksm.h.
1014 *
1015 * PAGE_MAPPING_KSM without PAGE_MAPPING_ANON is currently never used.
1016 *
1017 * Please note that, confusingly, "page_mapping" refers to the inode
1018 * address_space which maps the page from disk; whereas "page_mapped"
1019 * refers to user virtual address space into which the page is mapped.
1020 */
1021 #define PAGE_MAPPING_ANON 1
1022 #define PAGE_MAPPING_KSM 2
1023 #define PAGE_MAPPING_FLAGS (PAGE_MAPPING_ANON | PAGE_MAPPING_KSM)
1024
1025 extern struct address_space *page_mapping(struct page *page);
1026
1027 /* Neutral page->mapping pointer to address_space or anon_vma or other */
1028 static inline void *page_rmapping(struct page *page)
1029 {
1030 return (void *)((unsigned long)page->mapping & ~PAGE_MAPPING_FLAGS);
1031 }
1032
1033 extern struct address_space *__page_file_mapping(struct page *);
1034
1035 static inline
1036 struct address_space *page_file_mapping(struct page *page)
1037 {
1038 if (unlikely(PageSwapCache(page)))
1039 return __page_file_mapping(page);
1040
1041 return page->mapping;
1042 }
1043
1044 static inline int PageAnon(struct page *page)
1045 {
1046 return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0;
1047 }
1048
1049 /*
1050 * Return the pagecache index of the passed page. Regular pagecache pages
1051 * use ->index whereas swapcache pages use ->private
1052 */
1053 static inline pgoff_t page_index(struct page *page)
1054 {
1055 if (unlikely(PageSwapCache(page)))
1056 return page_private(page);
1057 return page->index;
1058 }
1059
1060 extern pgoff_t __page_file_index(struct page *page);
1061
1062 /*
1063 * Return the file index of the page. Regular pagecache pages use ->index
1064 * whereas swapcache pages use swp_offset(->private)
1065 */
1066 static inline pgoff_t page_file_index(struct page *page)
1067 {
1068 if (unlikely(PageSwapCache(page)))
1069 return __page_file_index(page);
1070
1071 return page->index;
1072 }
1073
1074 /*
1075 * Return true if this page is mapped into pagetables.
1076 */
1077 static inline int page_mapped(struct page *page)
1078 {
1079 return atomic_read(&(page)->_mapcount) >= 0;
1080 }
1081
1082 /*
1083 * Different kinds of faults, as returned by handle_mm_fault().
1084 * Used to decide whether a process gets delivered SIGBUS or
1085 * just gets major/minor fault counters bumped up.
1086 */
1087
1088 #define VM_FAULT_MINOR 0 /* For backwards compat. Remove me quickly. */
1089
1090 #define VM_FAULT_OOM 0x0001
1091 #define VM_FAULT_SIGBUS 0x0002
1092 #define VM_FAULT_MAJOR 0x0004
1093 #define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */
1094 #define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */
1095 #define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */
1096 #define VM_FAULT_SIGSEGV 0x0040
1097
1098 #define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */
1099 #define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */
1100 #define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */
1101 #define VM_FAULT_FALLBACK 0x0800 /* huge page fault failed, fall back to small */
1102
1103 #define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */
1104
1105 #define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | \
1106 VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE | \
1107 VM_FAULT_FALLBACK)
1108
1109 /* Encode hstate index for a hwpoisoned large page */
1110 #define VM_FAULT_SET_HINDEX(x) ((x) << 12)
1111 #define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf)
1112
1113 /*
1114 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
1115 */
1116 extern void pagefault_out_of_memory(void);
1117
1118 #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
1119
1120 /*
1121 * Flags passed to show_mem() and show_free_areas() to suppress output in
1122 * various contexts.
1123 */
1124 #define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */
1125
1126 extern void show_free_areas(unsigned int flags);
1127 extern bool skip_free_areas_node(unsigned int flags, int nid);
1128
1129 int shmem_zero_setup(struct vm_area_struct *);
1130 #ifdef CONFIG_SHMEM
1131 bool shmem_mapping(struct address_space *mapping);
1132 #else
1133 static inline bool shmem_mapping(struct address_space *mapping)
1134 {
1135 return false;
1136 }
1137 #endif
1138
1139 extern int can_do_mlock(void);
1140 extern int user_shm_lock(size_t, struct user_struct *);
1141 extern void user_shm_unlock(size_t, struct user_struct *);
1142
1143 /*
1144 * Parameter block passed down to zap_pte_range in exceptional cases.
1145 */
1146 struct zap_details {
1147 struct address_space *check_mapping; /* Check page->mapping if set */
1148 pgoff_t first_index; /* Lowest page->index to unmap */
1149 pgoff_t last_index; /* Highest page->index to unmap */
1150 };
1151
1152 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
1153 pte_t pte);
1154
1155 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1156 unsigned long size);
1157 void zap_page_range(struct vm_area_struct *vma, unsigned long address,
1158 unsigned long size, struct zap_details *);
1159 void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
1160 unsigned long start, unsigned long end);
1161
1162 /**
1163 * mm_walk - callbacks for walk_page_range
1164 * @pgd_entry: if set, called for each non-empty PGD (top-level) entry
1165 * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry
1166 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
1167 * this handler is required to be able to handle
1168 * pmd_trans_huge() pmds. They may simply choose to
1169 * split_huge_page() instead of handling it explicitly.
1170 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
1171 * @pte_hole: if set, called for each hole at all levels
1172 * @hugetlb_entry: if set, called for each hugetlb entry
1173 * *Caution*: The caller must hold mmap_sem() if @hugetlb_entry
1174 * is used.
1175 *
1176 * (see walk_page_range for more details)
1177 */
1178 struct mm_walk {
1179 int (*pgd_entry)(pgd_t *pgd, unsigned long addr,
1180 unsigned long next, struct mm_walk *walk);
1181 int (*pud_entry)(pud_t *pud, unsigned long addr,
1182 unsigned long next, struct mm_walk *walk);
1183 int (*pmd_entry)(pmd_t *pmd, unsigned long addr,
1184 unsigned long next, struct mm_walk *walk);
1185 int (*pte_entry)(pte_t *pte, unsigned long addr,
1186 unsigned long next, struct mm_walk *walk);
1187 int (*pte_hole)(unsigned long addr, unsigned long next,
1188 struct mm_walk *walk);
1189 int (*hugetlb_entry)(pte_t *pte, unsigned long hmask,
1190 unsigned long addr, unsigned long next,
1191 struct mm_walk *walk);
1192 struct mm_struct *mm;
1193 void *private;
1194 };
1195
1196 int walk_page_range(unsigned long addr, unsigned long end,
1197 struct mm_walk *walk);
1198 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
1199 unsigned long end, unsigned long floor, unsigned long ceiling);
1200 int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
1201 struct vm_area_struct *vma);
1202 void unmap_mapping_range(struct address_space *mapping,
1203 loff_t const holebegin, loff_t const holelen, int even_cows);
1204 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
1205 unsigned long *pfn);
1206 int follow_phys(struct vm_area_struct *vma, unsigned long address,
1207 unsigned int flags, unsigned long *prot, resource_size_t *phys);
1208 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
1209 void *buf, int len, int write);
1210
1211 static inline void unmap_shared_mapping_range(struct address_space *mapping,
1212 loff_t const holebegin, loff_t const holelen)
1213 {
1214 unmap_mapping_range(mapping, holebegin, holelen, 0);
1215 }
1216
1217 extern void truncate_pagecache(struct inode *inode, loff_t new);
1218 extern void truncate_setsize(struct inode *inode, loff_t newsize);
1219 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
1220 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
1221 int truncate_inode_page(struct address_space *mapping, struct page *page);
1222 int generic_error_remove_page(struct address_space *mapping, struct page *page);
1223 int invalidate_inode_page(struct page *page);
1224
1225 #ifdef CONFIG_MMU
1226 extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
1227 unsigned long address, unsigned int flags);
1228 extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1229 unsigned long address, unsigned int fault_flags);
1230 #else
1231 static inline int handle_mm_fault(struct mm_struct *mm,
1232 struct vm_area_struct *vma, unsigned long address,
1233 unsigned int flags)
1234 {
1235 /* should never happen if there's no MMU */
1236 BUG();
1237 return VM_FAULT_SIGBUS;
1238 }
1239 static inline int fixup_user_fault(struct task_struct *tsk,
1240 struct mm_struct *mm, unsigned long address,
1241 unsigned int fault_flags)
1242 {
1243 /* should never happen if there's no MMU */
1244 BUG();
1245 return -EFAULT;
1246 }
1247 #endif
1248
1249 extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write);
1250 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1251 void *buf, int len, int write);
1252
1253 long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1254 unsigned long start, unsigned long nr_pages,
1255 unsigned int foll_flags, struct page **pages,
1256 struct vm_area_struct **vmas, int *nonblocking);
1257 long get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1258 unsigned long start, unsigned long nr_pages,
1259 int write, int force, struct page **pages,
1260 struct vm_area_struct **vmas);
1261 int get_user_pages_fast(unsigned long start, int nr_pages, int write,
1262 struct page **pages);
1263 struct kvec;
1264 int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1265 struct page **pages);
1266 int get_kernel_page(unsigned long start, int write, struct page **pages);
1267 struct page *get_dump_page(unsigned long addr);
1268
1269 extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
1270 extern void do_invalidatepage(struct page *page, unsigned int offset,
1271 unsigned int length);
1272
1273 int __set_page_dirty_nobuffers(struct page *page);
1274 int __set_page_dirty_no_writeback(struct page *page);
1275 int redirty_page_for_writepage(struct writeback_control *wbc,
1276 struct page *page);
1277 void account_page_dirtied(struct page *page, struct address_space *mapping);
1278 int set_page_dirty(struct page *page);
1279 int set_page_dirty_lock(struct page *page);
1280 int clear_page_dirty_for_io(struct page *page);
1281 int get_cmdline(struct task_struct *task, char *buffer, int buflen);
1282
1283 /* Is the vma a continuation of the stack vma above it? */
1284 static inline int vma_growsdown(struct vm_area_struct *vma, unsigned long addr)
1285 {
1286 return vma && (vma->vm_end == addr) && (vma->vm_flags & VM_GROWSDOWN);
1287 }
1288
1289 static inline int stack_guard_page_start(struct vm_area_struct *vma,
1290 unsigned long addr)
1291 {
1292 return (vma->vm_flags & VM_GROWSDOWN) &&
1293 (vma->vm_start == addr) &&
1294 !vma_growsdown(vma->vm_prev, addr);
1295 }
1296
1297 /* Is the vma a continuation of the stack vma below it? */
1298 static inline int vma_growsup(struct vm_area_struct *vma, unsigned long addr)
1299 {
1300 return vma && (vma->vm_start == addr) && (vma->vm_flags & VM_GROWSUP);
1301 }
1302
1303 static inline int stack_guard_page_end(struct vm_area_struct *vma,
1304 unsigned long addr)
1305 {
1306 return (vma->vm_flags & VM_GROWSUP) &&
1307 (vma->vm_end == addr) &&
1308 !vma_growsup(vma->vm_next, addr);
1309 }
1310
1311 extern struct task_struct *task_of_stack(struct task_struct *task,
1312 struct vm_area_struct *vma, bool in_group);
1313
1314 extern unsigned long move_page_tables(struct vm_area_struct *vma,
1315 unsigned long old_addr, struct vm_area_struct *new_vma,
1316 unsigned long new_addr, unsigned long len,
1317 bool need_rmap_locks);
1318 extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
1319 unsigned long end, pgprot_t newprot,
1320 int dirty_accountable, int prot_numa);
1321 extern int mprotect_fixup(struct vm_area_struct *vma,
1322 struct vm_area_struct **pprev, unsigned long start,
1323 unsigned long end, unsigned long newflags);
1324
1325 /*
1326 * doesn't attempt to fault and will return short.
1327 */
1328 int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1329 struct page **pages);
1330 /*
1331 * per-process(per-mm_struct) statistics.
1332 */
1333 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1334 {
1335 long val = atomic_long_read(&mm->rss_stat.count[member]);
1336
1337 #ifdef SPLIT_RSS_COUNTING
1338 /*
1339 * counter is updated in asynchronous manner and may go to minus.
1340 * But it's never be expected number for users.
1341 */
1342 if (val < 0)
1343 val = 0;
1344 #endif
1345 return (unsigned long)val;
1346 }
1347
1348 static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1349 {
1350 atomic_long_add(value, &mm->rss_stat.count[member]);
1351 }
1352
1353 static inline void inc_mm_counter(struct mm_struct *mm, int member)
1354 {
1355 atomic_long_inc(&mm->rss_stat.count[member]);
1356 }
1357
1358 static inline void dec_mm_counter(struct mm_struct *mm, int member)
1359 {
1360 atomic_long_dec(&mm->rss_stat.count[member]);
1361 }
1362
1363 static inline unsigned long get_mm_rss(struct mm_struct *mm)
1364 {
1365 return get_mm_counter(mm, MM_FILEPAGES) +
1366 get_mm_counter(mm, MM_ANONPAGES);
1367 }
1368
1369 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1370 {
1371 return max(mm->hiwater_rss, get_mm_rss(mm));
1372 }
1373
1374 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1375 {
1376 return max(mm->hiwater_vm, mm->total_vm);
1377 }
1378
1379 static inline void update_hiwater_rss(struct mm_struct *mm)
1380 {
1381 unsigned long _rss = get_mm_rss(mm);
1382
1383 if ((mm)->hiwater_rss < _rss)
1384 (mm)->hiwater_rss = _rss;
1385 }
1386
1387 static inline void update_hiwater_vm(struct mm_struct *mm)
1388 {
1389 if (mm->hiwater_vm < mm->total_vm)
1390 mm->hiwater_vm = mm->total_vm;
1391 }
1392
1393 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1394 struct mm_struct *mm)
1395 {
1396 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1397
1398 if (*maxrss < hiwater_rss)
1399 *maxrss = hiwater_rss;
1400 }
1401
1402 #if defined(SPLIT_RSS_COUNTING)
1403 void sync_mm_rss(struct mm_struct *mm);
1404 #else
1405 static inline void sync_mm_rss(struct mm_struct *mm)
1406 {
1407 }
1408 #endif
1409
1410 int vma_wants_writenotify(struct vm_area_struct *vma);
1411
1412 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1413 spinlock_t **ptl);
1414 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1415 spinlock_t **ptl)
1416 {
1417 pte_t *ptep;
1418 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
1419 return ptep;
1420 }
1421
1422 #ifdef __PAGETABLE_PUD_FOLDED
1423 static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd,
1424 unsigned long address)
1425 {
1426 return 0;
1427 }
1428 #else
1429 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
1430 #endif
1431
1432 #ifdef __PAGETABLE_PMD_FOLDED
1433 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
1434 unsigned long address)
1435 {
1436 return 0;
1437 }
1438 #else
1439 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
1440 #endif
1441
1442 int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
1443 pmd_t *pmd, unsigned long address);
1444 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
1445
1446 /*
1447 * The following ifdef needed to get the 4level-fixup.h header to work.
1448 * Remove it when 4level-fixup.h has been removed.
1449 */
1450 #if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
1451 static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
1452 {
1453 return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))?
1454 NULL: pud_offset(pgd, address);
1455 }
1456
1457 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1458 {
1459 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
1460 NULL: pmd_offset(pud, address);
1461 }
1462 #endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
1463
1464 #if USE_SPLIT_PTE_PTLOCKS
1465 #if ALLOC_SPLIT_PTLOCKS
1466 void __init ptlock_cache_init(void);
1467 extern bool ptlock_alloc(struct page *page);
1468 extern void ptlock_free(struct page *page);
1469
1470 static inline spinlock_t *ptlock_ptr(struct page *page)
1471 {
1472 return page->ptl;
1473 }
1474 #else /* ALLOC_SPLIT_PTLOCKS */
1475 static inline void ptlock_cache_init(void)
1476 {
1477 }
1478
1479 static inline bool ptlock_alloc(struct page *page)
1480 {
1481 return true;
1482 }
1483
1484 static inline void ptlock_free(struct page *page)
1485 {
1486 }
1487
1488 static inline spinlock_t *ptlock_ptr(struct page *page)
1489 {
1490 return &page->ptl;
1491 }
1492 #endif /* ALLOC_SPLIT_PTLOCKS */
1493
1494 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1495 {
1496 return ptlock_ptr(pmd_page(*pmd));
1497 }
1498
1499 static inline bool ptlock_init(struct page *page)
1500 {
1501 /*
1502 * prep_new_page() initialize page->private (and therefore page->ptl)
1503 * with 0. Make sure nobody took it in use in between.
1504 *
1505 * It can happen if arch try to use slab for page table allocation:
1506 * slab code uses page->slab_cache and page->first_page (for tail
1507 * pages), which share storage with page->ptl.
1508 */
1509 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
1510 if (!ptlock_alloc(page))
1511 return false;
1512 spin_lock_init(ptlock_ptr(page));
1513 return true;
1514 }
1515
1516 /* Reset page->mapping so free_pages_check won't complain. */
1517 static inline void pte_lock_deinit(struct page *page)
1518 {
1519 page->mapping = NULL;
1520 ptlock_free(page);
1521 }
1522
1523 #else /* !USE_SPLIT_PTE_PTLOCKS */
1524 /*
1525 * We use mm->page_table_lock to guard all pagetable pages of the mm.
1526 */
1527 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1528 {
1529 return &mm->page_table_lock;
1530 }
1531 static inline void ptlock_cache_init(void) {}
1532 static inline bool ptlock_init(struct page *page) { return true; }
1533 static inline void pte_lock_deinit(struct page *page) {}
1534 #endif /* USE_SPLIT_PTE_PTLOCKS */
1535
1536 static inline void pgtable_init(void)
1537 {
1538 ptlock_cache_init();
1539 pgtable_cache_init();
1540 }
1541
1542 static inline bool pgtable_page_ctor(struct page *page)
1543 {
1544 inc_zone_page_state(page, NR_PAGETABLE);
1545 return ptlock_init(page);
1546 }
1547
1548 static inline void pgtable_page_dtor(struct page *page)
1549 {
1550 pte_lock_deinit(page);
1551 dec_zone_page_state(page, NR_PAGETABLE);
1552 }
1553
1554 #define pte_offset_map_lock(mm, pmd, address, ptlp) \
1555 ({ \
1556 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
1557 pte_t *__pte = pte_offset_map(pmd, address); \
1558 *(ptlp) = __ptl; \
1559 spin_lock(__ptl); \
1560 __pte; \
1561 })
1562
1563 #define pte_unmap_unlock(pte, ptl) do { \
1564 spin_unlock(ptl); \
1565 pte_unmap(pte); \
1566 } while (0)
1567
1568 #define pte_alloc_map(mm, vma, pmd, address) \
1569 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, vma, \
1570 pmd, address))? \
1571 NULL: pte_offset_map(pmd, address))
1572
1573 #define pte_alloc_map_lock(mm, pmd, address, ptlp) \
1574 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, NULL, \
1575 pmd, address))? \
1576 NULL: pte_offset_map_lock(mm, pmd, address, ptlp))
1577
1578 #define pte_alloc_kernel(pmd, address) \
1579 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
1580 NULL: pte_offset_kernel(pmd, address))
1581
1582 #if USE_SPLIT_PMD_PTLOCKS
1583
1584 static struct page *pmd_to_page(pmd_t *pmd)
1585 {
1586 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
1587 return virt_to_page((void *)((unsigned long) pmd & mask));
1588 }
1589
1590 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1591 {
1592 return ptlock_ptr(pmd_to_page(pmd));
1593 }
1594
1595 static inline bool pgtable_pmd_page_ctor(struct page *page)
1596 {
1597 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1598 page->pmd_huge_pte = NULL;
1599 #endif
1600 return ptlock_init(page);
1601 }
1602
1603 static inline void pgtable_pmd_page_dtor(struct page *page)
1604 {
1605 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1606 VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
1607 #endif
1608 ptlock_free(page);
1609 }
1610
1611 #define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte)
1612
1613 #else
1614
1615 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1616 {
1617 return &mm->page_table_lock;
1618 }
1619
1620 static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; }
1621 static inline void pgtable_pmd_page_dtor(struct page *page) {}
1622
1623 #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
1624
1625 #endif
1626
1627 static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
1628 {
1629 spinlock_t *ptl = pmd_lockptr(mm, pmd);
1630 spin_lock(ptl);
1631 return ptl;
1632 }
1633
1634 extern void free_area_init(unsigned long * zones_size);
1635 extern void free_area_init_node(int nid, unsigned long * zones_size,
1636 unsigned long zone_start_pfn, unsigned long *zholes_size);
1637 extern void free_initmem(void);
1638
1639 /*
1640 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
1641 * into the buddy system. The freed pages will be poisoned with pattern
1642 * "poison" if it's within range [0, UCHAR_MAX].
1643 * Return pages freed into the buddy system.
1644 */
1645 extern unsigned long free_reserved_area(void *start, void *end,
1646 int poison, char *s);
1647
1648 #ifdef CONFIG_HIGHMEM
1649 /*
1650 * Free a highmem page into the buddy system, adjusting totalhigh_pages
1651 * and totalram_pages.
1652 */
1653 extern void free_highmem_page(struct page *page);
1654 #endif
1655
1656 extern void adjust_managed_page_count(struct page *page, long count);
1657 extern void mem_init_print_info(const char *str);
1658
1659 /* Free the reserved page into the buddy system, so it gets managed. */
1660 static inline void __free_reserved_page(struct page *page)
1661 {
1662 ClearPageReserved(page);
1663 init_page_count(page);
1664 __free_page(page);
1665 }
1666
1667 static inline void free_reserved_page(struct page *page)
1668 {
1669 __free_reserved_page(page);
1670 adjust_managed_page_count(page, 1);
1671 }
1672
1673 static inline void mark_page_reserved(struct page *page)
1674 {
1675 SetPageReserved(page);
1676 adjust_managed_page_count(page, -1);
1677 }
1678
1679 /*
1680 * Default method to free all the __init memory into the buddy system.
1681 * The freed pages will be poisoned with pattern "poison" if it's within
1682 * range [0, UCHAR_MAX].
1683 * Return pages freed into the buddy system.
1684 */
1685 static inline unsigned long free_initmem_default(int poison)
1686 {
1687 extern char __init_begin[], __init_end[];
1688
1689 return free_reserved_area(&__init_begin, &__init_end,
1690 poison, "unused kernel");
1691 }
1692
1693 static inline unsigned long get_num_physpages(void)
1694 {
1695 int nid;
1696 unsigned long phys_pages = 0;
1697
1698 for_each_online_node(nid)
1699 phys_pages += node_present_pages(nid);
1700
1701 return phys_pages;
1702 }
1703
1704 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1705 /*
1706 * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its
1707 * zones, allocate the backing mem_map and account for memory holes in a more
1708 * architecture independent manner. This is a substitute for creating the
1709 * zone_sizes[] and zholes_size[] arrays and passing them to
1710 * free_area_init_node()
1711 *
1712 * An architecture is expected to register range of page frames backed by
1713 * physical memory with memblock_add[_node]() before calling
1714 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
1715 * usage, an architecture is expected to do something like
1716 *
1717 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
1718 * max_highmem_pfn};
1719 * for_each_valid_physical_page_range()
1720 * memblock_add_node(base, size, nid)
1721 * free_area_init_nodes(max_zone_pfns);
1722 *
1723 * free_bootmem_with_active_regions() calls free_bootmem_node() for each
1724 * registered physical page range. Similarly
1725 * sparse_memory_present_with_active_regions() calls memory_present() for
1726 * each range when SPARSEMEM is enabled.
1727 *
1728 * See mm/page_alloc.c for more information on each function exposed by
1729 * CONFIG_HAVE_MEMBLOCK_NODE_MAP.
1730 */
1731 extern void free_area_init_nodes(unsigned long *max_zone_pfn);
1732 unsigned long node_map_pfn_alignment(void);
1733 unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
1734 unsigned long end_pfn);
1735 extern unsigned long absent_pages_in_range(unsigned long start_pfn,
1736 unsigned long end_pfn);
1737 extern void get_pfn_range_for_nid(unsigned int nid,
1738 unsigned long *start_pfn, unsigned long *end_pfn);
1739 extern unsigned long find_min_pfn_with_active_regions(void);
1740 extern void free_bootmem_with_active_regions(int nid,
1741 unsigned long max_low_pfn);
1742 extern void sparse_memory_present_with_active_regions(int nid);
1743
1744 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
1745
1746 #if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \
1747 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
1748 static inline int __early_pfn_to_nid(unsigned long pfn)
1749 {
1750 return 0;
1751 }
1752 #else
1753 /* please see mm/page_alloc.c */
1754 extern int __meminit early_pfn_to_nid(unsigned long pfn);
1755 /* there is a per-arch backend function. */
1756 extern int __meminit __early_pfn_to_nid(unsigned long pfn);
1757 #endif
1758
1759 extern void set_dma_reserve(unsigned long new_dma_reserve);
1760 extern void memmap_init_zone(unsigned long, int, unsigned long,
1761 unsigned long, enum memmap_context);
1762 extern void setup_per_zone_wmarks(void);
1763 extern int __meminit init_per_zone_wmark_min(void);
1764 extern void mem_init(void);
1765 extern void __init mmap_init(void);
1766 extern void show_mem(unsigned int flags);
1767 extern void si_meminfo(struct sysinfo * val);
1768 extern void si_meminfo_node(struct sysinfo *val, int nid);
1769
1770 extern __printf(3, 4)
1771 void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...);
1772
1773 extern void setup_per_cpu_pageset(void);
1774
1775 extern void zone_pcp_update(struct zone *zone);
1776 extern void zone_pcp_reset(struct zone *zone);
1777
1778 /* page_alloc.c */
1779 extern int min_free_kbytes;
1780
1781 /* nommu.c */
1782 extern atomic_long_t mmap_pages_allocated;
1783 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
1784
1785 /* interval_tree.c */
1786 void vma_interval_tree_insert(struct vm_area_struct *node,
1787 struct rb_root *root);
1788 void vma_interval_tree_insert_after(struct vm_area_struct *node,
1789 struct vm_area_struct *prev,
1790 struct rb_root *root);
1791 void vma_interval_tree_remove(struct vm_area_struct *node,
1792 struct rb_root *root);
1793 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root *root,
1794 unsigned long start, unsigned long last);
1795 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
1796 unsigned long start, unsigned long last);
1797
1798 #define vma_interval_tree_foreach(vma, root, start, last) \
1799 for (vma = vma_interval_tree_iter_first(root, start, last); \
1800 vma; vma = vma_interval_tree_iter_next(vma, start, last))
1801
1802 static inline void vma_nonlinear_insert(struct vm_area_struct *vma,
1803 struct list_head *list)
1804 {
1805 list_add_tail(&vma->shared.nonlinear, list);
1806 }
1807
1808 void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
1809 struct rb_root *root);
1810 void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
1811 struct rb_root *root);
1812 struct anon_vma_chain *anon_vma_interval_tree_iter_first(
1813 struct rb_root *root, unsigned long start, unsigned long last);
1814 struct anon_vma_chain *anon_vma_interval_tree_iter_next(
1815 struct anon_vma_chain *node, unsigned long start, unsigned long last);
1816 #ifdef CONFIG_DEBUG_VM_RB
1817 void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
1818 #endif
1819
1820 #define anon_vma_interval_tree_foreach(avc, root, start, last) \
1821 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
1822 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
1823
1824 /* mmap.c */
1825 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
1826 extern int vma_adjust(struct vm_area_struct *vma, unsigned long start,
1827 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert);
1828 extern struct vm_area_struct *vma_merge(struct mm_struct *,
1829 struct vm_area_struct *prev, unsigned long addr, unsigned long end,
1830 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
1831 struct mempolicy *);
1832 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
1833 extern int split_vma(struct mm_struct *,
1834 struct vm_area_struct *, unsigned long addr, int new_below);
1835 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
1836 extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
1837 struct rb_node **, struct rb_node *);
1838 extern void unlink_file_vma(struct vm_area_struct *);
1839 extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
1840 unsigned long addr, unsigned long len, pgoff_t pgoff,
1841 bool *need_rmap_locks);
1842 extern void exit_mmap(struct mm_struct *);
1843
1844 static inline int check_data_rlimit(unsigned long rlim,
1845 unsigned long new,
1846 unsigned long start,
1847 unsigned long end_data,
1848 unsigned long start_data)
1849 {
1850 if (rlim < RLIM_INFINITY) {
1851 if (((new - start) + (end_data - start_data)) > rlim)
1852 return -ENOSPC;
1853 }
1854
1855 return 0;
1856 }
1857
1858 extern int mm_take_all_locks(struct mm_struct *mm);
1859 extern void mm_drop_all_locks(struct mm_struct *mm);
1860
1861 extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
1862 extern struct file *get_mm_exe_file(struct mm_struct *mm);
1863
1864 extern int may_expand_vm(struct mm_struct *mm, unsigned long npages);
1865 extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
1866 unsigned long addr, unsigned long len,
1867 unsigned long flags,
1868 const struct vm_special_mapping *spec);
1869 /* This is an obsolete alternative to _install_special_mapping. */
1870 extern int install_special_mapping(struct mm_struct *mm,
1871 unsigned long addr, unsigned long len,
1872 unsigned long flags, struct page **pages);
1873
1874 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
1875
1876 extern unsigned long mmap_region(struct file *file, unsigned long addr,
1877 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff);
1878 extern unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
1879 unsigned long len, unsigned long prot, unsigned long flags,
1880 unsigned long pgoff, unsigned long *populate);
1881 extern int do_munmap(struct mm_struct *, unsigned long, size_t);
1882
1883 #ifdef CONFIG_MMU
1884 extern int __mm_populate(unsigned long addr, unsigned long len,
1885 int ignore_errors);
1886 static inline void mm_populate(unsigned long addr, unsigned long len)
1887 {
1888 /* Ignore errors */
1889 (void) __mm_populate(addr, len, 1);
1890 }
1891 #else
1892 static inline void mm_populate(unsigned long addr, unsigned long len) {}
1893 #endif
1894
1895 /* These take the mm semaphore themselves */
1896 extern unsigned long vm_brk(unsigned long, unsigned long);
1897 extern int vm_munmap(unsigned long, size_t);
1898 extern unsigned long vm_mmap(struct file *, unsigned long,
1899 unsigned long, unsigned long,
1900 unsigned long, unsigned long);
1901
1902 struct vm_unmapped_area_info {
1903 #define VM_UNMAPPED_AREA_TOPDOWN 1
1904 unsigned long flags;
1905 unsigned long length;
1906 unsigned long low_limit;
1907 unsigned long high_limit;
1908 unsigned long align_mask;
1909 unsigned long align_offset;
1910 };
1911
1912 extern unsigned long unmapped_area(struct vm_unmapped_area_info *info);
1913 extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info);
1914
1915 /*
1916 * Search for an unmapped address range.
1917 *
1918 * We are looking for a range that:
1919 * - does not intersect with any VMA;
1920 * - is contained within the [low_limit, high_limit) interval;
1921 * - is at least the desired size.
1922 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
1923 */
1924 static inline unsigned long
1925 vm_unmapped_area(struct vm_unmapped_area_info *info)
1926 {
1927 if (!(info->flags & VM_UNMAPPED_AREA_TOPDOWN))
1928 return unmapped_area(info);
1929 else
1930 return unmapped_area_topdown(info);
1931 }
1932
1933 /* truncate.c */
1934 extern void truncate_inode_pages(struct address_space *, loff_t);
1935 extern void truncate_inode_pages_range(struct address_space *,
1936 loff_t lstart, loff_t lend);
1937 extern void truncate_inode_pages_final(struct address_space *);
1938
1939 /* generic vm_area_ops exported for stackable file systems */
1940 extern int filemap_fault(struct vm_area_struct *, struct vm_fault *);
1941 extern void filemap_map_pages(struct vm_area_struct *vma, struct vm_fault *vmf);
1942 extern int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf);
1943
1944 /* mm/page-writeback.c */
1945 int write_one_page(struct page *page, int wait);
1946 void task_dirty_inc(struct task_struct *tsk);
1947
1948 /* readahead.c */
1949 #define VM_MAX_READAHEAD 128 /* kbytes */
1950 #define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */
1951
1952 int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
1953 pgoff_t offset, unsigned long nr_to_read);
1954
1955 void page_cache_sync_readahead(struct address_space *mapping,
1956 struct file_ra_state *ra,
1957 struct file *filp,
1958 pgoff_t offset,
1959 unsigned long size);
1960
1961 void page_cache_async_readahead(struct address_space *mapping,
1962 struct file_ra_state *ra,
1963 struct file *filp,
1964 struct page *pg,
1965 pgoff_t offset,
1966 unsigned long size);
1967
1968 unsigned long max_sane_readahead(unsigned long nr);
1969
1970 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
1971 extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
1972
1973 /* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
1974 extern int expand_downwards(struct vm_area_struct *vma,
1975 unsigned long address);
1976 #if VM_GROWSUP
1977 extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
1978 #else
1979 #define expand_upwards(vma, address) (0)
1980 #endif
1981
1982 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
1983 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
1984 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
1985 struct vm_area_struct **pprev);
1986
1987 /* Look up the first VMA which intersects the interval start_addr..end_addr-1,
1988 NULL if none. Assume start_addr < end_addr. */
1989 static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
1990 {
1991 struct vm_area_struct * vma = find_vma(mm,start_addr);
1992
1993 if (vma && end_addr <= vma->vm_start)
1994 vma = NULL;
1995 return vma;
1996 }
1997
1998 static inline unsigned long vma_pages(struct vm_area_struct *vma)
1999 {
2000 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
2001 }
2002
2003 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */
2004 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
2005 unsigned long vm_start, unsigned long vm_end)
2006 {
2007 struct vm_area_struct *vma = find_vma(mm, vm_start);
2008
2009 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
2010 vma = NULL;
2011
2012 return vma;
2013 }
2014
2015 #ifdef CONFIG_MMU
2016 pgprot_t vm_get_page_prot(unsigned long vm_flags);
2017 void vma_set_page_prot(struct vm_area_struct *vma);
2018 #else
2019 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
2020 {
2021 return __pgprot(0);
2022 }
2023 static inline void vma_set_page_prot(struct vm_area_struct *vma)
2024 {
2025 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2026 }
2027 #endif
2028
2029 #ifdef CONFIG_NUMA_BALANCING
2030 unsigned long change_prot_numa(struct vm_area_struct *vma,
2031 unsigned long start, unsigned long end);
2032 #endif
2033
2034 struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
2035 int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
2036 unsigned long pfn, unsigned long size, pgprot_t);
2037 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
2038 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2039 unsigned long pfn);
2040 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2041 unsigned long pfn);
2042 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
2043
2044
2045 struct page *follow_page_mask(struct vm_area_struct *vma,
2046 unsigned long address, unsigned int foll_flags,
2047 unsigned int *page_mask);
2048
2049 static inline struct page *follow_page(struct vm_area_struct *vma,
2050 unsigned long address, unsigned int foll_flags)
2051 {
2052 unsigned int unused_page_mask;
2053 return follow_page_mask(vma, address, foll_flags, &unused_page_mask);
2054 }
2055
2056 #define FOLL_WRITE 0x01 /* check pte is writable */
2057 #define FOLL_TOUCH 0x02 /* mark page accessed */
2058 #define FOLL_GET 0x04 /* do get_page on page */
2059 #define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
2060 #define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
2061 #define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO
2062 * and return without waiting upon it */
2063 #define FOLL_MLOCK 0x40 /* mark page as mlocked */
2064 #define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */
2065 #define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */
2066 #define FOLL_NUMA 0x200 /* force NUMA hinting page fault */
2067 #define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */
2068 #define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */
2069
2070 typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
2071 void *data);
2072 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
2073 unsigned long size, pte_fn_t fn, void *data);
2074
2075 #ifdef CONFIG_PROC_FS
2076 void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long);
2077 #else
2078 static inline void vm_stat_account(struct mm_struct *mm,
2079 unsigned long flags, struct file *file, long pages)
2080 {
2081 mm->total_vm += pages;
2082 }
2083 #endif /* CONFIG_PROC_FS */
2084
2085 #ifdef CONFIG_DEBUG_PAGEALLOC
2086 extern bool _debug_pagealloc_enabled;
2087 extern void __kernel_map_pages(struct page *page, int numpages, int enable);
2088
2089 static inline bool debug_pagealloc_enabled(void)
2090 {
2091 return _debug_pagealloc_enabled;
2092 }
2093
2094 static inline void
2095 kernel_map_pages(struct page *page, int numpages, int enable)
2096 {
2097 if (!debug_pagealloc_enabled())
2098 return;
2099
2100 __kernel_map_pages(page, numpages, enable);
2101 }
2102 #ifdef CONFIG_HIBERNATION
2103 extern bool kernel_page_present(struct page *page);
2104 #endif /* CONFIG_HIBERNATION */
2105 #else
2106 static inline void
2107 kernel_map_pages(struct page *page, int numpages, int enable) {}
2108 #ifdef CONFIG_HIBERNATION
2109 static inline bool kernel_page_present(struct page *page) { return true; }
2110 #endif /* CONFIG_HIBERNATION */
2111 #endif
2112
2113 #ifdef __HAVE_ARCH_GATE_AREA
2114 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
2115 extern int in_gate_area_no_mm(unsigned long addr);
2116 extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
2117 #else
2118 static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
2119 {
2120 return NULL;
2121 }
2122 static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
2123 static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
2124 {
2125 return 0;
2126 }
2127 #endif /* __HAVE_ARCH_GATE_AREA */
2128
2129 #ifdef CONFIG_SYSCTL
2130 extern int sysctl_drop_caches;
2131 int drop_caches_sysctl_handler(struct ctl_table *, int,
2132 void __user *, size_t *, loff_t *);
2133 #endif
2134
2135 unsigned long shrink_node_slabs(gfp_t gfp_mask, int nid,
2136 unsigned long nr_scanned,
2137 unsigned long nr_eligible);
2138
2139 #ifndef CONFIG_MMU
2140 #define randomize_va_space 0
2141 #else
2142 extern int randomize_va_space;
2143 #endif
2144
2145 const char * arch_vma_name(struct vm_area_struct *vma);
2146 void print_vma_addr(char *prefix, unsigned long rip);
2147
2148 void sparse_mem_maps_populate_node(struct page **map_map,
2149 unsigned long pnum_begin,
2150 unsigned long pnum_end,
2151 unsigned long map_count,
2152 int nodeid);
2153
2154 struct page *sparse_mem_map_populate(unsigned long pnum, int nid);
2155 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
2156 pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node);
2157 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
2158 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
2159 void *vmemmap_alloc_block(unsigned long size, int node);
2160 void *vmemmap_alloc_block_buf(unsigned long size, int node);
2161 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
2162 int vmemmap_populate_basepages(unsigned long start, unsigned long end,
2163 int node);
2164 int vmemmap_populate(unsigned long start, unsigned long end, int node);
2165 void vmemmap_populate_print_last(void);
2166 #ifdef CONFIG_MEMORY_HOTPLUG
2167 void vmemmap_free(unsigned long start, unsigned long end);
2168 #endif
2169 void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
2170 unsigned long size);
2171
2172 enum mf_flags {
2173 MF_COUNT_INCREASED = 1 << 0,
2174 MF_ACTION_REQUIRED = 1 << 1,
2175 MF_MUST_KILL = 1 << 2,
2176 MF_SOFT_OFFLINE = 1 << 3,
2177 };
2178 extern int memory_failure(unsigned long pfn, int trapno, int flags);
2179 extern void memory_failure_queue(unsigned long pfn, int trapno, int flags);
2180 extern int unpoison_memory(unsigned long pfn);
2181 extern int sysctl_memory_failure_early_kill;
2182 extern int sysctl_memory_failure_recovery;
2183 extern void shake_page(struct page *p, int access);
2184 extern atomic_long_t num_poisoned_pages;
2185 extern int soft_offline_page(struct page *page, int flags);
2186
2187 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
2188 extern void clear_huge_page(struct page *page,
2189 unsigned long addr,
2190 unsigned int pages_per_huge_page);
2191 extern void copy_user_huge_page(struct page *dst, struct page *src,
2192 unsigned long addr, struct vm_area_struct *vma,
2193 unsigned int pages_per_huge_page);
2194 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
2195
2196 extern struct page_ext_operations debug_guardpage_ops;
2197 extern struct page_ext_operations page_poisoning_ops;
2198
2199 #ifdef CONFIG_DEBUG_PAGEALLOC
2200 extern unsigned int _debug_guardpage_minorder;
2201 extern bool _debug_guardpage_enabled;
2202
2203 static inline unsigned int debug_guardpage_minorder(void)
2204 {
2205 return _debug_guardpage_minorder;
2206 }
2207
2208 static inline bool debug_guardpage_enabled(void)
2209 {
2210 return _debug_guardpage_enabled;
2211 }
2212
2213 static inline bool page_is_guard(struct page *page)
2214 {
2215 struct page_ext *page_ext;
2216
2217 if (!debug_guardpage_enabled())
2218 return false;
2219
2220 page_ext = lookup_page_ext(page);
2221 return test_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
2222 }
2223 #else
2224 static inline unsigned int debug_guardpage_minorder(void) { return 0; }
2225 static inline bool debug_guardpage_enabled(void) { return false; }
2226 static inline bool page_is_guard(struct page *page) { return false; }
2227 #endif /* CONFIG_DEBUG_PAGEALLOC */
2228
2229 #if MAX_NUMNODES > 1
2230 void __init setup_nr_node_ids(void);
2231 #else
2232 static inline void setup_nr_node_ids(void) {}
2233 #endif
2234
2235 #endif /* __KERNEL__ */
2236 #endif /* _LINUX_MM_H */
This page took 0.077971 seconds and 5 git commands to generate.