3b09444121d926376c3d24ca06a76e83802697f1
[deliverable/linux.git] / include / linux / mm.h
1 #ifndef _LINUX_MM_H
2 #define _LINUX_MM_H
3
4 #include <linux/sched.h>
5 #include <linux/errno.h>
6 #include <linux/capability.h>
7
8 #ifdef __KERNEL__
9
10 #include <linux/gfp.h>
11 #include <linux/list.h>
12 #include <linux/mmzone.h>
13 #include <linux/rbtree.h>
14 #include <linux/prio_tree.h>
15 #include <linux/fs.h>
16 #include <linux/mutex.h>
17
18 struct mempolicy;
19 struct anon_vma;
20
21 #ifndef CONFIG_DISCONTIGMEM /* Don't use mapnrs, do it properly */
22 extern unsigned long max_mapnr;
23 #endif
24
25 extern unsigned long num_physpages;
26 extern void * high_memory;
27 extern unsigned long vmalloc_earlyreserve;
28 extern int page_cluster;
29
30 #ifdef CONFIG_SYSCTL
31 extern int sysctl_legacy_va_layout;
32 #else
33 #define sysctl_legacy_va_layout 0
34 #endif
35
36 #include <asm/page.h>
37 #include <asm/pgtable.h>
38 #include <asm/processor.h>
39 #include <asm/atomic.h>
40
41 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
42
43 /*
44 * Linux kernel virtual memory manager primitives.
45 * The idea being to have a "virtual" mm in the same way
46 * we have a virtual fs - giving a cleaner interface to the
47 * mm details, and allowing different kinds of memory mappings
48 * (from shared memory to executable loading to arbitrary
49 * mmap() functions).
50 */
51
52 /*
53 * This struct defines a memory VMM memory area. There is one of these
54 * per VM-area/task. A VM area is any part of the process virtual memory
55 * space that has a special rule for the page-fault handlers (ie a shared
56 * library, the executable area etc).
57 */
58 struct vm_area_struct {
59 struct mm_struct * vm_mm; /* The address space we belong to. */
60 unsigned long vm_start; /* Our start address within vm_mm. */
61 unsigned long vm_end; /* The first byte after our end address
62 within vm_mm. */
63
64 /* linked list of VM areas per task, sorted by address */
65 struct vm_area_struct *vm_next;
66
67 pgprot_t vm_page_prot; /* Access permissions of this VMA. */
68 unsigned long vm_flags; /* Flags, listed below. */
69
70 struct rb_node vm_rb;
71
72 /*
73 * For areas with an address space and backing store,
74 * linkage into the address_space->i_mmap prio tree, or
75 * linkage to the list of like vmas hanging off its node, or
76 * linkage of vma in the address_space->i_mmap_nonlinear list.
77 */
78 union {
79 struct {
80 struct list_head list;
81 void *parent; /* aligns with prio_tree_node parent */
82 struct vm_area_struct *head;
83 } vm_set;
84
85 struct raw_prio_tree_node prio_tree_node;
86 } shared;
87
88 /*
89 * A file's MAP_PRIVATE vma can be in both i_mmap tree and anon_vma
90 * list, after a COW of one of the file pages. A MAP_SHARED vma
91 * can only be in the i_mmap tree. An anonymous MAP_PRIVATE, stack
92 * or brk vma (with NULL file) can only be in an anon_vma list.
93 */
94 struct list_head anon_vma_node; /* Serialized by anon_vma->lock */
95 struct anon_vma *anon_vma; /* Serialized by page_table_lock */
96
97 /* Function pointers to deal with this struct. */
98 struct vm_operations_struct * vm_ops;
99
100 /* Information about our backing store: */
101 unsigned long vm_pgoff; /* Offset (within vm_file) in PAGE_SIZE
102 units, *not* PAGE_CACHE_SIZE */
103 struct file * vm_file; /* File we map to (can be NULL). */
104 void * vm_private_data; /* was vm_pte (shared mem) */
105 unsigned long vm_truncate_count;/* truncate_count or restart_addr */
106
107 #ifndef CONFIG_MMU
108 atomic_t vm_usage; /* refcount (VMAs shared if !MMU) */
109 #endif
110 #ifdef CONFIG_NUMA
111 struct mempolicy *vm_policy; /* NUMA policy for the VMA */
112 #endif
113 };
114
115 /*
116 * This struct defines the per-mm list of VMAs for uClinux. If CONFIG_MMU is
117 * disabled, then there's a single shared list of VMAs maintained by the
118 * system, and mm's subscribe to these individually
119 */
120 struct vm_list_struct {
121 struct vm_list_struct *next;
122 struct vm_area_struct *vma;
123 };
124
125 #ifndef CONFIG_MMU
126 extern struct rb_root nommu_vma_tree;
127 extern struct rw_semaphore nommu_vma_sem;
128
129 extern unsigned int kobjsize(const void *objp);
130 #endif
131
132 /*
133 * vm_flags..
134 */
135 #define VM_READ 0x00000001 /* currently active flags */
136 #define VM_WRITE 0x00000002
137 #define VM_EXEC 0x00000004
138 #define VM_SHARED 0x00000008
139
140 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
141 #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
142 #define VM_MAYWRITE 0x00000020
143 #define VM_MAYEXEC 0x00000040
144 #define VM_MAYSHARE 0x00000080
145
146 #define VM_GROWSDOWN 0x00000100 /* general info on the segment */
147 #define VM_GROWSUP 0x00000200
148 #define VM_SHM 0x00000000 /* Means nothing: delete it later */
149 #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
150 #define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
151
152 #define VM_EXECUTABLE 0x00001000
153 #define VM_LOCKED 0x00002000
154 #define VM_IO 0x00004000 /* Memory mapped I/O or similar */
155
156 /* Used by sys_madvise() */
157 #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
158 #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
159
160 #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
161 #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
162 #define VM_RESERVED 0x00080000 /* Count as reserved_vm like IO */
163 #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
164 #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
165 #define VM_NONLINEAR 0x00800000 /* Is non-linear (remap_file_pages) */
166 #define VM_MAPPED_COPY 0x01000000 /* T if mapped copy of data (nommu mmap) */
167 #define VM_INSERTPAGE 0x02000000 /* The vma has had "vm_insert_page()" done on it */
168
169 #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
170 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
171 #endif
172
173 #ifdef CONFIG_STACK_GROWSUP
174 #define VM_STACK_FLAGS (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
175 #else
176 #define VM_STACK_FLAGS (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
177 #endif
178
179 #define VM_READHINTMASK (VM_SEQ_READ | VM_RAND_READ)
180 #define VM_ClearReadHint(v) (v)->vm_flags &= ~VM_READHINTMASK
181 #define VM_NormalReadHint(v) (!((v)->vm_flags & VM_READHINTMASK))
182 #define VM_SequentialReadHint(v) ((v)->vm_flags & VM_SEQ_READ)
183 #define VM_RandomReadHint(v) ((v)->vm_flags & VM_RAND_READ)
184
185 /*
186 * mapping from the currently active vm_flags protection bits (the
187 * low four bits) to a page protection mask..
188 */
189 extern pgprot_t protection_map[16];
190
191
192 /*
193 * These are the virtual MM functions - opening of an area, closing and
194 * unmapping it (needed to keep files on disk up-to-date etc), pointer
195 * to the functions called when a no-page or a wp-page exception occurs.
196 */
197 struct vm_operations_struct {
198 void (*open)(struct vm_area_struct * area);
199 void (*close)(struct vm_area_struct * area);
200 struct page * (*nopage)(struct vm_area_struct * area, unsigned long address, int *type);
201 int (*populate)(struct vm_area_struct * area, unsigned long address, unsigned long len, pgprot_t prot, unsigned long pgoff, int nonblock);
202
203 /* notification that a previously read-only page is about to become
204 * writable, if an error is returned it will cause a SIGBUS */
205 int (*page_mkwrite)(struct vm_area_struct *vma, struct page *page);
206 #ifdef CONFIG_NUMA
207 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
208 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
209 unsigned long addr);
210 #endif
211 };
212
213 struct mmu_gather;
214 struct inode;
215
216 /*
217 * Each physical page in the system has a struct page associated with
218 * it to keep track of whatever it is we are using the page for at the
219 * moment. Note that we have no way to track which tasks are using
220 * a page.
221 */
222 struct page {
223 unsigned long flags; /* Atomic flags, some possibly
224 * updated asynchronously */
225 atomic_t _count; /* Usage count, see below. */
226 atomic_t _mapcount; /* Count of ptes mapped in mms,
227 * to show when page is mapped
228 * & limit reverse map searches.
229 */
230 union {
231 struct {
232 unsigned long private; /* Mapping-private opaque data:
233 * usually used for buffer_heads
234 * if PagePrivate set; used for
235 * swp_entry_t if PageSwapCache;
236 * indicates order in the buddy
237 * system if PG_buddy is set.
238 */
239 struct address_space *mapping; /* If low bit clear, points to
240 * inode address_space, or NULL.
241 * If page mapped as anonymous
242 * memory, low bit is set, and
243 * it points to anon_vma object:
244 * see PAGE_MAPPING_ANON below.
245 */
246 };
247 #if NR_CPUS >= CONFIG_SPLIT_PTLOCK_CPUS
248 spinlock_t ptl;
249 #endif
250 };
251 pgoff_t index; /* Our offset within mapping. */
252 struct list_head lru; /* Pageout list, eg. active_list
253 * protected by zone->lru_lock !
254 */
255 /*
256 * On machines where all RAM is mapped into kernel address space,
257 * we can simply calculate the virtual address. On machines with
258 * highmem some memory is mapped into kernel virtual memory
259 * dynamically, so we need a place to store that address.
260 * Note that this field could be 16 bits on x86 ... ;)
261 *
262 * Architectures with slow multiplication can define
263 * WANT_PAGE_VIRTUAL in asm/page.h
264 */
265 #if defined(WANT_PAGE_VIRTUAL)
266 void *virtual; /* Kernel virtual address (NULL if
267 not kmapped, ie. highmem) */
268 #endif /* WANT_PAGE_VIRTUAL */
269 };
270
271 #define page_private(page) ((page)->private)
272 #define set_page_private(page, v) ((page)->private = (v))
273
274 /*
275 * FIXME: take this include out, include page-flags.h in
276 * files which need it (119 of them)
277 */
278 #include <linux/page-flags.h>
279
280 /*
281 * Methods to modify the page usage count.
282 *
283 * What counts for a page usage:
284 * - cache mapping (page->mapping)
285 * - private data (page->private)
286 * - page mapped in a task's page tables, each mapping
287 * is counted separately
288 *
289 * Also, many kernel routines increase the page count before a critical
290 * routine so they can be sure the page doesn't go away from under them.
291 */
292
293 /*
294 * Drop a ref, return true if the logical refcount fell to zero (the page has
295 * no users)
296 */
297 static inline int put_page_testzero(struct page *page)
298 {
299 BUG_ON(atomic_read(&page->_count) == 0);
300 return atomic_dec_and_test(&page->_count);
301 }
302
303 /*
304 * Try to grab a ref unless the page has a refcount of zero, return false if
305 * that is the case.
306 */
307 static inline int get_page_unless_zero(struct page *page)
308 {
309 return atomic_inc_not_zero(&page->_count);
310 }
311
312 extern void FASTCALL(__page_cache_release(struct page *));
313
314 static inline int page_count(struct page *page)
315 {
316 if (unlikely(PageCompound(page)))
317 page = (struct page *)page_private(page);
318 return atomic_read(&page->_count);
319 }
320
321 static inline void get_page(struct page *page)
322 {
323 if (unlikely(PageCompound(page)))
324 page = (struct page *)page_private(page);
325 atomic_inc(&page->_count);
326 }
327
328 /*
329 * Setup the page count before being freed into the page allocator for
330 * the first time (boot or memory hotplug)
331 */
332 static inline void init_page_count(struct page *page)
333 {
334 atomic_set(&page->_count, 1);
335 }
336
337 void put_page(struct page *page);
338
339 void split_page(struct page *page, unsigned int order);
340
341 /*
342 * Multiple processes may "see" the same page. E.g. for untouched
343 * mappings of /dev/null, all processes see the same page full of
344 * zeroes, and text pages of executables and shared libraries have
345 * only one copy in memory, at most, normally.
346 *
347 * For the non-reserved pages, page_count(page) denotes a reference count.
348 * page_count() == 0 means the page is free. page->lru is then used for
349 * freelist management in the buddy allocator.
350 * page_count() == 1 means the page is used for exactly one purpose
351 * (e.g. a private data page of one process).
352 *
353 * A page may be used for kmalloc() or anyone else who does a
354 * __get_free_page(). In this case the page_count() is at least 1, and
355 * all other fields are unused but should be 0 or NULL. The
356 * management of this page is the responsibility of the one who uses
357 * it.
358 *
359 * The other pages (we may call them "process pages") are completely
360 * managed by the Linux memory manager: I/O, buffers, swapping etc.
361 * The following discussion applies only to them.
362 *
363 * A page may belong to an inode's memory mapping. In this case,
364 * page->mapping is the pointer to the inode, and page->index is the
365 * file offset of the page, in units of PAGE_CACHE_SIZE.
366 *
367 * A page contains an opaque `private' member, which belongs to the
368 * page's address_space. Usually, this is the address of a circular
369 * list of the page's disk buffers.
370 *
371 * For pages belonging to inodes, the page_count() is the number of
372 * attaches, plus 1 if `private' contains something, plus one for
373 * the page cache itself.
374 *
375 * Instead of keeping dirty/clean pages in per address-space lists, we instead
376 * now tag pages as dirty/under writeback in the radix tree.
377 *
378 * There is also a per-mapping radix tree mapping index to the page
379 * in memory if present. The tree is rooted at mapping->root.
380 *
381 * All process pages can do I/O:
382 * - inode pages may need to be read from disk,
383 * - inode pages which have been modified and are MAP_SHARED may need
384 * to be written to disk,
385 * - private pages which have been modified may need to be swapped out
386 * to swap space and (later) to be read back into memory.
387 */
388
389 /*
390 * The zone field is never updated after free_area_init_core()
391 * sets it, so none of the operations on it need to be atomic.
392 */
393
394
395 /*
396 * page->flags layout:
397 *
398 * There are three possibilities for how page->flags get
399 * laid out. The first is for the normal case, without
400 * sparsemem. The second is for sparsemem when there is
401 * plenty of space for node and section. The last is when
402 * we have run out of space and have to fall back to an
403 * alternate (slower) way of determining the node.
404 *
405 * No sparsemem: | NODE | ZONE | ... | FLAGS |
406 * with space for node: | SECTION | NODE | ZONE | ... | FLAGS |
407 * no space for node: | SECTION | ZONE | ... | FLAGS |
408 */
409 #ifdef CONFIG_SPARSEMEM
410 #define SECTIONS_WIDTH SECTIONS_SHIFT
411 #else
412 #define SECTIONS_WIDTH 0
413 #endif
414
415 #define ZONES_WIDTH ZONES_SHIFT
416
417 #if SECTIONS_WIDTH+ZONES_WIDTH+NODES_SHIFT <= FLAGS_RESERVED
418 #define NODES_WIDTH NODES_SHIFT
419 #else
420 #define NODES_WIDTH 0
421 #endif
422
423 /* Page flags: | [SECTION] | [NODE] | ZONE | ... | FLAGS | */
424 #define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
425 #define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
426 #define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
427
428 /*
429 * We are going to use the flags for the page to node mapping if its in
430 * there. This includes the case where there is no node, so it is implicit.
431 */
432 #define FLAGS_HAS_NODE (NODES_WIDTH > 0 || NODES_SHIFT == 0)
433
434 #ifndef PFN_SECTION_SHIFT
435 #define PFN_SECTION_SHIFT 0
436 #endif
437
438 /*
439 * Define the bit shifts to access each section. For non-existant
440 * sections we define the shift as 0; that plus a 0 mask ensures
441 * the compiler will optimise away reference to them.
442 */
443 #define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
444 #define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
445 #define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
446
447 /* NODE:ZONE or SECTION:ZONE is used to lookup the zone from a page. */
448 #if FLAGS_HAS_NODE
449 #define ZONETABLE_SHIFT (NODES_SHIFT + ZONES_SHIFT)
450 #else
451 #define ZONETABLE_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
452 #endif
453 #define ZONETABLE_PGSHIFT ZONES_PGSHIFT
454
455 #if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > FLAGS_RESERVED
456 #error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > FLAGS_RESERVED
457 #endif
458
459 #define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
460 #define NODES_MASK ((1UL << NODES_WIDTH) - 1)
461 #define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
462 #define ZONETABLE_MASK ((1UL << ZONETABLE_SHIFT) - 1)
463
464 static inline unsigned long page_zonenum(struct page *page)
465 {
466 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
467 }
468
469 struct zone;
470 extern struct zone *zone_table[];
471
472 static inline int page_zone_id(struct page *page)
473 {
474 return (page->flags >> ZONETABLE_PGSHIFT) & ZONETABLE_MASK;
475 }
476 static inline struct zone *page_zone(struct page *page)
477 {
478 return zone_table[page_zone_id(page)];
479 }
480
481 static inline unsigned long page_to_nid(struct page *page)
482 {
483 if (FLAGS_HAS_NODE)
484 return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
485 else
486 return page_zone(page)->zone_pgdat->node_id;
487 }
488 static inline unsigned long page_to_section(struct page *page)
489 {
490 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
491 }
492
493 static inline void set_page_zone(struct page *page, unsigned long zone)
494 {
495 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
496 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
497 }
498 static inline void set_page_node(struct page *page, unsigned long node)
499 {
500 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
501 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
502 }
503 static inline void set_page_section(struct page *page, unsigned long section)
504 {
505 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
506 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
507 }
508
509 static inline void set_page_links(struct page *page, unsigned long zone,
510 unsigned long node, unsigned long pfn)
511 {
512 set_page_zone(page, zone);
513 set_page_node(page, node);
514 set_page_section(page, pfn_to_section_nr(pfn));
515 }
516
517 #ifndef CONFIG_DISCONTIGMEM
518 /* The array of struct pages - for discontigmem use pgdat->lmem_map */
519 extern struct page *mem_map;
520 #endif
521
522 static __always_inline void *lowmem_page_address(struct page *page)
523 {
524 return __va(page_to_pfn(page) << PAGE_SHIFT);
525 }
526
527 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
528 #define HASHED_PAGE_VIRTUAL
529 #endif
530
531 #if defined(WANT_PAGE_VIRTUAL)
532 #define page_address(page) ((page)->virtual)
533 #define set_page_address(page, address) \
534 do { \
535 (page)->virtual = (address); \
536 } while(0)
537 #define page_address_init() do { } while(0)
538 #endif
539
540 #if defined(HASHED_PAGE_VIRTUAL)
541 void *page_address(struct page *page);
542 void set_page_address(struct page *page, void *virtual);
543 void page_address_init(void);
544 #endif
545
546 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
547 #define page_address(page) lowmem_page_address(page)
548 #define set_page_address(page, address) do { } while(0)
549 #define page_address_init() do { } while(0)
550 #endif
551
552 /*
553 * On an anonymous page mapped into a user virtual memory area,
554 * page->mapping points to its anon_vma, not to a struct address_space;
555 * with the PAGE_MAPPING_ANON bit set to distinguish it.
556 *
557 * Please note that, confusingly, "page_mapping" refers to the inode
558 * address_space which maps the page from disk; whereas "page_mapped"
559 * refers to user virtual address space into which the page is mapped.
560 */
561 #define PAGE_MAPPING_ANON 1
562
563 extern struct address_space swapper_space;
564 static inline struct address_space *page_mapping(struct page *page)
565 {
566 struct address_space *mapping = page->mapping;
567
568 if (unlikely(PageSwapCache(page)))
569 mapping = &swapper_space;
570 else if (unlikely((unsigned long)mapping & PAGE_MAPPING_ANON))
571 mapping = NULL;
572 return mapping;
573 }
574
575 static inline int PageAnon(struct page *page)
576 {
577 return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0;
578 }
579
580 /*
581 * Return the pagecache index of the passed page. Regular pagecache pages
582 * use ->index whereas swapcache pages use ->private
583 */
584 static inline pgoff_t page_index(struct page *page)
585 {
586 if (unlikely(PageSwapCache(page)))
587 return page_private(page);
588 return page->index;
589 }
590
591 /*
592 * The atomic page->_mapcount, like _count, starts from -1:
593 * so that transitions both from it and to it can be tracked,
594 * using atomic_inc_and_test and atomic_add_negative(-1).
595 */
596 static inline void reset_page_mapcount(struct page *page)
597 {
598 atomic_set(&(page)->_mapcount, -1);
599 }
600
601 static inline int page_mapcount(struct page *page)
602 {
603 return atomic_read(&(page)->_mapcount) + 1;
604 }
605
606 /*
607 * Return true if this page is mapped into pagetables.
608 */
609 static inline int page_mapped(struct page *page)
610 {
611 return atomic_read(&(page)->_mapcount) >= 0;
612 }
613
614 /*
615 * Error return values for the *_nopage functions
616 */
617 #define NOPAGE_SIGBUS (NULL)
618 #define NOPAGE_OOM ((struct page *) (-1))
619
620 /*
621 * Different kinds of faults, as returned by handle_mm_fault().
622 * Used to decide whether a process gets delivered SIGBUS or
623 * just gets major/minor fault counters bumped up.
624 */
625 #define VM_FAULT_OOM 0x00
626 #define VM_FAULT_SIGBUS 0x01
627 #define VM_FAULT_MINOR 0x02
628 #define VM_FAULT_MAJOR 0x03
629
630 /*
631 * Special case for get_user_pages.
632 * Must be in a distinct bit from the above VM_FAULT_ flags.
633 */
634 #define VM_FAULT_WRITE 0x10
635
636 #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
637
638 extern void show_free_areas(void);
639
640 #ifdef CONFIG_SHMEM
641 struct page *shmem_nopage(struct vm_area_struct *vma,
642 unsigned long address, int *type);
643 int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *new);
644 struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
645 unsigned long addr);
646 int shmem_lock(struct file *file, int lock, struct user_struct *user);
647 #else
648 #define shmem_nopage filemap_nopage
649
650 static inline int shmem_lock(struct file *file, int lock,
651 struct user_struct *user)
652 {
653 return 0;
654 }
655
656 static inline int shmem_set_policy(struct vm_area_struct *vma,
657 struct mempolicy *new)
658 {
659 return 0;
660 }
661
662 static inline struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
663 unsigned long addr)
664 {
665 return NULL;
666 }
667 #endif
668 struct file *shmem_file_setup(char *name, loff_t size, unsigned long flags);
669 extern int shmem_mmap(struct file *file, struct vm_area_struct *vma);
670
671 int shmem_zero_setup(struct vm_area_struct *);
672
673 #ifndef CONFIG_MMU
674 extern unsigned long shmem_get_unmapped_area(struct file *file,
675 unsigned long addr,
676 unsigned long len,
677 unsigned long pgoff,
678 unsigned long flags);
679 #endif
680
681 static inline int can_do_mlock(void)
682 {
683 if (capable(CAP_IPC_LOCK))
684 return 1;
685 if (current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur != 0)
686 return 1;
687 return 0;
688 }
689 extern int user_shm_lock(size_t, struct user_struct *);
690 extern void user_shm_unlock(size_t, struct user_struct *);
691
692 /*
693 * Parameter block passed down to zap_pte_range in exceptional cases.
694 */
695 struct zap_details {
696 struct vm_area_struct *nonlinear_vma; /* Check page->index if set */
697 struct address_space *check_mapping; /* Check page->mapping if set */
698 pgoff_t first_index; /* Lowest page->index to unmap */
699 pgoff_t last_index; /* Highest page->index to unmap */
700 spinlock_t *i_mmap_lock; /* For unmap_mapping_range: */
701 unsigned long truncate_count; /* Compare vm_truncate_count */
702 };
703
704 struct page *vm_normal_page(struct vm_area_struct *, unsigned long, pte_t);
705 unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
706 unsigned long size, struct zap_details *);
707 unsigned long unmap_vmas(struct mmu_gather **tlb,
708 struct vm_area_struct *start_vma, unsigned long start_addr,
709 unsigned long end_addr, unsigned long *nr_accounted,
710 struct zap_details *);
711 void free_pgd_range(struct mmu_gather **tlb, unsigned long addr,
712 unsigned long end, unsigned long floor, unsigned long ceiling);
713 void free_pgtables(struct mmu_gather **tlb, struct vm_area_struct *start_vma,
714 unsigned long floor, unsigned long ceiling);
715 int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
716 struct vm_area_struct *vma);
717 int zeromap_page_range(struct vm_area_struct *vma, unsigned long from,
718 unsigned long size, pgprot_t prot);
719 void unmap_mapping_range(struct address_space *mapping,
720 loff_t const holebegin, loff_t const holelen, int even_cows);
721
722 static inline void unmap_shared_mapping_range(struct address_space *mapping,
723 loff_t const holebegin, loff_t const holelen)
724 {
725 unmap_mapping_range(mapping, holebegin, holelen, 0);
726 }
727
728 extern int vmtruncate(struct inode * inode, loff_t offset);
729 extern int vmtruncate_range(struct inode * inode, loff_t offset, loff_t end);
730 extern int install_page(struct mm_struct *mm, struct vm_area_struct *vma, unsigned long addr, struct page *page, pgprot_t prot);
731 extern int install_file_pte(struct mm_struct *mm, struct vm_area_struct *vma, unsigned long addr, unsigned long pgoff, pgprot_t prot);
732
733 #ifdef CONFIG_MMU
734 extern int __handle_mm_fault(struct mm_struct *mm,struct vm_area_struct *vma,
735 unsigned long address, int write_access);
736
737 static inline int handle_mm_fault(struct mm_struct *mm,
738 struct vm_area_struct *vma, unsigned long address,
739 int write_access)
740 {
741 return __handle_mm_fault(mm, vma, address, write_access) &
742 (~VM_FAULT_WRITE);
743 }
744 #else
745 static inline int handle_mm_fault(struct mm_struct *mm,
746 struct vm_area_struct *vma, unsigned long address,
747 int write_access)
748 {
749 /* should never happen if there's no MMU */
750 BUG();
751 return VM_FAULT_SIGBUS;
752 }
753 #endif
754
755 extern int make_pages_present(unsigned long addr, unsigned long end);
756 extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write);
757 void install_arg_page(struct vm_area_struct *, struct page *, unsigned long);
758
759 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm, unsigned long start,
760 int len, int write, int force, struct page **pages, struct vm_area_struct **vmas);
761 void print_bad_pte(struct vm_area_struct *, pte_t, unsigned long);
762
763 int __set_page_dirty_buffers(struct page *page);
764 int __set_page_dirty_nobuffers(struct page *page);
765 int redirty_page_for_writepage(struct writeback_control *wbc,
766 struct page *page);
767 int FASTCALL(set_page_dirty(struct page *page));
768 int set_page_dirty_lock(struct page *page);
769 int clear_page_dirty_for_io(struct page *page);
770
771 extern unsigned long do_mremap(unsigned long addr,
772 unsigned long old_len, unsigned long new_len,
773 unsigned long flags, unsigned long new_addr);
774
775 /*
776 * Prototype to add a shrinker callback for ageable caches.
777 *
778 * These functions are passed a count `nr_to_scan' and a gfpmask. They should
779 * scan `nr_to_scan' objects, attempting to free them.
780 *
781 * The callback must return the number of objects which remain in the cache.
782 *
783 * The callback will be passed nr_to_scan == 0 when the VM is querying the
784 * cache size, so a fastpath for that case is appropriate.
785 */
786 typedef int (*shrinker_t)(int nr_to_scan, gfp_t gfp_mask);
787
788 /*
789 * Add an aging callback. The int is the number of 'seeks' it takes
790 * to recreate one of the objects that these functions age.
791 */
792
793 #define DEFAULT_SEEKS 2
794 struct shrinker;
795 extern struct shrinker *set_shrinker(int, shrinker_t);
796 extern void remove_shrinker(struct shrinker *shrinker);
797
798 extern pte_t *FASTCALL(get_locked_pte(struct mm_struct *mm, unsigned long addr, spinlock_t **ptl));
799
800 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
801 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
802 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address);
803 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
804
805 /*
806 * The following ifdef needed to get the 4level-fixup.h header to work.
807 * Remove it when 4level-fixup.h has been removed.
808 */
809 #if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
810 static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
811 {
812 return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))?
813 NULL: pud_offset(pgd, address);
814 }
815
816 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
817 {
818 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
819 NULL: pmd_offset(pud, address);
820 }
821 #endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
822
823 #if NR_CPUS >= CONFIG_SPLIT_PTLOCK_CPUS
824 /*
825 * We tuck a spinlock to guard each pagetable page into its struct page,
826 * at page->private, with BUILD_BUG_ON to make sure that this will not
827 * overflow into the next struct page (as it might with DEBUG_SPINLOCK).
828 * When freeing, reset page->mapping so free_pages_check won't complain.
829 */
830 #define __pte_lockptr(page) &((page)->ptl)
831 #define pte_lock_init(_page) do { \
832 spin_lock_init(__pte_lockptr(_page)); \
833 } while (0)
834 #define pte_lock_deinit(page) ((page)->mapping = NULL)
835 #define pte_lockptr(mm, pmd) ({(void)(mm); __pte_lockptr(pmd_page(*(pmd)));})
836 #else
837 /*
838 * We use mm->page_table_lock to guard all pagetable pages of the mm.
839 */
840 #define pte_lock_init(page) do {} while (0)
841 #define pte_lock_deinit(page) do {} while (0)
842 #define pte_lockptr(mm, pmd) ({(void)(pmd); &(mm)->page_table_lock;})
843 #endif /* NR_CPUS < CONFIG_SPLIT_PTLOCK_CPUS */
844
845 #define pte_offset_map_lock(mm, pmd, address, ptlp) \
846 ({ \
847 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
848 pte_t *__pte = pte_offset_map(pmd, address); \
849 *(ptlp) = __ptl; \
850 spin_lock(__ptl); \
851 __pte; \
852 })
853
854 #define pte_unmap_unlock(pte, ptl) do { \
855 spin_unlock(ptl); \
856 pte_unmap(pte); \
857 } while (0)
858
859 #define pte_alloc_map(mm, pmd, address) \
860 ((unlikely(!pmd_present(*(pmd))) && __pte_alloc(mm, pmd, address))? \
861 NULL: pte_offset_map(pmd, address))
862
863 #define pte_alloc_map_lock(mm, pmd, address, ptlp) \
864 ((unlikely(!pmd_present(*(pmd))) && __pte_alloc(mm, pmd, address))? \
865 NULL: pte_offset_map_lock(mm, pmd, address, ptlp))
866
867 #define pte_alloc_kernel(pmd, address) \
868 ((unlikely(!pmd_present(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
869 NULL: pte_offset_kernel(pmd, address))
870
871 extern void free_area_init(unsigned long * zones_size);
872 extern void free_area_init_node(int nid, pg_data_t *pgdat,
873 unsigned long * zones_size, unsigned long zone_start_pfn,
874 unsigned long *zholes_size);
875 extern void memmap_init_zone(unsigned long, int, unsigned long, unsigned long);
876 extern void setup_per_zone_pages_min(void);
877 extern void mem_init(void);
878 extern void show_mem(void);
879 extern void si_meminfo(struct sysinfo * val);
880 extern void si_meminfo_node(struct sysinfo *val, int nid);
881
882 #ifdef CONFIG_NUMA
883 extern void setup_per_cpu_pageset(void);
884 #else
885 static inline void setup_per_cpu_pageset(void) {}
886 #endif
887
888 /* prio_tree.c */
889 void vma_prio_tree_add(struct vm_area_struct *, struct vm_area_struct *old);
890 void vma_prio_tree_insert(struct vm_area_struct *, struct prio_tree_root *);
891 void vma_prio_tree_remove(struct vm_area_struct *, struct prio_tree_root *);
892 struct vm_area_struct *vma_prio_tree_next(struct vm_area_struct *vma,
893 struct prio_tree_iter *iter);
894
895 #define vma_prio_tree_foreach(vma, iter, root, begin, end) \
896 for (prio_tree_iter_init(iter, root, begin, end), vma = NULL; \
897 (vma = vma_prio_tree_next(vma, iter)); )
898
899 static inline void vma_nonlinear_insert(struct vm_area_struct *vma,
900 struct list_head *list)
901 {
902 vma->shared.vm_set.parent = NULL;
903 list_add_tail(&vma->shared.vm_set.list, list);
904 }
905
906 /* mmap.c */
907 extern int __vm_enough_memory(long pages, int cap_sys_admin);
908 extern void vma_adjust(struct vm_area_struct *vma, unsigned long start,
909 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert);
910 extern struct vm_area_struct *vma_merge(struct mm_struct *,
911 struct vm_area_struct *prev, unsigned long addr, unsigned long end,
912 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
913 struct mempolicy *);
914 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
915 extern int split_vma(struct mm_struct *,
916 struct vm_area_struct *, unsigned long addr, int new_below);
917 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
918 extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
919 struct rb_node **, struct rb_node *);
920 extern void unlink_file_vma(struct vm_area_struct *);
921 extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
922 unsigned long addr, unsigned long len, pgoff_t pgoff);
923 extern void exit_mmap(struct mm_struct *);
924 extern int may_expand_vm(struct mm_struct *mm, unsigned long npages);
925
926 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
927
928 extern unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
929 unsigned long len, unsigned long prot,
930 unsigned long flag, unsigned long pgoff);
931
932 static inline unsigned long do_mmap(struct file *file, unsigned long addr,
933 unsigned long len, unsigned long prot,
934 unsigned long flag, unsigned long offset)
935 {
936 unsigned long ret = -EINVAL;
937 if ((offset + PAGE_ALIGN(len)) < offset)
938 goto out;
939 if (!(offset & ~PAGE_MASK))
940 ret = do_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT);
941 out:
942 return ret;
943 }
944
945 extern int do_munmap(struct mm_struct *, unsigned long, size_t);
946
947 extern unsigned long do_brk(unsigned long, unsigned long);
948
949 /* filemap.c */
950 extern unsigned long page_unuse(struct page *);
951 extern void truncate_inode_pages(struct address_space *, loff_t);
952 extern void truncate_inode_pages_range(struct address_space *,
953 loff_t lstart, loff_t lend);
954
955 /* generic vm_area_ops exported for stackable file systems */
956 extern struct page *filemap_nopage(struct vm_area_struct *, unsigned long, int *);
957 extern int filemap_populate(struct vm_area_struct *, unsigned long,
958 unsigned long, pgprot_t, unsigned long, int);
959
960 /* mm/page-writeback.c */
961 int write_one_page(struct page *page, int wait);
962
963 /* readahead.c */
964 #define VM_MAX_READAHEAD 128 /* kbytes */
965 #define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */
966 #define VM_MAX_CACHE_HIT 256 /* max pages in a row in cache before
967 * turning readahead off */
968
969 int do_page_cache_readahead(struct address_space *mapping, struct file *filp,
970 pgoff_t offset, unsigned long nr_to_read);
971 int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
972 pgoff_t offset, unsigned long nr_to_read);
973 unsigned long page_cache_readahead(struct address_space *mapping,
974 struct file_ra_state *ra,
975 struct file *filp,
976 pgoff_t offset,
977 unsigned long size);
978 void handle_ra_miss(struct address_space *mapping,
979 struct file_ra_state *ra, pgoff_t offset);
980 unsigned long max_sane_readahead(unsigned long nr);
981
982 /* Do stack extension */
983 extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
984 #ifdef CONFIG_IA64
985 extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
986 #endif
987
988 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
989 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
990 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
991 struct vm_area_struct **pprev);
992
993 /* Look up the first VMA which intersects the interval start_addr..end_addr-1,
994 NULL if none. Assume start_addr < end_addr. */
995 static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
996 {
997 struct vm_area_struct * vma = find_vma(mm,start_addr);
998
999 if (vma && end_addr <= vma->vm_start)
1000 vma = NULL;
1001 return vma;
1002 }
1003
1004 static inline unsigned long vma_pages(struct vm_area_struct *vma)
1005 {
1006 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
1007 }
1008
1009 struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
1010 struct page *vmalloc_to_page(void *addr);
1011 unsigned long vmalloc_to_pfn(void *addr);
1012 int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
1013 unsigned long pfn, unsigned long size, pgprot_t);
1014 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
1015
1016 struct page *follow_page(struct vm_area_struct *, unsigned long address,
1017 unsigned int foll_flags);
1018 #define FOLL_WRITE 0x01 /* check pte is writable */
1019 #define FOLL_TOUCH 0x02 /* mark page accessed */
1020 #define FOLL_GET 0x04 /* do get_page on page */
1021 #define FOLL_ANON 0x08 /* give ZERO_PAGE if no pgtable */
1022
1023 #ifdef CONFIG_PROC_FS
1024 void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long);
1025 #else
1026 static inline void vm_stat_account(struct mm_struct *mm,
1027 unsigned long flags, struct file *file, long pages)
1028 {
1029 }
1030 #endif /* CONFIG_PROC_FS */
1031
1032 #ifndef CONFIG_DEBUG_PAGEALLOC
1033 static inline void
1034 kernel_map_pages(struct page *page, int numpages, int enable)
1035 {
1036 if (!PageHighMem(page) && !enable)
1037 mutex_debug_check_no_locks_freed(page_address(page),
1038 numpages * PAGE_SIZE);
1039 }
1040 #endif
1041
1042 extern struct vm_area_struct *get_gate_vma(struct task_struct *tsk);
1043 #ifdef __HAVE_ARCH_GATE_AREA
1044 int in_gate_area_no_task(unsigned long addr);
1045 int in_gate_area(struct task_struct *task, unsigned long addr);
1046 #else
1047 int in_gate_area_no_task(unsigned long addr);
1048 #define in_gate_area(task, addr) ({(void)task; in_gate_area_no_task(addr);})
1049 #endif /* __HAVE_ARCH_GATE_AREA */
1050
1051 /* /proc/<pid>/oom_adj set to -17 protects from the oom-killer */
1052 #define OOM_DISABLE -17
1053
1054 int drop_caches_sysctl_handler(struct ctl_table *, int, struct file *,
1055 void __user *, size_t *, loff_t *);
1056 unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask,
1057 unsigned long lru_pages);
1058 void drop_pagecache(void);
1059 void drop_slab(void);
1060
1061 #ifndef CONFIG_MMU
1062 #define randomize_va_space 0
1063 #else
1064 extern int randomize_va_space;
1065 #endif
1066
1067 #endif /* __KERNEL__ */
1068 #endif /* _LINUX_MM_H */
This page took 0.085341 seconds and 4 git commands to generate.