71c5d2f667ed90ea40a47f14b1291e332da91bbd
[deliverable/linux.git] / include / linux / mm.h
1 #ifndef _LINUX_MM_H
2 #define _LINUX_MM_H
3
4 #include <linux/sched.h>
5 #include <linux/errno.h>
6 #include <linux/capability.h>
7
8 #ifdef __KERNEL__
9
10 #include <linux/gfp.h>
11 #include <linux/list.h>
12 #include <linux/mmzone.h>
13 #include <linux/rbtree.h>
14 #include <linux/prio_tree.h>
15 #include <linux/fs.h>
16 #include <linux/mutex.h>
17
18 struct mempolicy;
19 struct anon_vma;
20
21 #ifndef CONFIG_DISCONTIGMEM /* Don't use mapnrs, do it properly */
22 extern unsigned long max_mapnr;
23 #endif
24
25 extern unsigned long num_physpages;
26 extern void * high_memory;
27 extern unsigned long vmalloc_earlyreserve;
28 extern int page_cluster;
29
30 #ifdef CONFIG_SYSCTL
31 extern int sysctl_legacy_va_layout;
32 #else
33 #define sysctl_legacy_va_layout 0
34 #endif
35
36 #include <asm/page.h>
37 #include <asm/pgtable.h>
38 #include <asm/processor.h>
39 #include <asm/atomic.h>
40
41 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
42
43 /*
44 * Linux kernel virtual memory manager primitives.
45 * The idea being to have a "virtual" mm in the same way
46 * we have a virtual fs - giving a cleaner interface to the
47 * mm details, and allowing different kinds of memory mappings
48 * (from shared memory to executable loading to arbitrary
49 * mmap() functions).
50 */
51
52 /*
53 * This struct defines a memory VMM memory area. There is one of these
54 * per VM-area/task. A VM area is any part of the process virtual memory
55 * space that has a special rule for the page-fault handlers (ie a shared
56 * library, the executable area etc).
57 */
58 struct vm_area_struct {
59 struct mm_struct * vm_mm; /* The address space we belong to. */
60 unsigned long vm_start; /* Our start address within vm_mm. */
61 unsigned long vm_end; /* The first byte after our end address
62 within vm_mm. */
63
64 /* linked list of VM areas per task, sorted by address */
65 struct vm_area_struct *vm_next;
66
67 pgprot_t vm_page_prot; /* Access permissions of this VMA. */
68 unsigned long vm_flags; /* Flags, listed below. */
69
70 struct rb_node vm_rb;
71
72 /*
73 * For areas with an address space and backing store,
74 * linkage into the address_space->i_mmap prio tree, or
75 * linkage to the list of like vmas hanging off its node, or
76 * linkage of vma in the address_space->i_mmap_nonlinear list.
77 */
78 union {
79 struct {
80 struct list_head list;
81 void *parent; /* aligns with prio_tree_node parent */
82 struct vm_area_struct *head;
83 } vm_set;
84
85 struct raw_prio_tree_node prio_tree_node;
86 } shared;
87
88 /*
89 * A file's MAP_PRIVATE vma can be in both i_mmap tree and anon_vma
90 * list, after a COW of one of the file pages. A MAP_SHARED vma
91 * can only be in the i_mmap tree. An anonymous MAP_PRIVATE, stack
92 * or brk vma (with NULL file) can only be in an anon_vma list.
93 */
94 struct list_head anon_vma_node; /* Serialized by anon_vma->lock */
95 struct anon_vma *anon_vma; /* Serialized by page_table_lock */
96
97 /* Function pointers to deal with this struct. */
98 struct vm_operations_struct * vm_ops;
99
100 /* Information about our backing store: */
101 unsigned long vm_pgoff; /* Offset (within vm_file) in PAGE_SIZE
102 units, *not* PAGE_CACHE_SIZE */
103 struct file * vm_file; /* File we map to (can be NULL). */
104 void * vm_private_data; /* was vm_pte (shared mem) */
105 unsigned long vm_truncate_count;/* truncate_count or restart_addr */
106
107 #ifndef CONFIG_MMU
108 atomic_t vm_usage; /* refcount (VMAs shared if !MMU) */
109 #endif
110 #ifdef CONFIG_NUMA
111 struct mempolicy *vm_policy; /* NUMA policy for the VMA */
112 #endif
113 };
114
115 /*
116 * This struct defines the per-mm list of VMAs for uClinux. If CONFIG_MMU is
117 * disabled, then there's a single shared list of VMAs maintained by the
118 * system, and mm's subscribe to these individually
119 */
120 struct vm_list_struct {
121 struct vm_list_struct *next;
122 struct vm_area_struct *vma;
123 };
124
125 #ifndef CONFIG_MMU
126 extern struct rb_root nommu_vma_tree;
127 extern struct rw_semaphore nommu_vma_sem;
128
129 extern unsigned int kobjsize(const void *objp);
130 #endif
131
132 /*
133 * vm_flags..
134 */
135 #define VM_READ 0x00000001 /* currently active flags */
136 #define VM_WRITE 0x00000002
137 #define VM_EXEC 0x00000004
138 #define VM_SHARED 0x00000008
139
140 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
141 #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
142 #define VM_MAYWRITE 0x00000020
143 #define VM_MAYEXEC 0x00000040
144 #define VM_MAYSHARE 0x00000080
145
146 #define VM_GROWSDOWN 0x00000100 /* general info on the segment */
147 #define VM_GROWSUP 0x00000200
148 #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
149 #define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
150
151 #define VM_EXECUTABLE 0x00001000
152 #define VM_LOCKED 0x00002000
153 #define VM_IO 0x00004000 /* Memory mapped I/O or similar */
154
155 /* Used by sys_madvise() */
156 #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
157 #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
158
159 #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
160 #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
161 #define VM_RESERVED 0x00080000 /* Count as reserved_vm like IO */
162 #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
163 #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
164 #define VM_NONLINEAR 0x00800000 /* Is non-linear (remap_file_pages) */
165 #define VM_MAPPED_COPY 0x01000000 /* T if mapped copy of data (nommu mmap) */
166 #define VM_INSERTPAGE 0x02000000 /* The vma has had "vm_insert_page()" done on it */
167
168 #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
169 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
170 #endif
171
172 #ifdef CONFIG_STACK_GROWSUP
173 #define VM_STACK_FLAGS (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
174 #else
175 #define VM_STACK_FLAGS (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
176 #endif
177
178 #define VM_READHINTMASK (VM_SEQ_READ | VM_RAND_READ)
179 #define VM_ClearReadHint(v) (v)->vm_flags &= ~VM_READHINTMASK
180 #define VM_NormalReadHint(v) (!((v)->vm_flags & VM_READHINTMASK))
181 #define VM_SequentialReadHint(v) ((v)->vm_flags & VM_SEQ_READ)
182 #define VM_RandomReadHint(v) ((v)->vm_flags & VM_RAND_READ)
183
184 /*
185 * mapping from the currently active vm_flags protection bits (the
186 * low four bits) to a page protection mask..
187 */
188 extern pgprot_t protection_map[16];
189
190
191 /*
192 * These are the virtual MM functions - opening of an area, closing and
193 * unmapping it (needed to keep files on disk up-to-date etc), pointer
194 * to the functions called when a no-page or a wp-page exception occurs.
195 */
196 struct vm_operations_struct {
197 void (*open)(struct vm_area_struct * area);
198 void (*close)(struct vm_area_struct * area);
199 struct page * (*nopage)(struct vm_area_struct * area, unsigned long address, int *type);
200 int (*populate)(struct vm_area_struct * area, unsigned long address, unsigned long len, pgprot_t prot, unsigned long pgoff, int nonblock);
201
202 /* notification that a previously read-only page is about to become
203 * writable, if an error is returned it will cause a SIGBUS */
204 int (*page_mkwrite)(struct vm_area_struct *vma, struct page *page);
205 #ifdef CONFIG_NUMA
206 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
207 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
208 unsigned long addr);
209 #endif
210 };
211
212 struct mmu_gather;
213 struct inode;
214
215 /*
216 * Each physical page in the system has a struct page associated with
217 * it to keep track of whatever it is we are using the page for at the
218 * moment. Note that we have no way to track which tasks are using
219 * a page.
220 */
221 struct page {
222 unsigned long flags; /* Atomic flags, some possibly
223 * updated asynchronously */
224 atomic_t _count; /* Usage count, see below. */
225 atomic_t _mapcount; /* Count of ptes mapped in mms,
226 * to show when page is mapped
227 * & limit reverse map searches.
228 */
229 union {
230 struct {
231 unsigned long private; /* Mapping-private opaque data:
232 * usually used for buffer_heads
233 * if PagePrivate set; used for
234 * swp_entry_t if PageSwapCache;
235 * indicates order in the buddy
236 * system if PG_buddy is set.
237 */
238 struct address_space *mapping; /* If low bit clear, points to
239 * inode address_space, or NULL.
240 * If page mapped as anonymous
241 * memory, low bit is set, and
242 * it points to anon_vma object:
243 * see PAGE_MAPPING_ANON below.
244 */
245 };
246 #if NR_CPUS >= CONFIG_SPLIT_PTLOCK_CPUS
247 spinlock_t ptl;
248 #endif
249 };
250 pgoff_t index; /* Our offset within mapping. */
251 struct list_head lru; /* Pageout list, eg. active_list
252 * protected by zone->lru_lock !
253 */
254 /*
255 * On machines where all RAM is mapped into kernel address space,
256 * we can simply calculate the virtual address. On machines with
257 * highmem some memory is mapped into kernel virtual memory
258 * dynamically, so we need a place to store that address.
259 * Note that this field could be 16 bits on x86 ... ;)
260 *
261 * Architectures with slow multiplication can define
262 * WANT_PAGE_VIRTUAL in asm/page.h
263 */
264 #if defined(WANT_PAGE_VIRTUAL)
265 void *virtual; /* Kernel virtual address (NULL if
266 not kmapped, ie. highmem) */
267 #endif /* WANT_PAGE_VIRTUAL */
268 };
269
270 #define page_private(page) ((page)->private)
271 #define set_page_private(page, v) ((page)->private = (v))
272
273 /*
274 * FIXME: take this include out, include page-flags.h in
275 * files which need it (119 of them)
276 */
277 #include <linux/page-flags.h>
278
279 /*
280 * Methods to modify the page usage count.
281 *
282 * What counts for a page usage:
283 * - cache mapping (page->mapping)
284 * - private data (page->private)
285 * - page mapped in a task's page tables, each mapping
286 * is counted separately
287 *
288 * Also, many kernel routines increase the page count before a critical
289 * routine so they can be sure the page doesn't go away from under them.
290 */
291
292 /*
293 * Drop a ref, return true if the logical refcount fell to zero (the page has
294 * no users)
295 */
296 static inline int put_page_testzero(struct page *page)
297 {
298 BUG_ON(atomic_read(&page->_count) == 0);
299 return atomic_dec_and_test(&page->_count);
300 }
301
302 /*
303 * Try to grab a ref unless the page has a refcount of zero, return false if
304 * that is the case.
305 */
306 static inline int get_page_unless_zero(struct page *page)
307 {
308 return atomic_inc_not_zero(&page->_count);
309 }
310
311 extern void FASTCALL(__page_cache_release(struct page *));
312
313 static inline int page_count(struct page *page)
314 {
315 if (unlikely(PageCompound(page)))
316 page = (struct page *)page_private(page);
317 return atomic_read(&page->_count);
318 }
319
320 static inline void get_page(struct page *page)
321 {
322 if (unlikely(PageCompound(page)))
323 page = (struct page *)page_private(page);
324 atomic_inc(&page->_count);
325 }
326
327 /*
328 * Setup the page count before being freed into the page allocator for
329 * the first time (boot or memory hotplug)
330 */
331 static inline void init_page_count(struct page *page)
332 {
333 atomic_set(&page->_count, 1);
334 }
335
336 void put_page(struct page *page);
337
338 void split_page(struct page *page, unsigned int order);
339
340 /*
341 * Multiple processes may "see" the same page. E.g. for untouched
342 * mappings of /dev/null, all processes see the same page full of
343 * zeroes, and text pages of executables and shared libraries have
344 * only one copy in memory, at most, normally.
345 *
346 * For the non-reserved pages, page_count(page) denotes a reference count.
347 * page_count() == 0 means the page is free. page->lru is then used for
348 * freelist management in the buddy allocator.
349 * page_count() == 1 means the page is used for exactly one purpose
350 * (e.g. a private data page of one process).
351 *
352 * A page may be used for kmalloc() or anyone else who does a
353 * __get_free_page(). In this case the page_count() is at least 1, and
354 * all other fields are unused but should be 0 or NULL. The
355 * management of this page is the responsibility of the one who uses
356 * it.
357 *
358 * The other pages (we may call them "process pages") are completely
359 * managed by the Linux memory manager: I/O, buffers, swapping etc.
360 * The following discussion applies only to them.
361 *
362 * A page may belong to an inode's memory mapping. In this case,
363 * page->mapping is the pointer to the inode, and page->index is the
364 * file offset of the page, in units of PAGE_CACHE_SIZE.
365 *
366 * A page contains an opaque `private' member, which belongs to the
367 * page's address_space. Usually, this is the address of a circular
368 * list of the page's disk buffers.
369 *
370 * For pages belonging to inodes, the page_count() is the number of
371 * attaches, plus 1 if `private' contains something, plus one for
372 * the page cache itself.
373 *
374 * Instead of keeping dirty/clean pages in per address-space lists, we instead
375 * now tag pages as dirty/under writeback in the radix tree.
376 *
377 * There is also a per-mapping radix tree mapping index to the page
378 * in memory if present. The tree is rooted at mapping->root.
379 *
380 * All process pages can do I/O:
381 * - inode pages may need to be read from disk,
382 * - inode pages which have been modified and are MAP_SHARED may need
383 * to be written to disk,
384 * - private pages which have been modified may need to be swapped out
385 * to swap space and (later) to be read back into memory.
386 */
387
388 /*
389 * The zone field is never updated after free_area_init_core()
390 * sets it, so none of the operations on it need to be atomic.
391 */
392
393
394 /*
395 * page->flags layout:
396 *
397 * There are three possibilities for how page->flags get
398 * laid out. The first is for the normal case, without
399 * sparsemem. The second is for sparsemem when there is
400 * plenty of space for node and section. The last is when
401 * we have run out of space and have to fall back to an
402 * alternate (slower) way of determining the node.
403 *
404 * No sparsemem: | NODE | ZONE | ... | FLAGS |
405 * with space for node: | SECTION | NODE | ZONE | ... | FLAGS |
406 * no space for node: | SECTION | ZONE | ... | FLAGS |
407 */
408 #ifdef CONFIG_SPARSEMEM
409 #define SECTIONS_WIDTH SECTIONS_SHIFT
410 #else
411 #define SECTIONS_WIDTH 0
412 #endif
413
414 #define ZONES_WIDTH ZONES_SHIFT
415
416 #if SECTIONS_WIDTH+ZONES_WIDTH+NODES_SHIFT <= FLAGS_RESERVED
417 #define NODES_WIDTH NODES_SHIFT
418 #else
419 #define NODES_WIDTH 0
420 #endif
421
422 /* Page flags: | [SECTION] | [NODE] | ZONE | ... | FLAGS | */
423 #define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
424 #define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
425 #define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
426
427 /*
428 * We are going to use the flags for the page to node mapping if its in
429 * there. This includes the case where there is no node, so it is implicit.
430 */
431 #define FLAGS_HAS_NODE (NODES_WIDTH > 0 || NODES_SHIFT == 0)
432
433 #ifndef PFN_SECTION_SHIFT
434 #define PFN_SECTION_SHIFT 0
435 #endif
436
437 /*
438 * Define the bit shifts to access each section. For non-existant
439 * sections we define the shift as 0; that plus a 0 mask ensures
440 * the compiler will optimise away reference to them.
441 */
442 #define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
443 #define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
444 #define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
445
446 /* NODE:ZONE or SECTION:ZONE is used to lookup the zone from a page. */
447 #if FLAGS_HAS_NODE
448 #define ZONETABLE_SHIFT (NODES_SHIFT + ZONES_SHIFT)
449 #else
450 #define ZONETABLE_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
451 #endif
452 #define ZONETABLE_PGSHIFT ZONES_PGSHIFT
453
454 #if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > FLAGS_RESERVED
455 #error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > FLAGS_RESERVED
456 #endif
457
458 #define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
459 #define NODES_MASK ((1UL << NODES_WIDTH) - 1)
460 #define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
461 #define ZONETABLE_MASK ((1UL << ZONETABLE_SHIFT) - 1)
462
463 static inline unsigned long page_zonenum(struct page *page)
464 {
465 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
466 }
467
468 struct zone;
469 extern struct zone *zone_table[];
470
471 static inline int page_zone_id(struct page *page)
472 {
473 return (page->flags >> ZONETABLE_PGSHIFT) & ZONETABLE_MASK;
474 }
475 static inline struct zone *page_zone(struct page *page)
476 {
477 return zone_table[page_zone_id(page)];
478 }
479
480 static inline unsigned long page_to_nid(struct page *page)
481 {
482 if (FLAGS_HAS_NODE)
483 return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
484 else
485 return page_zone(page)->zone_pgdat->node_id;
486 }
487 static inline unsigned long page_to_section(struct page *page)
488 {
489 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
490 }
491
492 static inline void set_page_zone(struct page *page, unsigned long zone)
493 {
494 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
495 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
496 }
497 static inline void set_page_node(struct page *page, unsigned long node)
498 {
499 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
500 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
501 }
502 static inline void set_page_section(struct page *page, unsigned long section)
503 {
504 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
505 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
506 }
507
508 static inline void set_page_links(struct page *page, unsigned long zone,
509 unsigned long node, unsigned long pfn)
510 {
511 set_page_zone(page, zone);
512 set_page_node(page, node);
513 set_page_section(page, pfn_to_section_nr(pfn));
514 }
515
516 #ifndef CONFIG_DISCONTIGMEM
517 /* The array of struct pages - for discontigmem use pgdat->lmem_map */
518 extern struct page *mem_map;
519 #endif
520
521 static __always_inline void *lowmem_page_address(struct page *page)
522 {
523 return __va(page_to_pfn(page) << PAGE_SHIFT);
524 }
525
526 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
527 #define HASHED_PAGE_VIRTUAL
528 #endif
529
530 #if defined(WANT_PAGE_VIRTUAL)
531 #define page_address(page) ((page)->virtual)
532 #define set_page_address(page, address) \
533 do { \
534 (page)->virtual = (address); \
535 } while(0)
536 #define page_address_init() do { } while(0)
537 #endif
538
539 #if defined(HASHED_PAGE_VIRTUAL)
540 void *page_address(struct page *page);
541 void set_page_address(struct page *page, void *virtual);
542 void page_address_init(void);
543 #endif
544
545 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
546 #define page_address(page) lowmem_page_address(page)
547 #define set_page_address(page, address) do { } while(0)
548 #define page_address_init() do { } while(0)
549 #endif
550
551 /*
552 * On an anonymous page mapped into a user virtual memory area,
553 * page->mapping points to its anon_vma, not to a struct address_space;
554 * with the PAGE_MAPPING_ANON bit set to distinguish it.
555 *
556 * Please note that, confusingly, "page_mapping" refers to the inode
557 * address_space which maps the page from disk; whereas "page_mapped"
558 * refers to user virtual address space into which the page is mapped.
559 */
560 #define PAGE_MAPPING_ANON 1
561
562 extern struct address_space swapper_space;
563 static inline struct address_space *page_mapping(struct page *page)
564 {
565 struct address_space *mapping = page->mapping;
566
567 if (unlikely(PageSwapCache(page)))
568 mapping = &swapper_space;
569 else if (unlikely((unsigned long)mapping & PAGE_MAPPING_ANON))
570 mapping = NULL;
571 return mapping;
572 }
573
574 static inline int PageAnon(struct page *page)
575 {
576 return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0;
577 }
578
579 /*
580 * Return the pagecache index of the passed page. Regular pagecache pages
581 * use ->index whereas swapcache pages use ->private
582 */
583 static inline pgoff_t page_index(struct page *page)
584 {
585 if (unlikely(PageSwapCache(page)))
586 return page_private(page);
587 return page->index;
588 }
589
590 /*
591 * The atomic page->_mapcount, like _count, starts from -1:
592 * so that transitions both from it and to it can be tracked,
593 * using atomic_inc_and_test and atomic_add_negative(-1).
594 */
595 static inline void reset_page_mapcount(struct page *page)
596 {
597 atomic_set(&(page)->_mapcount, -1);
598 }
599
600 static inline int page_mapcount(struct page *page)
601 {
602 return atomic_read(&(page)->_mapcount) + 1;
603 }
604
605 /*
606 * Return true if this page is mapped into pagetables.
607 */
608 static inline int page_mapped(struct page *page)
609 {
610 return atomic_read(&(page)->_mapcount) >= 0;
611 }
612
613 /*
614 * Error return values for the *_nopage functions
615 */
616 #define NOPAGE_SIGBUS (NULL)
617 #define NOPAGE_OOM ((struct page *) (-1))
618
619 /*
620 * Different kinds of faults, as returned by handle_mm_fault().
621 * Used to decide whether a process gets delivered SIGBUS or
622 * just gets major/minor fault counters bumped up.
623 */
624 #define VM_FAULT_OOM 0x00
625 #define VM_FAULT_SIGBUS 0x01
626 #define VM_FAULT_MINOR 0x02
627 #define VM_FAULT_MAJOR 0x03
628
629 /*
630 * Special case for get_user_pages.
631 * Must be in a distinct bit from the above VM_FAULT_ flags.
632 */
633 #define VM_FAULT_WRITE 0x10
634
635 #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
636
637 extern void show_free_areas(void);
638
639 #ifdef CONFIG_SHMEM
640 struct page *shmem_nopage(struct vm_area_struct *vma,
641 unsigned long address, int *type);
642 int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *new);
643 struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
644 unsigned long addr);
645 int shmem_lock(struct file *file, int lock, struct user_struct *user);
646 #else
647 #define shmem_nopage filemap_nopage
648
649 static inline int shmem_lock(struct file *file, int lock,
650 struct user_struct *user)
651 {
652 return 0;
653 }
654
655 static inline int shmem_set_policy(struct vm_area_struct *vma,
656 struct mempolicy *new)
657 {
658 return 0;
659 }
660
661 static inline struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
662 unsigned long addr)
663 {
664 return NULL;
665 }
666 #endif
667 struct file *shmem_file_setup(char *name, loff_t size, unsigned long flags);
668 extern int shmem_mmap(struct file *file, struct vm_area_struct *vma);
669
670 int shmem_zero_setup(struct vm_area_struct *);
671
672 #ifndef CONFIG_MMU
673 extern unsigned long shmem_get_unmapped_area(struct file *file,
674 unsigned long addr,
675 unsigned long len,
676 unsigned long pgoff,
677 unsigned long flags);
678 #endif
679
680 static inline int can_do_mlock(void)
681 {
682 if (capable(CAP_IPC_LOCK))
683 return 1;
684 if (current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur != 0)
685 return 1;
686 return 0;
687 }
688 extern int user_shm_lock(size_t, struct user_struct *);
689 extern void user_shm_unlock(size_t, struct user_struct *);
690
691 /*
692 * Parameter block passed down to zap_pte_range in exceptional cases.
693 */
694 struct zap_details {
695 struct vm_area_struct *nonlinear_vma; /* Check page->index if set */
696 struct address_space *check_mapping; /* Check page->mapping if set */
697 pgoff_t first_index; /* Lowest page->index to unmap */
698 pgoff_t last_index; /* Highest page->index to unmap */
699 spinlock_t *i_mmap_lock; /* For unmap_mapping_range: */
700 unsigned long truncate_count; /* Compare vm_truncate_count */
701 };
702
703 struct page *vm_normal_page(struct vm_area_struct *, unsigned long, pte_t);
704 unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
705 unsigned long size, struct zap_details *);
706 unsigned long unmap_vmas(struct mmu_gather **tlb,
707 struct vm_area_struct *start_vma, unsigned long start_addr,
708 unsigned long end_addr, unsigned long *nr_accounted,
709 struct zap_details *);
710 void free_pgd_range(struct mmu_gather **tlb, unsigned long addr,
711 unsigned long end, unsigned long floor, unsigned long ceiling);
712 void free_pgtables(struct mmu_gather **tlb, struct vm_area_struct *start_vma,
713 unsigned long floor, unsigned long ceiling);
714 int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
715 struct vm_area_struct *vma);
716 int zeromap_page_range(struct vm_area_struct *vma, unsigned long from,
717 unsigned long size, pgprot_t prot);
718 void unmap_mapping_range(struct address_space *mapping,
719 loff_t const holebegin, loff_t const holelen, int even_cows);
720
721 static inline void unmap_shared_mapping_range(struct address_space *mapping,
722 loff_t const holebegin, loff_t const holelen)
723 {
724 unmap_mapping_range(mapping, holebegin, holelen, 0);
725 }
726
727 extern int vmtruncate(struct inode * inode, loff_t offset);
728 extern int vmtruncate_range(struct inode * inode, loff_t offset, loff_t end);
729 extern int install_page(struct mm_struct *mm, struct vm_area_struct *vma, unsigned long addr, struct page *page, pgprot_t prot);
730 extern int install_file_pte(struct mm_struct *mm, struct vm_area_struct *vma, unsigned long addr, unsigned long pgoff, pgprot_t prot);
731
732 #ifdef CONFIG_MMU
733 extern int __handle_mm_fault(struct mm_struct *mm,struct vm_area_struct *vma,
734 unsigned long address, int write_access);
735
736 static inline int handle_mm_fault(struct mm_struct *mm,
737 struct vm_area_struct *vma, unsigned long address,
738 int write_access)
739 {
740 return __handle_mm_fault(mm, vma, address, write_access) &
741 (~VM_FAULT_WRITE);
742 }
743 #else
744 static inline int handle_mm_fault(struct mm_struct *mm,
745 struct vm_area_struct *vma, unsigned long address,
746 int write_access)
747 {
748 /* should never happen if there's no MMU */
749 BUG();
750 return VM_FAULT_SIGBUS;
751 }
752 #endif
753
754 extern int make_pages_present(unsigned long addr, unsigned long end);
755 extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write);
756 void install_arg_page(struct vm_area_struct *, struct page *, unsigned long);
757
758 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm, unsigned long start,
759 int len, int write, int force, struct page **pages, struct vm_area_struct **vmas);
760 void print_bad_pte(struct vm_area_struct *, pte_t, unsigned long);
761
762 int __set_page_dirty_buffers(struct page *page);
763 int __set_page_dirty_nobuffers(struct page *page);
764 int redirty_page_for_writepage(struct writeback_control *wbc,
765 struct page *page);
766 int FASTCALL(set_page_dirty(struct page *page));
767 int set_page_dirty_lock(struct page *page);
768 int clear_page_dirty_for_io(struct page *page);
769
770 extern unsigned long do_mremap(unsigned long addr,
771 unsigned long old_len, unsigned long new_len,
772 unsigned long flags, unsigned long new_addr);
773
774 /*
775 * Prototype to add a shrinker callback for ageable caches.
776 *
777 * These functions are passed a count `nr_to_scan' and a gfpmask. They should
778 * scan `nr_to_scan' objects, attempting to free them.
779 *
780 * The callback must return the number of objects which remain in the cache.
781 *
782 * The callback will be passed nr_to_scan == 0 when the VM is querying the
783 * cache size, so a fastpath for that case is appropriate.
784 */
785 typedef int (*shrinker_t)(int nr_to_scan, gfp_t gfp_mask);
786
787 /*
788 * Add an aging callback. The int is the number of 'seeks' it takes
789 * to recreate one of the objects that these functions age.
790 */
791
792 #define DEFAULT_SEEKS 2
793 struct shrinker;
794 extern struct shrinker *set_shrinker(int, shrinker_t);
795 extern void remove_shrinker(struct shrinker *shrinker);
796
797 extern pte_t *FASTCALL(get_locked_pte(struct mm_struct *mm, unsigned long addr, spinlock_t **ptl));
798
799 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
800 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
801 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address);
802 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
803
804 /*
805 * The following ifdef needed to get the 4level-fixup.h header to work.
806 * Remove it when 4level-fixup.h has been removed.
807 */
808 #if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
809 static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
810 {
811 return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))?
812 NULL: pud_offset(pgd, address);
813 }
814
815 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
816 {
817 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
818 NULL: pmd_offset(pud, address);
819 }
820 #endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
821
822 #if NR_CPUS >= CONFIG_SPLIT_PTLOCK_CPUS
823 /*
824 * We tuck a spinlock to guard each pagetable page into its struct page,
825 * at page->private, with BUILD_BUG_ON to make sure that this will not
826 * overflow into the next struct page (as it might with DEBUG_SPINLOCK).
827 * When freeing, reset page->mapping so free_pages_check won't complain.
828 */
829 #define __pte_lockptr(page) &((page)->ptl)
830 #define pte_lock_init(_page) do { \
831 spin_lock_init(__pte_lockptr(_page)); \
832 } while (0)
833 #define pte_lock_deinit(page) ((page)->mapping = NULL)
834 #define pte_lockptr(mm, pmd) ({(void)(mm); __pte_lockptr(pmd_page(*(pmd)));})
835 #else
836 /*
837 * We use mm->page_table_lock to guard all pagetable pages of the mm.
838 */
839 #define pte_lock_init(page) do {} while (0)
840 #define pte_lock_deinit(page) do {} while (0)
841 #define pte_lockptr(mm, pmd) ({(void)(pmd); &(mm)->page_table_lock;})
842 #endif /* NR_CPUS < CONFIG_SPLIT_PTLOCK_CPUS */
843
844 #define pte_offset_map_lock(mm, pmd, address, ptlp) \
845 ({ \
846 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
847 pte_t *__pte = pte_offset_map(pmd, address); \
848 *(ptlp) = __ptl; \
849 spin_lock(__ptl); \
850 __pte; \
851 })
852
853 #define pte_unmap_unlock(pte, ptl) do { \
854 spin_unlock(ptl); \
855 pte_unmap(pte); \
856 } while (0)
857
858 #define pte_alloc_map(mm, pmd, address) \
859 ((unlikely(!pmd_present(*(pmd))) && __pte_alloc(mm, pmd, address))? \
860 NULL: pte_offset_map(pmd, address))
861
862 #define pte_alloc_map_lock(mm, pmd, address, ptlp) \
863 ((unlikely(!pmd_present(*(pmd))) && __pte_alloc(mm, pmd, address))? \
864 NULL: pte_offset_map_lock(mm, pmd, address, ptlp))
865
866 #define pte_alloc_kernel(pmd, address) \
867 ((unlikely(!pmd_present(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
868 NULL: pte_offset_kernel(pmd, address))
869
870 extern void free_area_init(unsigned long * zones_size);
871 extern void free_area_init_node(int nid, pg_data_t *pgdat,
872 unsigned long * zones_size, unsigned long zone_start_pfn,
873 unsigned long *zholes_size);
874 extern void memmap_init_zone(unsigned long, int, unsigned long, unsigned long);
875 extern void setup_per_zone_pages_min(void);
876 extern void mem_init(void);
877 extern void show_mem(void);
878 extern void si_meminfo(struct sysinfo * val);
879 extern void si_meminfo_node(struct sysinfo *val, int nid);
880
881 #ifdef CONFIG_NUMA
882 extern void setup_per_cpu_pageset(void);
883 #else
884 static inline void setup_per_cpu_pageset(void) {}
885 #endif
886
887 /* prio_tree.c */
888 void vma_prio_tree_add(struct vm_area_struct *, struct vm_area_struct *old);
889 void vma_prio_tree_insert(struct vm_area_struct *, struct prio_tree_root *);
890 void vma_prio_tree_remove(struct vm_area_struct *, struct prio_tree_root *);
891 struct vm_area_struct *vma_prio_tree_next(struct vm_area_struct *vma,
892 struct prio_tree_iter *iter);
893
894 #define vma_prio_tree_foreach(vma, iter, root, begin, end) \
895 for (prio_tree_iter_init(iter, root, begin, end), vma = NULL; \
896 (vma = vma_prio_tree_next(vma, iter)); )
897
898 static inline void vma_nonlinear_insert(struct vm_area_struct *vma,
899 struct list_head *list)
900 {
901 vma->shared.vm_set.parent = NULL;
902 list_add_tail(&vma->shared.vm_set.list, list);
903 }
904
905 /* mmap.c */
906 extern int __vm_enough_memory(long pages, int cap_sys_admin);
907 extern void vma_adjust(struct vm_area_struct *vma, unsigned long start,
908 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert);
909 extern struct vm_area_struct *vma_merge(struct mm_struct *,
910 struct vm_area_struct *prev, unsigned long addr, unsigned long end,
911 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
912 struct mempolicy *);
913 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
914 extern int split_vma(struct mm_struct *,
915 struct vm_area_struct *, unsigned long addr, int new_below);
916 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
917 extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
918 struct rb_node **, struct rb_node *);
919 extern void unlink_file_vma(struct vm_area_struct *);
920 extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
921 unsigned long addr, unsigned long len, pgoff_t pgoff);
922 extern void exit_mmap(struct mm_struct *);
923 extern int may_expand_vm(struct mm_struct *mm, unsigned long npages);
924
925 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
926
927 extern unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
928 unsigned long len, unsigned long prot,
929 unsigned long flag, unsigned long pgoff);
930
931 static inline unsigned long do_mmap(struct file *file, unsigned long addr,
932 unsigned long len, unsigned long prot,
933 unsigned long flag, unsigned long offset)
934 {
935 unsigned long ret = -EINVAL;
936 if ((offset + PAGE_ALIGN(len)) < offset)
937 goto out;
938 if (!(offset & ~PAGE_MASK))
939 ret = do_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT);
940 out:
941 return ret;
942 }
943
944 extern int do_munmap(struct mm_struct *, unsigned long, size_t);
945
946 extern unsigned long do_brk(unsigned long, unsigned long);
947
948 /* filemap.c */
949 extern unsigned long page_unuse(struct page *);
950 extern void truncate_inode_pages(struct address_space *, loff_t);
951 extern void truncate_inode_pages_range(struct address_space *,
952 loff_t lstart, loff_t lend);
953
954 /* generic vm_area_ops exported for stackable file systems */
955 extern struct page *filemap_nopage(struct vm_area_struct *, unsigned long, int *);
956 extern int filemap_populate(struct vm_area_struct *, unsigned long,
957 unsigned long, pgprot_t, unsigned long, int);
958
959 /* mm/page-writeback.c */
960 int write_one_page(struct page *page, int wait);
961
962 /* readahead.c */
963 #define VM_MAX_READAHEAD 128 /* kbytes */
964 #define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */
965 #define VM_MAX_CACHE_HIT 256 /* max pages in a row in cache before
966 * turning readahead off */
967
968 int do_page_cache_readahead(struct address_space *mapping, struct file *filp,
969 pgoff_t offset, unsigned long nr_to_read);
970 int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
971 pgoff_t offset, unsigned long nr_to_read);
972 unsigned long page_cache_readahead(struct address_space *mapping,
973 struct file_ra_state *ra,
974 struct file *filp,
975 pgoff_t offset,
976 unsigned long size);
977 void handle_ra_miss(struct address_space *mapping,
978 struct file_ra_state *ra, pgoff_t offset);
979 unsigned long max_sane_readahead(unsigned long nr);
980
981 /* Do stack extension */
982 extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
983 #ifdef CONFIG_IA64
984 extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
985 #endif
986
987 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
988 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
989 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
990 struct vm_area_struct **pprev);
991
992 /* Look up the first VMA which intersects the interval start_addr..end_addr-1,
993 NULL if none. Assume start_addr < end_addr. */
994 static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
995 {
996 struct vm_area_struct * vma = find_vma(mm,start_addr);
997
998 if (vma && end_addr <= vma->vm_start)
999 vma = NULL;
1000 return vma;
1001 }
1002
1003 static inline unsigned long vma_pages(struct vm_area_struct *vma)
1004 {
1005 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
1006 }
1007
1008 struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
1009 struct page *vmalloc_to_page(void *addr);
1010 unsigned long vmalloc_to_pfn(void *addr);
1011 int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
1012 unsigned long pfn, unsigned long size, pgprot_t);
1013 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
1014
1015 struct page *follow_page(struct vm_area_struct *, unsigned long address,
1016 unsigned int foll_flags);
1017 #define FOLL_WRITE 0x01 /* check pte is writable */
1018 #define FOLL_TOUCH 0x02 /* mark page accessed */
1019 #define FOLL_GET 0x04 /* do get_page on page */
1020 #define FOLL_ANON 0x08 /* give ZERO_PAGE if no pgtable */
1021
1022 #ifdef CONFIG_PROC_FS
1023 void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long);
1024 #else
1025 static inline void vm_stat_account(struct mm_struct *mm,
1026 unsigned long flags, struct file *file, long pages)
1027 {
1028 }
1029 #endif /* CONFIG_PROC_FS */
1030
1031 #ifndef CONFIG_DEBUG_PAGEALLOC
1032 static inline void
1033 kernel_map_pages(struct page *page, int numpages, int enable)
1034 {
1035 if (!PageHighMem(page) && !enable)
1036 mutex_debug_check_no_locks_freed(page_address(page),
1037 numpages * PAGE_SIZE);
1038 }
1039 #endif
1040
1041 extern struct vm_area_struct *get_gate_vma(struct task_struct *tsk);
1042 #ifdef __HAVE_ARCH_GATE_AREA
1043 int in_gate_area_no_task(unsigned long addr);
1044 int in_gate_area(struct task_struct *task, unsigned long addr);
1045 #else
1046 int in_gate_area_no_task(unsigned long addr);
1047 #define in_gate_area(task, addr) ({(void)task; in_gate_area_no_task(addr);})
1048 #endif /* __HAVE_ARCH_GATE_AREA */
1049
1050 /* /proc/<pid>/oom_adj set to -17 protects from the oom-killer */
1051 #define OOM_DISABLE -17
1052
1053 int drop_caches_sysctl_handler(struct ctl_table *, int, struct file *,
1054 void __user *, size_t *, loff_t *);
1055 unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask,
1056 unsigned long lru_pages);
1057 void drop_pagecache(void);
1058 void drop_slab(void);
1059
1060 #ifndef CONFIG_MMU
1061 #define randomize_va_space 0
1062 #else
1063 extern int randomize_va_space;
1064 #endif
1065
1066 #endif /* __KERNEL__ */
1067 #endif /* _LINUX_MM_H */
This page took 0.068205 seconds and 5 git commands to generate.