mm: kill vma flag VM_CAN_NONLINEAR
[deliverable/linux.git] / include / linux / mm.h
1 #ifndef _LINUX_MM_H
2 #define _LINUX_MM_H
3
4 #include <linux/errno.h>
5
6 #ifdef __KERNEL__
7
8 #include <linux/gfp.h>
9 #include <linux/bug.h>
10 #include <linux/list.h>
11 #include <linux/mmzone.h>
12 #include <linux/rbtree.h>
13 #include <linux/prio_tree.h>
14 #include <linux/atomic.h>
15 #include <linux/debug_locks.h>
16 #include <linux/mm_types.h>
17 #include <linux/range.h>
18 #include <linux/pfn.h>
19 #include <linux/bit_spinlock.h>
20 #include <linux/shrinker.h>
21
22 struct mempolicy;
23 struct anon_vma;
24 struct file_ra_state;
25 struct user_struct;
26 struct writeback_control;
27
28 #ifndef CONFIG_DISCONTIGMEM /* Don't use mapnrs, do it properly */
29 extern unsigned long max_mapnr;
30 #endif
31
32 extern unsigned long num_physpages;
33 extern unsigned long totalram_pages;
34 extern void * high_memory;
35 extern int page_cluster;
36
37 #ifdef CONFIG_SYSCTL
38 extern int sysctl_legacy_va_layout;
39 #else
40 #define sysctl_legacy_va_layout 0
41 #endif
42
43 #include <asm/page.h>
44 #include <asm/pgtable.h>
45 #include <asm/processor.h>
46
47 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
48
49 /* to align the pointer to the (next) page boundary */
50 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
51
52 /*
53 * Linux kernel virtual memory manager primitives.
54 * The idea being to have a "virtual" mm in the same way
55 * we have a virtual fs - giving a cleaner interface to the
56 * mm details, and allowing different kinds of memory mappings
57 * (from shared memory to executable loading to arbitrary
58 * mmap() functions).
59 */
60
61 extern struct kmem_cache *vm_area_cachep;
62
63 #ifndef CONFIG_MMU
64 extern struct rb_root nommu_region_tree;
65 extern struct rw_semaphore nommu_region_sem;
66
67 extern unsigned int kobjsize(const void *objp);
68 #endif
69
70 /*
71 * vm_flags in vm_area_struct, see mm_types.h.
72 */
73 #define VM_NONE 0x00000000
74
75 #define VM_READ 0x00000001 /* currently active flags */
76 #define VM_WRITE 0x00000002
77 #define VM_EXEC 0x00000004
78 #define VM_SHARED 0x00000008
79
80 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
81 #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
82 #define VM_MAYWRITE 0x00000020
83 #define VM_MAYEXEC 0x00000040
84 #define VM_MAYSHARE 0x00000080
85
86 #define VM_GROWSDOWN 0x00000100 /* general info on the segment */
87 #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
88 #define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
89
90 #define VM_EXECUTABLE 0x00001000
91 #define VM_LOCKED 0x00002000
92 #define VM_IO 0x00004000 /* Memory mapped I/O or similar */
93
94 /* Used by sys_madvise() */
95 #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
96 #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
97
98 #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
99 #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
100 #define VM_RESERVED 0x00080000 /* Count as reserved_vm like IO */
101 #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
102 #define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
103 #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
104 #define VM_NONLINEAR 0x00800000 /* Is non-linear (remap_file_pages) */
105 #define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
106 #define VM_NODUMP 0x04000000 /* Do not include in the core dump */
107
108 #define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
109 #define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
110 #define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
111 #define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
112
113 #if defined(CONFIG_X86)
114 # define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
115 #elif defined(CONFIG_PPC)
116 # define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
117 #elif defined(CONFIG_PARISC)
118 # define VM_GROWSUP VM_ARCH_1
119 #elif defined(CONFIG_IA64)
120 # define VM_GROWSUP VM_ARCH_1
121 #elif !defined(CONFIG_MMU)
122 # define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
123 #endif
124
125 #ifndef VM_GROWSUP
126 # define VM_GROWSUP VM_NONE
127 #endif
128
129 /* Bits set in the VMA until the stack is in its final location */
130 #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
131
132 #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
133 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
134 #endif
135
136 #ifdef CONFIG_STACK_GROWSUP
137 #define VM_STACK_FLAGS (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
138 #else
139 #define VM_STACK_FLAGS (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
140 #endif
141
142 #define VM_READHINTMASK (VM_SEQ_READ | VM_RAND_READ)
143 #define VM_ClearReadHint(v) (v)->vm_flags &= ~VM_READHINTMASK
144 #define VM_NormalReadHint(v) (!((v)->vm_flags & VM_READHINTMASK))
145 #define VM_SequentialReadHint(v) ((v)->vm_flags & VM_SEQ_READ)
146 #define VM_RandomReadHint(v) ((v)->vm_flags & VM_RAND_READ)
147
148 /*
149 * Special vmas that are non-mergable, non-mlock()able.
150 * Note: mm/huge_memory.c VM_NO_THP depends on this definition.
151 */
152 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_RESERVED | VM_PFNMAP)
153
154 /*
155 * mapping from the currently active vm_flags protection bits (the
156 * low four bits) to a page protection mask..
157 */
158 extern pgprot_t protection_map[16];
159
160 #define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */
161 #define FAULT_FLAG_NONLINEAR 0x02 /* Fault was via a nonlinear mapping */
162 #define FAULT_FLAG_MKWRITE 0x04 /* Fault was mkwrite of existing pte */
163 #define FAULT_FLAG_ALLOW_RETRY 0x08 /* Retry fault if blocking */
164 #define FAULT_FLAG_RETRY_NOWAIT 0x10 /* Don't drop mmap_sem and wait when retrying */
165 #define FAULT_FLAG_KILLABLE 0x20 /* The fault task is in SIGKILL killable region */
166
167 /*
168 * vm_fault is filled by the the pagefault handler and passed to the vma's
169 * ->fault function. The vma's ->fault is responsible for returning a bitmask
170 * of VM_FAULT_xxx flags that give details about how the fault was handled.
171 *
172 * pgoff should be used in favour of virtual_address, if possible. If pgoff
173 * is used, one may implement ->remap_pages to get nonlinear mapping support.
174 */
175 struct vm_fault {
176 unsigned int flags; /* FAULT_FLAG_xxx flags */
177 pgoff_t pgoff; /* Logical page offset based on vma */
178 void __user *virtual_address; /* Faulting virtual address */
179
180 struct page *page; /* ->fault handlers should return a
181 * page here, unless VM_FAULT_NOPAGE
182 * is set (which is also implied by
183 * VM_FAULT_ERROR).
184 */
185 };
186
187 /*
188 * These are the virtual MM functions - opening of an area, closing and
189 * unmapping it (needed to keep files on disk up-to-date etc), pointer
190 * to the functions called when a no-page or a wp-page exception occurs.
191 */
192 struct vm_operations_struct {
193 void (*open)(struct vm_area_struct * area);
194 void (*close)(struct vm_area_struct * area);
195 int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf);
196
197 /* notification that a previously read-only page is about to become
198 * writable, if an error is returned it will cause a SIGBUS */
199 int (*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
200
201 /* called by access_process_vm when get_user_pages() fails, typically
202 * for use by special VMAs that can switch between memory and hardware
203 */
204 int (*access)(struct vm_area_struct *vma, unsigned long addr,
205 void *buf, int len, int write);
206 #ifdef CONFIG_NUMA
207 /*
208 * set_policy() op must add a reference to any non-NULL @new mempolicy
209 * to hold the policy upon return. Caller should pass NULL @new to
210 * remove a policy and fall back to surrounding context--i.e. do not
211 * install a MPOL_DEFAULT policy, nor the task or system default
212 * mempolicy.
213 */
214 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
215
216 /*
217 * get_policy() op must add reference [mpol_get()] to any policy at
218 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
219 * in mm/mempolicy.c will do this automatically.
220 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
221 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
222 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
223 * must return NULL--i.e., do not "fallback" to task or system default
224 * policy.
225 */
226 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
227 unsigned long addr);
228 int (*migrate)(struct vm_area_struct *vma, const nodemask_t *from,
229 const nodemask_t *to, unsigned long flags);
230 #endif
231 /* called by sys_remap_file_pages() to populate non-linear mapping */
232 int (*remap_pages)(struct vm_area_struct *vma, unsigned long addr,
233 unsigned long size, pgoff_t pgoff);
234 };
235
236 struct mmu_gather;
237 struct inode;
238
239 #define page_private(page) ((page)->private)
240 #define set_page_private(page, v) ((page)->private = (v))
241
242 /*
243 * FIXME: take this include out, include page-flags.h in
244 * files which need it (119 of them)
245 */
246 #include <linux/page-flags.h>
247 #include <linux/huge_mm.h>
248
249 /*
250 * Methods to modify the page usage count.
251 *
252 * What counts for a page usage:
253 * - cache mapping (page->mapping)
254 * - private data (page->private)
255 * - page mapped in a task's page tables, each mapping
256 * is counted separately
257 *
258 * Also, many kernel routines increase the page count before a critical
259 * routine so they can be sure the page doesn't go away from under them.
260 */
261
262 /*
263 * Drop a ref, return true if the refcount fell to zero (the page has no users)
264 */
265 static inline int put_page_testzero(struct page *page)
266 {
267 VM_BUG_ON(atomic_read(&page->_count) == 0);
268 return atomic_dec_and_test(&page->_count);
269 }
270
271 /*
272 * Try to grab a ref unless the page has a refcount of zero, return false if
273 * that is the case.
274 */
275 static inline int get_page_unless_zero(struct page *page)
276 {
277 return atomic_inc_not_zero(&page->_count);
278 }
279
280 extern int page_is_ram(unsigned long pfn);
281
282 /* Support for virtually mapped pages */
283 struct page *vmalloc_to_page(const void *addr);
284 unsigned long vmalloc_to_pfn(const void *addr);
285
286 /*
287 * Determine if an address is within the vmalloc range
288 *
289 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
290 * is no special casing required.
291 */
292 static inline int is_vmalloc_addr(const void *x)
293 {
294 #ifdef CONFIG_MMU
295 unsigned long addr = (unsigned long)x;
296
297 return addr >= VMALLOC_START && addr < VMALLOC_END;
298 #else
299 return 0;
300 #endif
301 }
302 #ifdef CONFIG_MMU
303 extern int is_vmalloc_or_module_addr(const void *x);
304 #else
305 static inline int is_vmalloc_or_module_addr(const void *x)
306 {
307 return 0;
308 }
309 #endif
310
311 static inline void compound_lock(struct page *page)
312 {
313 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
314 VM_BUG_ON(PageSlab(page));
315 bit_spin_lock(PG_compound_lock, &page->flags);
316 #endif
317 }
318
319 static inline void compound_unlock(struct page *page)
320 {
321 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
322 VM_BUG_ON(PageSlab(page));
323 bit_spin_unlock(PG_compound_lock, &page->flags);
324 #endif
325 }
326
327 static inline unsigned long compound_lock_irqsave(struct page *page)
328 {
329 unsigned long uninitialized_var(flags);
330 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
331 local_irq_save(flags);
332 compound_lock(page);
333 #endif
334 return flags;
335 }
336
337 static inline void compound_unlock_irqrestore(struct page *page,
338 unsigned long flags)
339 {
340 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
341 compound_unlock(page);
342 local_irq_restore(flags);
343 #endif
344 }
345
346 static inline struct page *compound_head(struct page *page)
347 {
348 if (unlikely(PageTail(page)))
349 return page->first_page;
350 return page;
351 }
352
353 /*
354 * The atomic page->_mapcount, starts from -1: so that transitions
355 * both from it and to it can be tracked, using atomic_inc_and_test
356 * and atomic_add_negative(-1).
357 */
358 static inline void reset_page_mapcount(struct page *page)
359 {
360 atomic_set(&(page)->_mapcount, -1);
361 }
362
363 static inline int page_mapcount(struct page *page)
364 {
365 return atomic_read(&(page)->_mapcount) + 1;
366 }
367
368 static inline int page_count(struct page *page)
369 {
370 return atomic_read(&compound_head(page)->_count);
371 }
372
373 static inline void get_huge_page_tail(struct page *page)
374 {
375 /*
376 * __split_huge_page_refcount() cannot run
377 * from under us.
378 */
379 VM_BUG_ON(page_mapcount(page) < 0);
380 VM_BUG_ON(atomic_read(&page->_count) != 0);
381 atomic_inc(&page->_mapcount);
382 }
383
384 extern bool __get_page_tail(struct page *page);
385
386 static inline void get_page(struct page *page)
387 {
388 if (unlikely(PageTail(page)))
389 if (likely(__get_page_tail(page)))
390 return;
391 /*
392 * Getting a normal page or the head of a compound page
393 * requires to already have an elevated page->_count.
394 */
395 VM_BUG_ON(atomic_read(&page->_count) <= 0);
396 atomic_inc(&page->_count);
397 }
398
399 static inline struct page *virt_to_head_page(const void *x)
400 {
401 struct page *page = virt_to_page(x);
402 return compound_head(page);
403 }
404
405 /*
406 * Setup the page count before being freed into the page allocator for
407 * the first time (boot or memory hotplug)
408 */
409 static inline void init_page_count(struct page *page)
410 {
411 atomic_set(&page->_count, 1);
412 }
413
414 /*
415 * PageBuddy() indicate that the page is free and in the buddy system
416 * (see mm/page_alloc.c).
417 *
418 * PAGE_BUDDY_MAPCOUNT_VALUE must be <= -2 but better not too close to
419 * -2 so that an underflow of the page_mapcount() won't be mistaken
420 * for a genuine PAGE_BUDDY_MAPCOUNT_VALUE. -128 can be created very
421 * efficiently by most CPU architectures.
422 */
423 #define PAGE_BUDDY_MAPCOUNT_VALUE (-128)
424
425 static inline int PageBuddy(struct page *page)
426 {
427 return atomic_read(&page->_mapcount) == PAGE_BUDDY_MAPCOUNT_VALUE;
428 }
429
430 static inline void __SetPageBuddy(struct page *page)
431 {
432 VM_BUG_ON(atomic_read(&page->_mapcount) != -1);
433 atomic_set(&page->_mapcount, PAGE_BUDDY_MAPCOUNT_VALUE);
434 }
435
436 static inline void __ClearPageBuddy(struct page *page)
437 {
438 VM_BUG_ON(!PageBuddy(page));
439 atomic_set(&page->_mapcount, -1);
440 }
441
442 void put_page(struct page *page);
443 void put_pages_list(struct list_head *pages);
444
445 void split_page(struct page *page, unsigned int order);
446 int split_free_page(struct page *page);
447
448 /*
449 * Compound pages have a destructor function. Provide a
450 * prototype for that function and accessor functions.
451 * These are _only_ valid on the head of a PG_compound page.
452 */
453 typedef void compound_page_dtor(struct page *);
454
455 static inline void set_compound_page_dtor(struct page *page,
456 compound_page_dtor *dtor)
457 {
458 page[1].lru.next = (void *)dtor;
459 }
460
461 static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
462 {
463 return (compound_page_dtor *)page[1].lru.next;
464 }
465
466 static inline int compound_order(struct page *page)
467 {
468 if (!PageHead(page))
469 return 0;
470 return (unsigned long)page[1].lru.prev;
471 }
472
473 static inline int compound_trans_order(struct page *page)
474 {
475 int order;
476 unsigned long flags;
477
478 if (!PageHead(page))
479 return 0;
480
481 flags = compound_lock_irqsave(page);
482 order = compound_order(page);
483 compound_unlock_irqrestore(page, flags);
484 return order;
485 }
486
487 static inline void set_compound_order(struct page *page, unsigned long order)
488 {
489 page[1].lru.prev = (void *)order;
490 }
491
492 #ifdef CONFIG_MMU
493 /*
494 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
495 * servicing faults for write access. In the normal case, do always want
496 * pte_mkwrite. But get_user_pages can cause write faults for mappings
497 * that do not have writing enabled, when used by access_process_vm.
498 */
499 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
500 {
501 if (likely(vma->vm_flags & VM_WRITE))
502 pte = pte_mkwrite(pte);
503 return pte;
504 }
505 #endif
506
507 /*
508 * Multiple processes may "see" the same page. E.g. for untouched
509 * mappings of /dev/null, all processes see the same page full of
510 * zeroes, and text pages of executables and shared libraries have
511 * only one copy in memory, at most, normally.
512 *
513 * For the non-reserved pages, page_count(page) denotes a reference count.
514 * page_count() == 0 means the page is free. page->lru is then used for
515 * freelist management in the buddy allocator.
516 * page_count() > 0 means the page has been allocated.
517 *
518 * Pages are allocated by the slab allocator in order to provide memory
519 * to kmalloc and kmem_cache_alloc. In this case, the management of the
520 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
521 * unless a particular usage is carefully commented. (the responsibility of
522 * freeing the kmalloc memory is the caller's, of course).
523 *
524 * A page may be used by anyone else who does a __get_free_page().
525 * In this case, page_count still tracks the references, and should only
526 * be used through the normal accessor functions. The top bits of page->flags
527 * and page->virtual store page management information, but all other fields
528 * are unused and could be used privately, carefully. The management of this
529 * page is the responsibility of the one who allocated it, and those who have
530 * subsequently been given references to it.
531 *
532 * The other pages (we may call them "pagecache pages") are completely
533 * managed by the Linux memory manager: I/O, buffers, swapping etc.
534 * The following discussion applies only to them.
535 *
536 * A pagecache page contains an opaque `private' member, which belongs to the
537 * page's address_space. Usually, this is the address of a circular list of
538 * the page's disk buffers. PG_private must be set to tell the VM to call
539 * into the filesystem to release these pages.
540 *
541 * A page may belong to an inode's memory mapping. In this case, page->mapping
542 * is the pointer to the inode, and page->index is the file offset of the page,
543 * in units of PAGE_CACHE_SIZE.
544 *
545 * If pagecache pages are not associated with an inode, they are said to be
546 * anonymous pages. These may become associated with the swapcache, and in that
547 * case PG_swapcache is set, and page->private is an offset into the swapcache.
548 *
549 * In either case (swapcache or inode backed), the pagecache itself holds one
550 * reference to the page. Setting PG_private should also increment the
551 * refcount. The each user mapping also has a reference to the page.
552 *
553 * The pagecache pages are stored in a per-mapping radix tree, which is
554 * rooted at mapping->page_tree, and indexed by offset.
555 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
556 * lists, we instead now tag pages as dirty/writeback in the radix tree.
557 *
558 * All pagecache pages may be subject to I/O:
559 * - inode pages may need to be read from disk,
560 * - inode pages which have been modified and are MAP_SHARED may need
561 * to be written back to the inode on disk,
562 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
563 * modified may need to be swapped out to swap space and (later) to be read
564 * back into memory.
565 */
566
567 /*
568 * The zone field is never updated after free_area_init_core()
569 * sets it, so none of the operations on it need to be atomic.
570 */
571
572
573 /*
574 * page->flags layout:
575 *
576 * There are three possibilities for how page->flags get
577 * laid out. The first is for the normal case, without
578 * sparsemem. The second is for sparsemem when there is
579 * plenty of space for node and section. The last is when
580 * we have run out of space and have to fall back to an
581 * alternate (slower) way of determining the node.
582 *
583 * No sparsemem or sparsemem vmemmap: | NODE | ZONE | ... | FLAGS |
584 * classic sparse with space for node:| SECTION | NODE | ZONE | ... | FLAGS |
585 * classic sparse no space for node: | SECTION | ZONE | ... | FLAGS |
586 */
587 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
588 #define SECTIONS_WIDTH SECTIONS_SHIFT
589 #else
590 #define SECTIONS_WIDTH 0
591 #endif
592
593 #define ZONES_WIDTH ZONES_SHIFT
594
595 #if SECTIONS_WIDTH+ZONES_WIDTH+NODES_SHIFT <= BITS_PER_LONG - NR_PAGEFLAGS
596 #define NODES_WIDTH NODES_SHIFT
597 #else
598 #ifdef CONFIG_SPARSEMEM_VMEMMAP
599 #error "Vmemmap: No space for nodes field in page flags"
600 #endif
601 #define NODES_WIDTH 0
602 #endif
603
604 /* Page flags: | [SECTION] | [NODE] | ZONE | ... | FLAGS | */
605 #define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
606 #define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
607 #define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
608
609 /*
610 * We are going to use the flags for the page to node mapping if its in
611 * there. This includes the case where there is no node, so it is implicit.
612 */
613 #if !(NODES_WIDTH > 0 || NODES_SHIFT == 0)
614 #define NODE_NOT_IN_PAGE_FLAGS
615 #endif
616
617 /*
618 * Define the bit shifts to access each section. For non-existent
619 * sections we define the shift as 0; that plus a 0 mask ensures
620 * the compiler will optimise away reference to them.
621 */
622 #define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
623 #define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
624 #define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
625
626 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
627 #ifdef NODE_NOT_IN_PAGE_FLAGS
628 #define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
629 #define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
630 SECTIONS_PGOFF : ZONES_PGOFF)
631 #else
632 #define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
633 #define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
634 NODES_PGOFF : ZONES_PGOFF)
635 #endif
636
637 #define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
638
639 #if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
640 #error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
641 #endif
642
643 #define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
644 #define NODES_MASK ((1UL << NODES_WIDTH) - 1)
645 #define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
646 #define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
647
648 static inline enum zone_type page_zonenum(const struct page *page)
649 {
650 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
651 }
652
653 /*
654 * The identification function is only used by the buddy allocator for
655 * determining if two pages could be buddies. We are not really
656 * identifying a zone since we could be using a the section number
657 * id if we have not node id available in page flags.
658 * We guarantee only that it will return the same value for two
659 * combinable pages in a zone.
660 */
661 static inline int page_zone_id(struct page *page)
662 {
663 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
664 }
665
666 static inline int zone_to_nid(struct zone *zone)
667 {
668 #ifdef CONFIG_NUMA
669 return zone->node;
670 #else
671 return 0;
672 #endif
673 }
674
675 #ifdef NODE_NOT_IN_PAGE_FLAGS
676 extern int page_to_nid(const struct page *page);
677 #else
678 static inline int page_to_nid(const struct page *page)
679 {
680 return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
681 }
682 #endif
683
684 static inline struct zone *page_zone(const struct page *page)
685 {
686 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
687 }
688
689 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
690 static inline void set_page_section(struct page *page, unsigned long section)
691 {
692 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
693 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
694 }
695
696 static inline unsigned long page_to_section(const struct page *page)
697 {
698 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
699 }
700 #endif
701
702 static inline void set_page_zone(struct page *page, enum zone_type zone)
703 {
704 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
705 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
706 }
707
708 static inline void set_page_node(struct page *page, unsigned long node)
709 {
710 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
711 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
712 }
713
714 static inline void set_page_links(struct page *page, enum zone_type zone,
715 unsigned long node, unsigned long pfn)
716 {
717 set_page_zone(page, zone);
718 set_page_node(page, node);
719 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
720 set_page_section(page, pfn_to_section_nr(pfn));
721 #endif
722 }
723
724 /*
725 * Some inline functions in vmstat.h depend on page_zone()
726 */
727 #include <linux/vmstat.h>
728
729 static __always_inline void *lowmem_page_address(const struct page *page)
730 {
731 return __va(PFN_PHYS(page_to_pfn(page)));
732 }
733
734 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
735 #define HASHED_PAGE_VIRTUAL
736 #endif
737
738 #if defined(WANT_PAGE_VIRTUAL)
739 #define page_address(page) ((page)->virtual)
740 #define set_page_address(page, address) \
741 do { \
742 (page)->virtual = (address); \
743 } while(0)
744 #define page_address_init() do { } while(0)
745 #endif
746
747 #if defined(HASHED_PAGE_VIRTUAL)
748 void *page_address(const struct page *page);
749 void set_page_address(struct page *page, void *virtual);
750 void page_address_init(void);
751 #endif
752
753 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
754 #define page_address(page) lowmem_page_address(page)
755 #define set_page_address(page, address) do { } while(0)
756 #define page_address_init() do { } while(0)
757 #endif
758
759 /*
760 * On an anonymous page mapped into a user virtual memory area,
761 * page->mapping points to its anon_vma, not to a struct address_space;
762 * with the PAGE_MAPPING_ANON bit set to distinguish it. See rmap.h.
763 *
764 * On an anonymous page in a VM_MERGEABLE area, if CONFIG_KSM is enabled,
765 * the PAGE_MAPPING_KSM bit may be set along with the PAGE_MAPPING_ANON bit;
766 * and then page->mapping points, not to an anon_vma, but to a private
767 * structure which KSM associates with that merged page. See ksm.h.
768 *
769 * PAGE_MAPPING_KSM without PAGE_MAPPING_ANON is currently never used.
770 *
771 * Please note that, confusingly, "page_mapping" refers to the inode
772 * address_space which maps the page from disk; whereas "page_mapped"
773 * refers to user virtual address space into which the page is mapped.
774 */
775 #define PAGE_MAPPING_ANON 1
776 #define PAGE_MAPPING_KSM 2
777 #define PAGE_MAPPING_FLAGS (PAGE_MAPPING_ANON | PAGE_MAPPING_KSM)
778
779 extern struct address_space swapper_space;
780 static inline struct address_space *page_mapping(struct page *page)
781 {
782 struct address_space *mapping = page->mapping;
783
784 VM_BUG_ON(PageSlab(page));
785 if (unlikely(PageSwapCache(page)))
786 mapping = &swapper_space;
787 else if ((unsigned long)mapping & PAGE_MAPPING_ANON)
788 mapping = NULL;
789 return mapping;
790 }
791
792 /* Neutral page->mapping pointer to address_space or anon_vma or other */
793 static inline void *page_rmapping(struct page *page)
794 {
795 return (void *)((unsigned long)page->mapping & ~PAGE_MAPPING_FLAGS);
796 }
797
798 extern struct address_space *__page_file_mapping(struct page *);
799
800 static inline
801 struct address_space *page_file_mapping(struct page *page)
802 {
803 if (unlikely(PageSwapCache(page)))
804 return __page_file_mapping(page);
805
806 return page->mapping;
807 }
808
809 static inline int PageAnon(struct page *page)
810 {
811 return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0;
812 }
813
814 /*
815 * Return the pagecache index of the passed page. Regular pagecache pages
816 * use ->index whereas swapcache pages use ->private
817 */
818 static inline pgoff_t page_index(struct page *page)
819 {
820 if (unlikely(PageSwapCache(page)))
821 return page_private(page);
822 return page->index;
823 }
824
825 extern pgoff_t __page_file_index(struct page *page);
826
827 /*
828 * Return the file index of the page. Regular pagecache pages use ->index
829 * whereas swapcache pages use swp_offset(->private)
830 */
831 static inline pgoff_t page_file_index(struct page *page)
832 {
833 if (unlikely(PageSwapCache(page)))
834 return __page_file_index(page);
835
836 return page->index;
837 }
838
839 /*
840 * Return true if this page is mapped into pagetables.
841 */
842 static inline int page_mapped(struct page *page)
843 {
844 return atomic_read(&(page)->_mapcount) >= 0;
845 }
846
847 /*
848 * Different kinds of faults, as returned by handle_mm_fault().
849 * Used to decide whether a process gets delivered SIGBUS or
850 * just gets major/minor fault counters bumped up.
851 */
852
853 #define VM_FAULT_MINOR 0 /* For backwards compat. Remove me quickly. */
854
855 #define VM_FAULT_OOM 0x0001
856 #define VM_FAULT_SIGBUS 0x0002
857 #define VM_FAULT_MAJOR 0x0004
858 #define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */
859 #define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */
860 #define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */
861
862 #define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */
863 #define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */
864 #define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */
865
866 #define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */
867
868 #define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_HWPOISON | \
869 VM_FAULT_HWPOISON_LARGE)
870
871 /* Encode hstate index for a hwpoisoned large page */
872 #define VM_FAULT_SET_HINDEX(x) ((x) << 12)
873 #define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf)
874
875 /*
876 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
877 */
878 extern void pagefault_out_of_memory(void);
879
880 #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
881
882 /*
883 * Flags passed to show_mem() and show_free_areas() to suppress output in
884 * various contexts.
885 */
886 #define SHOW_MEM_FILTER_NODES (0x0001u) /* filter disallowed nodes */
887
888 extern void show_free_areas(unsigned int flags);
889 extern bool skip_free_areas_node(unsigned int flags, int nid);
890
891 int shmem_zero_setup(struct vm_area_struct *);
892
893 extern int can_do_mlock(void);
894 extern int user_shm_lock(size_t, struct user_struct *);
895 extern void user_shm_unlock(size_t, struct user_struct *);
896
897 /*
898 * Parameter block passed down to zap_pte_range in exceptional cases.
899 */
900 struct zap_details {
901 struct vm_area_struct *nonlinear_vma; /* Check page->index if set */
902 struct address_space *check_mapping; /* Check page->mapping if set */
903 pgoff_t first_index; /* Lowest page->index to unmap */
904 pgoff_t last_index; /* Highest page->index to unmap */
905 };
906
907 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
908 pte_t pte);
909
910 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
911 unsigned long size);
912 void zap_page_range(struct vm_area_struct *vma, unsigned long address,
913 unsigned long size, struct zap_details *);
914 void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
915 unsigned long start, unsigned long end);
916
917 /**
918 * mm_walk - callbacks for walk_page_range
919 * @pgd_entry: if set, called for each non-empty PGD (top-level) entry
920 * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry
921 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
922 * this handler is required to be able to handle
923 * pmd_trans_huge() pmds. They may simply choose to
924 * split_huge_page() instead of handling it explicitly.
925 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
926 * @pte_hole: if set, called for each hole at all levels
927 * @hugetlb_entry: if set, called for each hugetlb entry
928 * *Caution*: The caller must hold mmap_sem() if @hugetlb_entry
929 * is used.
930 *
931 * (see walk_page_range for more details)
932 */
933 struct mm_walk {
934 int (*pgd_entry)(pgd_t *, unsigned long, unsigned long, struct mm_walk *);
935 int (*pud_entry)(pud_t *, unsigned long, unsigned long, struct mm_walk *);
936 int (*pmd_entry)(pmd_t *, unsigned long, unsigned long, struct mm_walk *);
937 int (*pte_entry)(pte_t *, unsigned long, unsigned long, struct mm_walk *);
938 int (*pte_hole)(unsigned long, unsigned long, struct mm_walk *);
939 int (*hugetlb_entry)(pte_t *, unsigned long,
940 unsigned long, unsigned long, struct mm_walk *);
941 struct mm_struct *mm;
942 void *private;
943 };
944
945 int walk_page_range(unsigned long addr, unsigned long end,
946 struct mm_walk *walk);
947 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
948 unsigned long end, unsigned long floor, unsigned long ceiling);
949 int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
950 struct vm_area_struct *vma);
951 void unmap_mapping_range(struct address_space *mapping,
952 loff_t const holebegin, loff_t const holelen, int even_cows);
953 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
954 unsigned long *pfn);
955 int follow_phys(struct vm_area_struct *vma, unsigned long address,
956 unsigned int flags, unsigned long *prot, resource_size_t *phys);
957 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
958 void *buf, int len, int write);
959
960 static inline void unmap_shared_mapping_range(struct address_space *mapping,
961 loff_t const holebegin, loff_t const holelen)
962 {
963 unmap_mapping_range(mapping, holebegin, holelen, 0);
964 }
965
966 extern void truncate_pagecache(struct inode *inode, loff_t old, loff_t new);
967 extern void truncate_setsize(struct inode *inode, loff_t newsize);
968 extern int vmtruncate(struct inode *inode, loff_t offset);
969 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
970 int truncate_inode_page(struct address_space *mapping, struct page *page);
971 int generic_error_remove_page(struct address_space *mapping, struct page *page);
972 int invalidate_inode_page(struct page *page);
973
974 #ifdef CONFIG_MMU
975 extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
976 unsigned long address, unsigned int flags);
977 extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
978 unsigned long address, unsigned int fault_flags);
979 #else
980 static inline int handle_mm_fault(struct mm_struct *mm,
981 struct vm_area_struct *vma, unsigned long address,
982 unsigned int flags)
983 {
984 /* should never happen if there's no MMU */
985 BUG();
986 return VM_FAULT_SIGBUS;
987 }
988 static inline int fixup_user_fault(struct task_struct *tsk,
989 struct mm_struct *mm, unsigned long address,
990 unsigned int fault_flags)
991 {
992 /* should never happen if there's no MMU */
993 BUG();
994 return -EFAULT;
995 }
996 #endif
997
998 extern int make_pages_present(unsigned long addr, unsigned long end);
999 extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write);
1000 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1001 void *buf, int len, int write);
1002
1003 int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1004 unsigned long start, int len, unsigned int foll_flags,
1005 struct page **pages, struct vm_area_struct **vmas,
1006 int *nonblocking);
1007 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1008 unsigned long start, int nr_pages, int write, int force,
1009 struct page **pages, struct vm_area_struct **vmas);
1010 int get_user_pages_fast(unsigned long start, int nr_pages, int write,
1011 struct page **pages);
1012 struct kvec;
1013 int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1014 struct page **pages);
1015 int get_kernel_page(unsigned long start, int write, struct page **pages);
1016 struct page *get_dump_page(unsigned long addr);
1017
1018 extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
1019 extern void do_invalidatepage(struct page *page, unsigned long offset);
1020
1021 int __set_page_dirty_nobuffers(struct page *page);
1022 int __set_page_dirty_no_writeback(struct page *page);
1023 int redirty_page_for_writepage(struct writeback_control *wbc,
1024 struct page *page);
1025 void account_page_dirtied(struct page *page, struct address_space *mapping);
1026 void account_page_writeback(struct page *page);
1027 int set_page_dirty(struct page *page);
1028 int set_page_dirty_lock(struct page *page);
1029 int clear_page_dirty_for_io(struct page *page);
1030
1031 /* Is the vma a continuation of the stack vma above it? */
1032 static inline int vma_growsdown(struct vm_area_struct *vma, unsigned long addr)
1033 {
1034 return vma && (vma->vm_end == addr) && (vma->vm_flags & VM_GROWSDOWN);
1035 }
1036
1037 static inline int stack_guard_page_start(struct vm_area_struct *vma,
1038 unsigned long addr)
1039 {
1040 return (vma->vm_flags & VM_GROWSDOWN) &&
1041 (vma->vm_start == addr) &&
1042 !vma_growsdown(vma->vm_prev, addr);
1043 }
1044
1045 /* Is the vma a continuation of the stack vma below it? */
1046 static inline int vma_growsup(struct vm_area_struct *vma, unsigned long addr)
1047 {
1048 return vma && (vma->vm_start == addr) && (vma->vm_flags & VM_GROWSUP);
1049 }
1050
1051 static inline int stack_guard_page_end(struct vm_area_struct *vma,
1052 unsigned long addr)
1053 {
1054 return (vma->vm_flags & VM_GROWSUP) &&
1055 (vma->vm_end == addr) &&
1056 !vma_growsup(vma->vm_next, addr);
1057 }
1058
1059 extern pid_t
1060 vm_is_stack(struct task_struct *task, struct vm_area_struct *vma, int in_group);
1061
1062 extern unsigned long move_page_tables(struct vm_area_struct *vma,
1063 unsigned long old_addr, struct vm_area_struct *new_vma,
1064 unsigned long new_addr, unsigned long len);
1065 extern unsigned long do_mremap(unsigned long addr,
1066 unsigned long old_len, unsigned long new_len,
1067 unsigned long flags, unsigned long new_addr);
1068 extern int mprotect_fixup(struct vm_area_struct *vma,
1069 struct vm_area_struct **pprev, unsigned long start,
1070 unsigned long end, unsigned long newflags);
1071
1072 /*
1073 * doesn't attempt to fault and will return short.
1074 */
1075 int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1076 struct page **pages);
1077 /*
1078 * per-process(per-mm_struct) statistics.
1079 */
1080 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1081 {
1082 long val = atomic_long_read(&mm->rss_stat.count[member]);
1083
1084 #ifdef SPLIT_RSS_COUNTING
1085 /*
1086 * counter is updated in asynchronous manner and may go to minus.
1087 * But it's never be expected number for users.
1088 */
1089 if (val < 0)
1090 val = 0;
1091 #endif
1092 return (unsigned long)val;
1093 }
1094
1095 static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1096 {
1097 atomic_long_add(value, &mm->rss_stat.count[member]);
1098 }
1099
1100 static inline void inc_mm_counter(struct mm_struct *mm, int member)
1101 {
1102 atomic_long_inc(&mm->rss_stat.count[member]);
1103 }
1104
1105 static inline void dec_mm_counter(struct mm_struct *mm, int member)
1106 {
1107 atomic_long_dec(&mm->rss_stat.count[member]);
1108 }
1109
1110 static inline unsigned long get_mm_rss(struct mm_struct *mm)
1111 {
1112 return get_mm_counter(mm, MM_FILEPAGES) +
1113 get_mm_counter(mm, MM_ANONPAGES);
1114 }
1115
1116 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1117 {
1118 return max(mm->hiwater_rss, get_mm_rss(mm));
1119 }
1120
1121 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1122 {
1123 return max(mm->hiwater_vm, mm->total_vm);
1124 }
1125
1126 static inline void update_hiwater_rss(struct mm_struct *mm)
1127 {
1128 unsigned long _rss = get_mm_rss(mm);
1129
1130 if ((mm)->hiwater_rss < _rss)
1131 (mm)->hiwater_rss = _rss;
1132 }
1133
1134 static inline void update_hiwater_vm(struct mm_struct *mm)
1135 {
1136 if (mm->hiwater_vm < mm->total_vm)
1137 mm->hiwater_vm = mm->total_vm;
1138 }
1139
1140 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1141 struct mm_struct *mm)
1142 {
1143 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1144
1145 if (*maxrss < hiwater_rss)
1146 *maxrss = hiwater_rss;
1147 }
1148
1149 #if defined(SPLIT_RSS_COUNTING)
1150 void sync_mm_rss(struct mm_struct *mm);
1151 #else
1152 static inline void sync_mm_rss(struct mm_struct *mm)
1153 {
1154 }
1155 #endif
1156
1157 int vma_wants_writenotify(struct vm_area_struct *vma);
1158
1159 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1160 spinlock_t **ptl);
1161 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1162 spinlock_t **ptl)
1163 {
1164 pte_t *ptep;
1165 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
1166 return ptep;
1167 }
1168
1169 #ifdef __PAGETABLE_PUD_FOLDED
1170 static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd,
1171 unsigned long address)
1172 {
1173 return 0;
1174 }
1175 #else
1176 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
1177 #endif
1178
1179 #ifdef __PAGETABLE_PMD_FOLDED
1180 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
1181 unsigned long address)
1182 {
1183 return 0;
1184 }
1185 #else
1186 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
1187 #endif
1188
1189 int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
1190 pmd_t *pmd, unsigned long address);
1191 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
1192
1193 /*
1194 * The following ifdef needed to get the 4level-fixup.h header to work.
1195 * Remove it when 4level-fixup.h has been removed.
1196 */
1197 #if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
1198 static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
1199 {
1200 return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))?
1201 NULL: pud_offset(pgd, address);
1202 }
1203
1204 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1205 {
1206 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
1207 NULL: pmd_offset(pud, address);
1208 }
1209 #endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
1210
1211 #if USE_SPLIT_PTLOCKS
1212 /*
1213 * We tuck a spinlock to guard each pagetable page into its struct page,
1214 * at page->private, with BUILD_BUG_ON to make sure that this will not
1215 * overflow into the next struct page (as it might with DEBUG_SPINLOCK).
1216 * When freeing, reset page->mapping so free_pages_check won't complain.
1217 */
1218 #define __pte_lockptr(page) &((page)->ptl)
1219 #define pte_lock_init(_page) do { \
1220 spin_lock_init(__pte_lockptr(_page)); \
1221 } while (0)
1222 #define pte_lock_deinit(page) ((page)->mapping = NULL)
1223 #define pte_lockptr(mm, pmd) ({(void)(mm); __pte_lockptr(pmd_page(*(pmd)));})
1224 #else /* !USE_SPLIT_PTLOCKS */
1225 /*
1226 * We use mm->page_table_lock to guard all pagetable pages of the mm.
1227 */
1228 #define pte_lock_init(page) do {} while (0)
1229 #define pte_lock_deinit(page) do {} while (0)
1230 #define pte_lockptr(mm, pmd) ({(void)(pmd); &(mm)->page_table_lock;})
1231 #endif /* USE_SPLIT_PTLOCKS */
1232
1233 static inline void pgtable_page_ctor(struct page *page)
1234 {
1235 pte_lock_init(page);
1236 inc_zone_page_state(page, NR_PAGETABLE);
1237 }
1238
1239 static inline void pgtable_page_dtor(struct page *page)
1240 {
1241 pte_lock_deinit(page);
1242 dec_zone_page_state(page, NR_PAGETABLE);
1243 }
1244
1245 #define pte_offset_map_lock(mm, pmd, address, ptlp) \
1246 ({ \
1247 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
1248 pte_t *__pte = pte_offset_map(pmd, address); \
1249 *(ptlp) = __ptl; \
1250 spin_lock(__ptl); \
1251 __pte; \
1252 })
1253
1254 #define pte_unmap_unlock(pte, ptl) do { \
1255 spin_unlock(ptl); \
1256 pte_unmap(pte); \
1257 } while (0)
1258
1259 #define pte_alloc_map(mm, vma, pmd, address) \
1260 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, vma, \
1261 pmd, address))? \
1262 NULL: pte_offset_map(pmd, address))
1263
1264 #define pte_alloc_map_lock(mm, pmd, address, ptlp) \
1265 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, NULL, \
1266 pmd, address))? \
1267 NULL: pte_offset_map_lock(mm, pmd, address, ptlp))
1268
1269 #define pte_alloc_kernel(pmd, address) \
1270 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
1271 NULL: pte_offset_kernel(pmd, address))
1272
1273 extern void free_area_init(unsigned long * zones_size);
1274 extern void free_area_init_node(int nid, unsigned long * zones_size,
1275 unsigned long zone_start_pfn, unsigned long *zholes_size);
1276 extern void free_initmem(void);
1277
1278 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1279 /*
1280 * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its
1281 * zones, allocate the backing mem_map and account for memory holes in a more
1282 * architecture independent manner. This is a substitute for creating the
1283 * zone_sizes[] and zholes_size[] arrays and passing them to
1284 * free_area_init_node()
1285 *
1286 * An architecture is expected to register range of page frames backed by
1287 * physical memory with memblock_add[_node]() before calling
1288 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
1289 * usage, an architecture is expected to do something like
1290 *
1291 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
1292 * max_highmem_pfn};
1293 * for_each_valid_physical_page_range()
1294 * memblock_add_node(base, size, nid)
1295 * free_area_init_nodes(max_zone_pfns);
1296 *
1297 * free_bootmem_with_active_regions() calls free_bootmem_node() for each
1298 * registered physical page range. Similarly
1299 * sparse_memory_present_with_active_regions() calls memory_present() for
1300 * each range when SPARSEMEM is enabled.
1301 *
1302 * See mm/page_alloc.c for more information on each function exposed by
1303 * CONFIG_HAVE_MEMBLOCK_NODE_MAP.
1304 */
1305 extern void free_area_init_nodes(unsigned long *max_zone_pfn);
1306 unsigned long node_map_pfn_alignment(void);
1307 unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
1308 unsigned long end_pfn);
1309 extern unsigned long absent_pages_in_range(unsigned long start_pfn,
1310 unsigned long end_pfn);
1311 extern void get_pfn_range_for_nid(unsigned int nid,
1312 unsigned long *start_pfn, unsigned long *end_pfn);
1313 extern unsigned long find_min_pfn_with_active_regions(void);
1314 extern void free_bootmem_with_active_regions(int nid,
1315 unsigned long max_low_pfn);
1316 extern void sparse_memory_present_with_active_regions(int nid);
1317
1318 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
1319
1320 #if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \
1321 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
1322 static inline int __early_pfn_to_nid(unsigned long pfn)
1323 {
1324 return 0;
1325 }
1326 #else
1327 /* please see mm/page_alloc.c */
1328 extern int __meminit early_pfn_to_nid(unsigned long pfn);
1329 #ifdef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
1330 /* there is a per-arch backend function. */
1331 extern int __meminit __early_pfn_to_nid(unsigned long pfn);
1332 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
1333 #endif
1334
1335 extern void set_dma_reserve(unsigned long new_dma_reserve);
1336 extern void memmap_init_zone(unsigned long, int, unsigned long,
1337 unsigned long, enum memmap_context);
1338 extern void setup_per_zone_wmarks(void);
1339 extern int __meminit init_per_zone_wmark_min(void);
1340 extern void mem_init(void);
1341 extern void __init mmap_init(void);
1342 extern void show_mem(unsigned int flags);
1343 extern void si_meminfo(struct sysinfo * val);
1344 extern void si_meminfo_node(struct sysinfo *val, int nid);
1345 extern int after_bootmem;
1346
1347 extern __printf(3, 4)
1348 void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...);
1349
1350 extern void setup_per_cpu_pageset(void);
1351
1352 extern void zone_pcp_update(struct zone *zone);
1353 extern void zone_pcp_reset(struct zone *zone);
1354
1355 /* nommu.c */
1356 extern atomic_long_t mmap_pages_allocated;
1357 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
1358
1359 /* prio_tree.c */
1360 void vma_prio_tree_add(struct vm_area_struct *, struct vm_area_struct *old);
1361 void vma_prio_tree_insert(struct vm_area_struct *, struct prio_tree_root *);
1362 void vma_prio_tree_remove(struct vm_area_struct *, struct prio_tree_root *);
1363 struct vm_area_struct *vma_prio_tree_next(struct vm_area_struct *vma,
1364 struct prio_tree_iter *iter);
1365
1366 #define vma_prio_tree_foreach(vma, iter, root, begin, end) \
1367 for (prio_tree_iter_init(iter, root, begin, end), vma = NULL; \
1368 (vma = vma_prio_tree_next(vma, iter)); )
1369
1370 static inline void vma_nonlinear_insert(struct vm_area_struct *vma,
1371 struct list_head *list)
1372 {
1373 vma->shared.vm_set.parent = NULL;
1374 list_add_tail(&vma->shared.vm_set.list, list);
1375 }
1376
1377 /* mmap.c */
1378 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
1379 extern int vma_adjust(struct vm_area_struct *vma, unsigned long start,
1380 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert);
1381 extern struct vm_area_struct *vma_merge(struct mm_struct *,
1382 struct vm_area_struct *prev, unsigned long addr, unsigned long end,
1383 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
1384 struct mempolicy *);
1385 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
1386 extern int split_vma(struct mm_struct *,
1387 struct vm_area_struct *, unsigned long addr, int new_below);
1388 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
1389 extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
1390 struct rb_node **, struct rb_node *);
1391 extern void unlink_file_vma(struct vm_area_struct *);
1392 extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
1393 unsigned long addr, unsigned long len, pgoff_t pgoff);
1394 extern void exit_mmap(struct mm_struct *);
1395
1396 extern int mm_take_all_locks(struct mm_struct *mm);
1397 extern void mm_drop_all_locks(struct mm_struct *mm);
1398
1399 /* From fs/proc/base.c. callers must _not_ hold the mm's exe_file_lock */
1400 extern void added_exe_file_vma(struct mm_struct *mm);
1401 extern void removed_exe_file_vma(struct mm_struct *mm);
1402 extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
1403 extern struct file *get_mm_exe_file(struct mm_struct *mm);
1404
1405 extern int may_expand_vm(struct mm_struct *mm, unsigned long npages);
1406 extern int install_special_mapping(struct mm_struct *mm,
1407 unsigned long addr, unsigned long len,
1408 unsigned long flags, struct page **pages);
1409
1410 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
1411
1412 extern unsigned long mmap_region(struct file *file, unsigned long addr,
1413 unsigned long len, unsigned long flags,
1414 vm_flags_t vm_flags, unsigned long pgoff);
1415 extern unsigned long do_mmap_pgoff(struct file *, unsigned long,
1416 unsigned long, unsigned long,
1417 unsigned long, unsigned long);
1418 extern int do_munmap(struct mm_struct *, unsigned long, size_t);
1419
1420 /* These take the mm semaphore themselves */
1421 extern unsigned long vm_brk(unsigned long, unsigned long);
1422 extern int vm_munmap(unsigned long, size_t);
1423 extern unsigned long vm_mmap(struct file *, unsigned long,
1424 unsigned long, unsigned long,
1425 unsigned long, unsigned long);
1426
1427 /* truncate.c */
1428 extern void truncate_inode_pages(struct address_space *, loff_t);
1429 extern void truncate_inode_pages_range(struct address_space *,
1430 loff_t lstart, loff_t lend);
1431
1432 /* generic vm_area_ops exported for stackable file systems */
1433 extern int filemap_fault(struct vm_area_struct *, struct vm_fault *);
1434 extern int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf);
1435
1436 /* mm/page-writeback.c */
1437 int write_one_page(struct page *page, int wait);
1438 void task_dirty_inc(struct task_struct *tsk);
1439
1440 /* readahead.c */
1441 #define VM_MAX_READAHEAD 128 /* kbytes */
1442 #define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */
1443
1444 int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
1445 pgoff_t offset, unsigned long nr_to_read);
1446
1447 void page_cache_sync_readahead(struct address_space *mapping,
1448 struct file_ra_state *ra,
1449 struct file *filp,
1450 pgoff_t offset,
1451 unsigned long size);
1452
1453 void page_cache_async_readahead(struct address_space *mapping,
1454 struct file_ra_state *ra,
1455 struct file *filp,
1456 struct page *pg,
1457 pgoff_t offset,
1458 unsigned long size);
1459
1460 unsigned long max_sane_readahead(unsigned long nr);
1461 unsigned long ra_submit(struct file_ra_state *ra,
1462 struct address_space *mapping,
1463 struct file *filp);
1464
1465 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
1466 extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
1467
1468 /* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
1469 extern int expand_downwards(struct vm_area_struct *vma,
1470 unsigned long address);
1471 #if VM_GROWSUP
1472 extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
1473 #else
1474 #define expand_upwards(vma, address) do { } while (0)
1475 #endif
1476
1477 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
1478 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
1479 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
1480 struct vm_area_struct **pprev);
1481
1482 /* Look up the first VMA which intersects the interval start_addr..end_addr-1,
1483 NULL if none. Assume start_addr < end_addr. */
1484 static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
1485 {
1486 struct vm_area_struct * vma = find_vma(mm,start_addr);
1487
1488 if (vma && end_addr <= vma->vm_start)
1489 vma = NULL;
1490 return vma;
1491 }
1492
1493 static inline unsigned long vma_pages(struct vm_area_struct *vma)
1494 {
1495 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
1496 }
1497
1498 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */
1499 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
1500 unsigned long vm_start, unsigned long vm_end)
1501 {
1502 struct vm_area_struct *vma = find_vma(mm, vm_start);
1503
1504 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
1505 vma = NULL;
1506
1507 return vma;
1508 }
1509
1510 #ifdef CONFIG_MMU
1511 pgprot_t vm_get_page_prot(unsigned long vm_flags);
1512 #else
1513 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
1514 {
1515 return __pgprot(0);
1516 }
1517 #endif
1518
1519 struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
1520 int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
1521 unsigned long pfn, unsigned long size, pgprot_t);
1522 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
1523 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1524 unsigned long pfn);
1525 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1526 unsigned long pfn);
1527
1528 struct page *follow_page(struct vm_area_struct *, unsigned long address,
1529 unsigned int foll_flags);
1530 #define FOLL_WRITE 0x01 /* check pte is writable */
1531 #define FOLL_TOUCH 0x02 /* mark page accessed */
1532 #define FOLL_GET 0x04 /* do get_page on page */
1533 #define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
1534 #define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
1535 #define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO
1536 * and return without waiting upon it */
1537 #define FOLL_MLOCK 0x40 /* mark page as mlocked */
1538 #define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */
1539 #define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */
1540
1541 typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
1542 void *data);
1543 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
1544 unsigned long size, pte_fn_t fn, void *data);
1545
1546 #ifdef CONFIG_PROC_FS
1547 void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long);
1548 #else
1549 static inline void vm_stat_account(struct mm_struct *mm,
1550 unsigned long flags, struct file *file, long pages)
1551 {
1552 mm->total_vm += pages;
1553 }
1554 #endif /* CONFIG_PROC_FS */
1555
1556 #ifdef CONFIG_DEBUG_PAGEALLOC
1557 extern void kernel_map_pages(struct page *page, int numpages, int enable);
1558 #ifdef CONFIG_HIBERNATION
1559 extern bool kernel_page_present(struct page *page);
1560 #endif /* CONFIG_HIBERNATION */
1561 #else
1562 static inline void
1563 kernel_map_pages(struct page *page, int numpages, int enable) {}
1564 #ifdef CONFIG_HIBERNATION
1565 static inline bool kernel_page_present(struct page *page) { return true; }
1566 #endif /* CONFIG_HIBERNATION */
1567 #endif
1568
1569 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
1570 #ifdef __HAVE_ARCH_GATE_AREA
1571 int in_gate_area_no_mm(unsigned long addr);
1572 int in_gate_area(struct mm_struct *mm, unsigned long addr);
1573 #else
1574 int in_gate_area_no_mm(unsigned long addr);
1575 #define in_gate_area(mm, addr) ({(void)mm; in_gate_area_no_mm(addr);})
1576 #endif /* __HAVE_ARCH_GATE_AREA */
1577
1578 int drop_caches_sysctl_handler(struct ctl_table *, int,
1579 void __user *, size_t *, loff_t *);
1580 unsigned long shrink_slab(struct shrink_control *shrink,
1581 unsigned long nr_pages_scanned,
1582 unsigned long lru_pages);
1583
1584 #ifndef CONFIG_MMU
1585 #define randomize_va_space 0
1586 #else
1587 extern int randomize_va_space;
1588 #endif
1589
1590 const char * arch_vma_name(struct vm_area_struct *vma);
1591 void print_vma_addr(char *prefix, unsigned long rip);
1592
1593 void sparse_mem_maps_populate_node(struct page **map_map,
1594 unsigned long pnum_begin,
1595 unsigned long pnum_end,
1596 unsigned long map_count,
1597 int nodeid);
1598
1599 struct page *sparse_mem_map_populate(unsigned long pnum, int nid);
1600 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
1601 pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node);
1602 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
1603 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
1604 void *vmemmap_alloc_block(unsigned long size, int node);
1605 void *vmemmap_alloc_block_buf(unsigned long size, int node);
1606 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
1607 int vmemmap_populate_basepages(struct page *start_page,
1608 unsigned long pages, int node);
1609 int vmemmap_populate(struct page *start_page, unsigned long pages, int node);
1610 void vmemmap_populate_print_last(void);
1611
1612
1613 enum mf_flags {
1614 MF_COUNT_INCREASED = 1 << 0,
1615 MF_ACTION_REQUIRED = 1 << 1,
1616 MF_MUST_KILL = 1 << 2,
1617 };
1618 extern int memory_failure(unsigned long pfn, int trapno, int flags);
1619 extern void memory_failure_queue(unsigned long pfn, int trapno, int flags);
1620 extern int unpoison_memory(unsigned long pfn);
1621 extern int sysctl_memory_failure_early_kill;
1622 extern int sysctl_memory_failure_recovery;
1623 extern void shake_page(struct page *p, int access);
1624 extern atomic_long_t mce_bad_pages;
1625 extern int soft_offline_page(struct page *page, int flags);
1626
1627 extern void dump_page(struct page *page);
1628
1629 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
1630 extern void clear_huge_page(struct page *page,
1631 unsigned long addr,
1632 unsigned int pages_per_huge_page);
1633 extern void copy_user_huge_page(struct page *dst, struct page *src,
1634 unsigned long addr, struct vm_area_struct *vma,
1635 unsigned int pages_per_huge_page);
1636 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
1637
1638 #ifdef CONFIG_DEBUG_PAGEALLOC
1639 extern unsigned int _debug_guardpage_minorder;
1640
1641 static inline unsigned int debug_guardpage_minorder(void)
1642 {
1643 return _debug_guardpage_minorder;
1644 }
1645
1646 static inline bool page_is_guard(struct page *page)
1647 {
1648 return test_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
1649 }
1650 #else
1651 static inline unsigned int debug_guardpage_minorder(void) { return 0; }
1652 static inline bool page_is_guard(struct page *page) { return false; }
1653 #endif /* CONFIG_DEBUG_PAGEALLOC */
1654
1655 #endif /* __KERNEL__ */
1656 #endif /* _LINUX_MM_H */
This page took 0.067436 seconds and 5 git commands to generate.