ACPI / LPSS: make code less confusing for reader
[deliverable/linux.git] / include / linux / mm.h
1 #ifndef _LINUX_MM_H
2 #define _LINUX_MM_H
3
4 #include <linux/errno.h>
5
6 #ifdef __KERNEL__
7
8 #include <linux/gfp.h>
9 #include <linux/bug.h>
10 #include <linux/list.h>
11 #include <linux/mmzone.h>
12 #include <linux/rbtree.h>
13 #include <linux/atomic.h>
14 #include <linux/debug_locks.h>
15 #include <linux/mm_types.h>
16 #include <linux/range.h>
17 #include <linux/pfn.h>
18 #include <linux/bit_spinlock.h>
19 #include <linux/shrinker.h>
20
21 struct mempolicy;
22 struct anon_vma;
23 struct anon_vma_chain;
24 struct file_ra_state;
25 struct user_struct;
26 struct writeback_control;
27
28 #ifndef CONFIG_DISCONTIGMEM /* Don't use mapnrs, do it properly */
29 extern unsigned long max_mapnr;
30 #endif
31
32 extern unsigned long num_physpages;
33 extern unsigned long totalram_pages;
34 extern void * high_memory;
35 extern int page_cluster;
36
37 #ifdef CONFIG_SYSCTL
38 extern int sysctl_legacy_va_layout;
39 #else
40 #define sysctl_legacy_va_layout 0
41 #endif
42
43 #include <asm/page.h>
44 #include <asm/pgtable.h>
45 #include <asm/processor.h>
46
47 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
48
49 /* to align the pointer to the (next) page boundary */
50 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
51
52 /*
53 * Linux kernel virtual memory manager primitives.
54 * The idea being to have a "virtual" mm in the same way
55 * we have a virtual fs - giving a cleaner interface to the
56 * mm details, and allowing different kinds of memory mappings
57 * (from shared memory to executable loading to arbitrary
58 * mmap() functions).
59 */
60
61 extern struct kmem_cache *vm_area_cachep;
62
63 #ifndef CONFIG_MMU
64 extern struct rb_root nommu_region_tree;
65 extern struct rw_semaphore nommu_region_sem;
66
67 extern unsigned int kobjsize(const void *objp);
68 #endif
69
70 /*
71 * vm_flags in vm_area_struct, see mm_types.h.
72 */
73 #define VM_NONE 0x00000000
74
75 #define VM_READ 0x00000001 /* currently active flags */
76 #define VM_WRITE 0x00000002
77 #define VM_EXEC 0x00000004
78 #define VM_SHARED 0x00000008
79
80 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
81 #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
82 #define VM_MAYWRITE 0x00000020
83 #define VM_MAYEXEC 0x00000040
84 #define VM_MAYSHARE 0x00000080
85
86 #define VM_GROWSDOWN 0x00000100 /* general info on the segment */
87 #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
88 #define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
89
90 #define VM_POPULATE 0x00001000
91 #define VM_LOCKED 0x00002000
92 #define VM_IO 0x00004000 /* Memory mapped I/O or similar */
93
94 /* Used by sys_madvise() */
95 #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
96 #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
97
98 #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
99 #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
100 #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
101 #define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
102 #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
103 #define VM_NONLINEAR 0x00800000 /* Is non-linear (remap_file_pages) */
104 #define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
105 #define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
106
107 #define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
108 #define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
109 #define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
110 #define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
111
112 #if defined(CONFIG_X86)
113 # define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
114 #elif defined(CONFIG_PPC)
115 # define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
116 #elif defined(CONFIG_PARISC)
117 # define VM_GROWSUP VM_ARCH_1
118 #elif defined(CONFIG_METAG)
119 # define VM_GROWSUP VM_ARCH_1
120 #elif defined(CONFIG_IA64)
121 # define VM_GROWSUP VM_ARCH_1
122 #elif !defined(CONFIG_MMU)
123 # define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
124 #endif
125
126 #ifndef VM_GROWSUP
127 # define VM_GROWSUP VM_NONE
128 #endif
129
130 /* Bits set in the VMA until the stack is in its final location */
131 #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
132
133 #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
134 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
135 #endif
136
137 #ifdef CONFIG_STACK_GROWSUP
138 #define VM_STACK_FLAGS (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
139 #else
140 #define VM_STACK_FLAGS (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
141 #endif
142
143 #define VM_READHINTMASK (VM_SEQ_READ | VM_RAND_READ)
144 #define VM_ClearReadHint(v) (v)->vm_flags &= ~VM_READHINTMASK
145 #define VM_NormalReadHint(v) (!((v)->vm_flags & VM_READHINTMASK))
146 #define VM_SequentialReadHint(v) ((v)->vm_flags & VM_SEQ_READ)
147 #define VM_RandomReadHint(v) ((v)->vm_flags & VM_RAND_READ)
148
149 /*
150 * Special vmas that are non-mergable, non-mlock()able.
151 * Note: mm/huge_memory.c VM_NO_THP depends on this definition.
152 */
153 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP)
154
155 /*
156 * mapping from the currently active vm_flags protection bits (the
157 * low four bits) to a page protection mask..
158 */
159 extern pgprot_t protection_map[16];
160
161 #define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */
162 #define FAULT_FLAG_NONLINEAR 0x02 /* Fault was via a nonlinear mapping */
163 #define FAULT_FLAG_MKWRITE 0x04 /* Fault was mkwrite of existing pte */
164 #define FAULT_FLAG_ALLOW_RETRY 0x08 /* Retry fault if blocking */
165 #define FAULT_FLAG_RETRY_NOWAIT 0x10 /* Don't drop mmap_sem and wait when retrying */
166 #define FAULT_FLAG_KILLABLE 0x20 /* The fault task is in SIGKILL killable region */
167 #define FAULT_FLAG_TRIED 0x40 /* second try */
168
169 /*
170 * vm_fault is filled by the the pagefault handler and passed to the vma's
171 * ->fault function. The vma's ->fault is responsible for returning a bitmask
172 * of VM_FAULT_xxx flags that give details about how the fault was handled.
173 *
174 * pgoff should be used in favour of virtual_address, if possible. If pgoff
175 * is used, one may implement ->remap_pages to get nonlinear mapping support.
176 */
177 struct vm_fault {
178 unsigned int flags; /* FAULT_FLAG_xxx flags */
179 pgoff_t pgoff; /* Logical page offset based on vma */
180 void __user *virtual_address; /* Faulting virtual address */
181
182 struct page *page; /* ->fault handlers should return a
183 * page here, unless VM_FAULT_NOPAGE
184 * is set (which is also implied by
185 * VM_FAULT_ERROR).
186 */
187 };
188
189 /*
190 * These are the virtual MM functions - opening of an area, closing and
191 * unmapping it (needed to keep files on disk up-to-date etc), pointer
192 * to the functions called when a no-page or a wp-page exception occurs.
193 */
194 struct vm_operations_struct {
195 void (*open)(struct vm_area_struct * area);
196 void (*close)(struct vm_area_struct * area);
197 int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf);
198
199 /* notification that a previously read-only page is about to become
200 * writable, if an error is returned it will cause a SIGBUS */
201 int (*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
202
203 /* called by access_process_vm when get_user_pages() fails, typically
204 * for use by special VMAs that can switch between memory and hardware
205 */
206 int (*access)(struct vm_area_struct *vma, unsigned long addr,
207 void *buf, int len, int write);
208 #ifdef CONFIG_NUMA
209 /*
210 * set_policy() op must add a reference to any non-NULL @new mempolicy
211 * to hold the policy upon return. Caller should pass NULL @new to
212 * remove a policy and fall back to surrounding context--i.e. do not
213 * install a MPOL_DEFAULT policy, nor the task or system default
214 * mempolicy.
215 */
216 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
217
218 /*
219 * get_policy() op must add reference [mpol_get()] to any policy at
220 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
221 * in mm/mempolicy.c will do this automatically.
222 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
223 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
224 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
225 * must return NULL--i.e., do not "fallback" to task or system default
226 * policy.
227 */
228 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
229 unsigned long addr);
230 int (*migrate)(struct vm_area_struct *vma, const nodemask_t *from,
231 const nodemask_t *to, unsigned long flags);
232 #endif
233 /* called by sys_remap_file_pages() to populate non-linear mapping */
234 int (*remap_pages)(struct vm_area_struct *vma, unsigned long addr,
235 unsigned long size, pgoff_t pgoff);
236 };
237
238 struct mmu_gather;
239 struct inode;
240
241 #define page_private(page) ((page)->private)
242 #define set_page_private(page, v) ((page)->private = (v))
243
244 /* It's valid only if the page is free path or free_list */
245 static inline void set_freepage_migratetype(struct page *page, int migratetype)
246 {
247 page->index = migratetype;
248 }
249
250 /* It's valid only if the page is free path or free_list */
251 static inline int get_freepage_migratetype(struct page *page)
252 {
253 return page->index;
254 }
255
256 /*
257 * FIXME: take this include out, include page-flags.h in
258 * files which need it (119 of them)
259 */
260 #include <linux/page-flags.h>
261 #include <linux/huge_mm.h>
262
263 /*
264 * Methods to modify the page usage count.
265 *
266 * What counts for a page usage:
267 * - cache mapping (page->mapping)
268 * - private data (page->private)
269 * - page mapped in a task's page tables, each mapping
270 * is counted separately
271 *
272 * Also, many kernel routines increase the page count before a critical
273 * routine so they can be sure the page doesn't go away from under them.
274 */
275
276 /*
277 * Drop a ref, return true if the refcount fell to zero (the page has no users)
278 */
279 static inline int put_page_testzero(struct page *page)
280 {
281 VM_BUG_ON(atomic_read(&page->_count) == 0);
282 return atomic_dec_and_test(&page->_count);
283 }
284
285 /*
286 * Try to grab a ref unless the page has a refcount of zero, return false if
287 * that is the case.
288 */
289 static inline int get_page_unless_zero(struct page *page)
290 {
291 return atomic_inc_not_zero(&page->_count);
292 }
293
294 extern int page_is_ram(unsigned long pfn);
295
296 /* Support for virtually mapped pages */
297 struct page *vmalloc_to_page(const void *addr);
298 unsigned long vmalloc_to_pfn(const void *addr);
299
300 /*
301 * Determine if an address is within the vmalloc range
302 *
303 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
304 * is no special casing required.
305 */
306 static inline int is_vmalloc_addr(const void *x)
307 {
308 #ifdef CONFIG_MMU
309 unsigned long addr = (unsigned long)x;
310
311 return addr >= VMALLOC_START && addr < VMALLOC_END;
312 #else
313 return 0;
314 #endif
315 }
316 #ifdef CONFIG_MMU
317 extern int is_vmalloc_or_module_addr(const void *x);
318 #else
319 static inline int is_vmalloc_or_module_addr(const void *x)
320 {
321 return 0;
322 }
323 #endif
324
325 static inline void compound_lock(struct page *page)
326 {
327 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
328 VM_BUG_ON(PageSlab(page));
329 bit_spin_lock(PG_compound_lock, &page->flags);
330 #endif
331 }
332
333 static inline void compound_unlock(struct page *page)
334 {
335 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
336 VM_BUG_ON(PageSlab(page));
337 bit_spin_unlock(PG_compound_lock, &page->flags);
338 #endif
339 }
340
341 static inline unsigned long compound_lock_irqsave(struct page *page)
342 {
343 unsigned long uninitialized_var(flags);
344 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
345 local_irq_save(flags);
346 compound_lock(page);
347 #endif
348 return flags;
349 }
350
351 static inline void compound_unlock_irqrestore(struct page *page,
352 unsigned long flags)
353 {
354 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
355 compound_unlock(page);
356 local_irq_restore(flags);
357 #endif
358 }
359
360 static inline struct page *compound_head(struct page *page)
361 {
362 if (unlikely(PageTail(page)))
363 return page->first_page;
364 return page;
365 }
366
367 /*
368 * The atomic page->_mapcount, starts from -1: so that transitions
369 * both from it and to it can be tracked, using atomic_inc_and_test
370 * and atomic_add_negative(-1).
371 */
372 static inline void page_mapcount_reset(struct page *page)
373 {
374 atomic_set(&(page)->_mapcount, -1);
375 }
376
377 static inline int page_mapcount(struct page *page)
378 {
379 return atomic_read(&(page)->_mapcount) + 1;
380 }
381
382 static inline int page_count(struct page *page)
383 {
384 return atomic_read(&compound_head(page)->_count);
385 }
386
387 static inline void get_huge_page_tail(struct page *page)
388 {
389 /*
390 * __split_huge_page_refcount() cannot run
391 * from under us.
392 */
393 VM_BUG_ON(page_mapcount(page) < 0);
394 VM_BUG_ON(atomic_read(&page->_count) != 0);
395 atomic_inc(&page->_mapcount);
396 }
397
398 extern bool __get_page_tail(struct page *page);
399
400 static inline void get_page(struct page *page)
401 {
402 if (unlikely(PageTail(page)))
403 if (likely(__get_page_tail(page)))
404 return;
405 /*
406 * Getting a normal page or the head of a compound page
407 * requires to already have an elevated page->_count.
408 */
409 VM_BUG_ON(atomic_read(&page->_count) <= 0);
410 atomic_inc(&page->_count);
411 }
412
413 static inline struct page *virt_to_head_page(const void *x)
414 {
415 struct page *page = virt_to_page(x);
416 return compound_head(page);
417 }
418
419 /*
420 * Setup the page count before being freed into the page allocator for
421 * the first time (boot or memory hotplug)
422 */
423 static inline void init_page_count(struct page *page)
424 {
425 atomic_set(&page->_count, 1);
426 }
427
428 /*
429 * PageBuddy() indicate that the page is free and in the buddy system
430 * (see mm/page_alloc.c).
431 *
432 * PAGE_BUDDY_MAPCOUNT_VALUE must be <= -2 but better not too close to
433 * -2 so that an underflow of the page_mapcount() won't be mistaken
434 * for a genuine PAGE_BUDDY_MAPCOUNT_VALUE. -128 can be created very
435 * efficiently by most CPU architectures.
436 */
437 #define PAGE_BUDDY_MAPCOUNT_VALUE (-128)
438
439 static inline int PageBuddy(struct page *page)
440 {
441 return atomic_read(&page->_mapcount) == PAGE_BUDDY_MAPCOUNT_VALUE;
442 }
443
444 static inline void __SetPageBuddy(struct page *page)
445 {
446 VM_BUG_ON(atomic_read(&page->_mapcount) != -1);
447 atomic_set(&page->_mapcount, PAGE_BUDDY_MAPCOUNT_VALUE);
448 }
449
450 static inline void __ClearPageBuddy(struct page *page)
451 {
452 VM_BUG_ON(!PageBuddy(page));
453 atomic_set(&page->_mapcount, -1);
454 }
455
456 void put_page(struct page *page);
457 void put_pages_list(struct list_head *pages);
458
459 void split_page(struct page *page, unsigned int order);
460 int split_free_page(struct page *page);
461
462 /*
463 * Compound pages have a destructor function. Provide a
464 * prototype for that function and accessor functions.
465 * These are _only_ valid on the head of a PG_compound page.
466 */
467 typedef void compound_page_dtor(struct page *);
468
469 static inline void set_compound_page_dtor(struct page *page,
470 compound_page_dtor *dtor)
471 {
472 page[1].lru.next = (void *)dtor;
473 }
474
475 static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
476 {
477 return (compound_page_dtor *)page[1].lru.next;
478 }
479
480 static inline int compound_order(struct page *page)
481 {
482 if (!PageHead(page))
483 return 0;
484 return (unsigned long)page[1].lru.prev;
485 }
486
487 static inline int compound_trans_order(struct page *page)
488 {
489 int order;
490 unsigned long flags;
491
492 if (!PageHead(page))
493 return 0;
494
495 flags = compound_lock_irqsave(page);
496 order = compound_order(page);
497 compound_unlock_irqrestore(page, flags);
498 return order;
499 }
500
501 static inline void set_compound_order(struct page *page, unsigned long order)
502 {
503 page[1].lru.prev = (void *)order;
504 }
505
506 #ifdef CONFIG_MMU
507 /*
508 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
509 * servicing faults for write access. In the normal case, do always want
510 * pte_mkwrite. But get_user_pages can cause write faults for mappings
511 * that do not have writing enabled, when used by access_process_vm.
512 */
513 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
514 {
515 if (likely(vma->vm_flags & VM_WRITE))
516 pte = pte_mkwrite(pte);
517 return pte;
518 }
519 #endif
520
521 /*
522 * Multiple processes may "see" the same page. E.g. for untouched
523 * mappings of /dev/null, all processes see the same page full of
524 * zeroes, and text pages of executables and shared libraries have
525 * only one copy in memory, at most, normally.
526 *
527 * For the non-reserved pages, page_count(page) denotes a reference count.
528 * page_count() == 0 means the page is free. page->lru is then used for
529 * freelist management in the buddy allocator.
530 * page_count() > 0 means the page has been allocated.
531 *
532 * Pages are allocated by the slab allocator in order to provide memory
533 * to kmalloc and kmem_cache_alloc. In this case, the management of the
534 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
535 * unless a particular usage is carefully commented. (the responsibility of
536 * freeing the kmalloc memory is the caller's, of course).
537 *
538 * A page may be used by anyone else who does a __get_free_page().
539 * In this case, page_count still tracks the references, and should only
540 * be used through the normal accessor functions. The top bits of page->flags
541 * and page->virtual store page management information, but all other fields
542 * are unused and could be used privately, carefully. The management of this
543 * page is the responsibility of the one who allocated it, and those who have
544 * subsequently been given references to it.
545 *
546 * The other pages (we may call them "pagecache pages") are completely
547 * managed by the Linux memory manager: I/O, buffers, swapping etc.
548 * The following discussion applies only to them.
549 *
550 * A pagecache page contains an opaque `private' member, which belongs to the
551 * page's address_space. Usually, this is the address of a circular list of
552 * the page's disk buffers. PG_private must be set to tell the VM to call
553 * into the filesystem to release these pages.
554 *
555 * A page may belong to an inode's memory mapping. In this case, page->mapping
556 * is the pointer to the inode, and page->index is the file offset of the page,
557 * in units of PAGE_CACHE_SIZE.
558 *
559 * If pagecache pages are not associated with an inode, they are said to be
560 * anonymous pages. These may become associated with the swapcache, and in that
561 * case PG_swapcache is set, and page->private is an offset into the swapcache.
562 *
563 * In either case (swapcache or inode backed), the pagecache itself holds one
564 * reference to the page. Setting PG_private should also increment the
565 * refcount. The each user mapping also has a reference to the page.
566 *
567 * The pagecache pages are stored in a per-mapping radix tree, which is
568 * rooted at mapping->page_tree, and indexed by offset.
569 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
570 * lists, we instead now tag pages as dirty/writeback in the radix tree.
571 *
572 * All pagecache pages may be subject to I/O:
573 * - inode pages may need to be read from disk,
574 * - inode pages which have been modified and are MAP_SHARED may need
575 * to be written back to the inode on disk,
576 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
577 * modified may need to be swapped out to swap space and (later) to be read
578 * back into memory.
579 */
580
581 /*
582 * The zone field is never updated after free_area_init_core()
583 * sets it, so none of the operations on it need to be atomic.
584 */
585
586 /* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_NID] | ... | FLAGS | */
587 #define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
588 #define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
589 #define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
590 #define LAST_NID_PGOFF (ZONES_PGOFF - LAST_NID_WIDTH)
591
592 /*
593 * Define the bit shifts to access each section. For non-existent
594 * sections we define the shift as 0; that plus a 0 mask ensures
595 * the compiler will optimise away reference to them.
596 */
597 #define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
598 #define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
599 #define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
600 #define LAST_NID_PGSHIFT (LAST_NID_PGOFF * (LAST_NID_WIDTH != 0))
601
602 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
603 #ifdef NODE_NOT_IN_PAGE_FLAGS
604 #define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
605 #define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
606 SECTIONS_PGOFF : ZONES_PGOFF)
607 #else
608 #define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
609 #define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
610 NODES_PGOFF : ZONES_PGOFF)
611 #endif
612
613 #define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
614
615 #if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
616 #error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
617 #endif
618
619 #define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
620 #define NODES_MASK ((1UL << NODES_WIDTH) - 1)
621 #define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
622 #define LAST_NID_MASK ((1UL << LAST_NID_WIDTH) - 1)
623 #define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
624
625 static inline enum zone_type page_zonenum(const struct page *page)
626 {
627 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
628 }
629
630 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
631 #define SECTION_IN_PAGE_FLAGS
632 #endif
633
634 /*
635 * The identification function is only used by the buddy allocator for
636 * determining if two pages could be buddies. We are not really
637 * identifying a zone since we could be using a the section number
638 * id if we have not node id available in page flags.
639 * We guarantee only that it will return the same value for two
640 * combinable pages in a zone.
641 */
642 static inline int page_zone_id(struct page *page)
643 {
644 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
645 }
646
647 static inline int zone_to_nid(struct zone *zone)
648 {
649 #ifdef CONFIG_NUMA
650 return zone->node;
651 #else
652 return 0;
653 #endif
654 }
655
656 #ifdef NODE_NOT_IN_PAGE_FLAGS
657 extern int page_to_nid(const struct page *page);
658 #else
659 static inline int page_to_nid(const struct page *page)
660 {
661 return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
662 }
663 #endif
664
665 #ifdef CONFIG_NUMA_BALANCING
666 #ifdef LAST_NID_NOT_IN_PAGE_FLAGS
667 static inline int page_nid_xchg_last(struct page *page, int nid)
668 {
669 return xchg(&page->_last_nid, nid);
670 }
671
672 static inline int page_nid_last(struct page *page)
673 {
674 return page->_last_nid;
675 }
676 static inline void page_nid_reset_last(struct page *page)
677 {
678 page->_last_nid = -1;
679 }
680 #else
681 static inline int page_nid_last(struct page *page)
682 {
683 return (page->flags >> LAST_NID_PGSHIFT) & LAST_NID_MASK;
684 }
685
686 extern int page_nid_xchg_last(struct page *page, int nid);
687
688 static inline void page_nid_reset_last(struct page *page)
689 {
690 int nid = (1 << LAST_NID_SHIFT) - 1;
691
692 page->flags &= ~(LAST_NID_MASK << LAST_NID_PGSHIFT);
693 page->flags |= (nid & LAST_NID_MASK) << LAST_NID_PGSHIFT;
694 }
695 #endif /* LAST_NID_NOT_IN_PAGE_FLAGS */
696 #else
697 static inline int page_nid_xchg_last(struct page *page, int nid)
698 {
699 return page_to_nid(page);
700 }
701
702 static inline int page_nid_last(struct page *page)
703 {
704 return page_to_nid(page);
705 }
706
707 static inline void page_nid_reset_last(struct page *page)
708 {
709 }
710 #endif
711
712 static inline struct zone *page_zone(const struct page *page)
713 {
714 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
715 }
716
717 #ifdef SECTION_IN_PAGE_FLAGS
718 static inline void set_page_section(struct page *page, unsigned long section)
719 {
720 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
721 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
722 }
723
724 static inline unsigned long page_to_section(const struct page *page)
725 {
726 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
727 }
728 #endif
729
730 static inline void set_page_zone(struct page *page, enum zone_type zone)
731 {
732 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
733 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
734 }
735
736 static inline void set_page_node(struct page *page, unsigned long node)
737 {
738 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
739 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
740 }
741
742 static inline void set_page_links(struct page *page, enum zone_type zone,
743 unsigned long node, unsigned long pfn)
744 {
745 set_page_zone(page, zone);
746 set_page_node(page, node);
747 #ifdef SECTION_IN_PAGE_FLAGS
748 set_page_section(page, pfn_to_section_nr(pfn));
749 #endif
750 }
751
752 /*
753 * Some inline functions in vmstat.h depend on page_zone()
754 */
755 #include <linux/vmstat.h>
756
757 static __always_inline void *lowmem_page_address(const struct page *page)
758 {
759 return __va(PFN_PHYS(page_to_pfn(page)));
760 }
761
762 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
763 #define HASHED_PAGE_VIRTUAL
764 #endif
765
766 #if defined(WANT_PAGE_VIRTUAL)
767 #define page_address(page) ((page)->virtual)
768 #define set_page_address(page, address) \
769 do { \
770 (page)->virtual = (address); \
771 } while(0)
772 #define page_address_init() do { } while(0)
773 #endif
774
775 #if defined(HASHED_PAGE_VIRTUAL)
776 void *page_address(const struct page *page);
777 void set_page_address(struct page *page, void *virtual);
778 void page_address_init(void);
779 #endif
780
781 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
782 #define page_address(page) lowmem_page_address(page)
783 #define set_page_address(page, address) do { } while(0)
784 #define page_address_init() do { } while(0)
785 #endif
786
787 /*
788 * On an anonymous page mapped into a user virtual memory area,
789 * page->mapping points to its anon_vma, not to a struct address_space;
790 * with the PAGE_MAPPING_ANON bit set to distinguish it. See rmap.h.
791 *
792 * On an anonymous page in a VM_MERGEABLE area, if CONFIG_KSM is enabled,
793 * the PAGE_MAPPING_KSM bit may be set along with the PAGE_MAPPING_ANON bit;
794 * and then page->mapping points, not to an anon_vma, but to a private
795 * structure which KSM associates with that merged page. See ksm.h.
796 *
797 * PAGE_MAPPING_KSM without PAGE_MAPPING_ANON is currently never used.
798 *
799 * Please note that, confusingly, "page_mapping" refers to the inode
800 * address_space which maps the page from disk; whereas "page_mapped"
801 * refers to user virtual address space into which the page is mapped.
802 */
803 #define PAGE_MAPPING_ANON 1
804 #define PAGE_MAPPING_KSM 2
805 #define PAGE_MAPPING_FLAGS (PAGE_MAPPING_ANON | PAGE_MAPPING_KSM)
806
807 extern struct address_space *page_mapping(struct page *page);
808
809 /* Neutral page->mapping pointer to address_space or anon_vma or other */
810 static inline void *page_rmapping(struct page *page)
811 {
812 return (void *)((unsigned long)page->mapping & ~PAGE_MAPPING_FLAGS);
813 }
814
815 extern struct address_space *__page_file_mapping(struct page *);
816
817 static inline
818 struct address_space *page_file_mapping(struct page *page)
819 {
820 if (unlikely(PageSwapCache(page)))
821 return __page_file_mapping(page);
822
823 return page->mapping;
824 }
825
826 static inline int PageAnon(struct page *page)
827 {
828 return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0;
829 }
830
831 /*
832 * Return the pagecache index of the passed page. Regular pagecache pages
833 * use ->index whereas swapcache pages use ->private
834 */
835 static inline pgoff_t page_index(struct page *page)
836 {
837 if (unlikely(PageSwapCache(page)))
838 return page_private(page);
839 return page->index;
840 }
841
842 extern pgoff_t __page_file_index(struct page *page);
843
844 /*
845 * Return the file index of the page. Regular pagecache pages use ->index
846 * whereas swapcache pages use swp_offset(->private)
847 */
848 static inline pgoff_t page_file_index(struct page *page)
849 {
850 if (unlikely(PageSwapCache(page)))
851 return __page_file_index(page);
852
853 return page->index;
854 }
855
856 /*
857 * Return true if this page is mapped into pagetables.
858 */
859 static inline int page_mapped(struct page *page)
860 {
861 return atomic_read(&(page)->_mapcount) >= 0;
862 }
863
864 /*
865 * Different kinds of faults, as returned by handle_mm_fault().
866 * Used to decide whether a process gets delivered SIGBUS or
867 * just gets major/minor fault counters bumped up.
868 */
869
870 #define VM_FAULT_MINOR 0 /* For backwards compat. Remove me quickly. */
871
872 #define VM_FAULT_OOM 0x0001
873 #define VM_FAULT_SIGBUS 0x0002
874 #define VM_FAULT_MAJOR 0x0004
875 #define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */
876 #define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */
877 #define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */
878
879 #define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */
880 #define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */
881 #define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */
882
883 #define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */
884
885 #define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_HWPOISON | \
886 VM_FAULT_HWPOISON_LARGE)
887
888 /* Encode hstate index for a hwpoisoned large page */
889 #define VM_FAULT_SET_HINDEX(x) ((x) << 12)
890 #define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf)
891
892 /*
893 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
894 */
895 extern void pagefault_out_of_memory(void);
896
897 #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
898
899 /*
900 * Flags passed to show_mem() and show_free_areas() to suppress output in
901 * various contexts.
902 */
903 #define SHOW_MEM_FILTER_NODES (0x0001u) /* filter disallowed nodes */
904
905 extern void show_free_areas(unsigned int flags);
906 extern bool skip_free_areas_node(unsigned int flags, int nid);
907
908 int shmem_zero_setup(struct vm_area_struct *);
909
910 extern int can_do_mlock(void);
911 extern int user_shm_lock(size_t, struct user_struct *);
912 extern void user_shm_unlock(size_t, struct user_struct *);
913
914 /*
915 * Parameter block passed down to zap_pte_range in exceptional cases.
916 */
917 struct zap_details {
918 struct vm_area_struct *nonlinear_vma; /* Check page->index if set */
919 struct address_space *check_mapping; /* Check page->mapping if set */
920 pgoff_t first_index; /* Lowest page->index to unmap */
921 pgoff_t last_index; /* Highest page->index to unmap */
922 };
923
924 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
925 pte_t pte);
926
927 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
928 unsigned long size);
929 void zap_page_range(struct vm_area_struct *vma, unsigned long address,
930 unsigned long size, struct zap_details *);
931 void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
932 unsigned long start, unsigned long end);
933
934 /**
935 * mm_walk - callbacks for walk_page_range
936 * @pgd_entry: if set, called for each non-empty PGD (top-level) entry
937 * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry
938 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
939 * this handler is required to be able to handle
940 * pmd_trans_huge() pmds. They may simply choose to
941 * split_huge_page() instead of handling it explicitly.
942 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
943 * @pte_hole: if set, called for each hole at all levels
944 * @hugetlb_entry: if set, called for each hugetlb entry
945 * *Caution*: The caller must hold mmap_sem() if @hugetlb_entry
946 * is used.
947 *
948 * (see walk_page_range for more details)
949 */
950 struct mm_walk {
951 int (*pgd_entry)(pgd_t *, unsigned long, unsigned long, struct mm_walk *);
952 int (*pud_entry)(pud_t *, unsigned long, unsigned long, struct mm_walk *);
953 int (*pmd_entry)(pmd_t *, unsigned long, unsigned long, struct mm_walk *);
954 int (*pte_entry)(pte_t *, unsigned long, unsigned long, struct mm_walk *);
955 int (*pte_hole)(unsigned long, unsigned long, struct mm_walk *);
956 int (*hugetlb_entry)(pte_t *, unsigned long,
957 unsigned long, unsigned long, struct mm_walk *);
958 struct mm_struct *mm;
959 void *private;
960 };
961
962 int walk_page_range(unsigned long addr, unsigned long end,
963 struct mm_walk *walk);
964 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
965 unsigned long end, unsigned long floor, unsigned long ceiling);
966 int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
967 struct vm_area_struct *vma);
968 void unmap_mapping_range(struct address_space *mapping,
969 loff_t const holebegin, loff_t const holelen, int even_cows);
970 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
971 unsigned long *pfn);
972 int follow_phys(struct vm_area_struct *vma, unsigned long address,
973 unsigned int flags, unsigned long *prot, resource_size_t *phys);
974 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
975 void *buf, int len, int write);
976
977 static inline void unmap_shared_mapping_range(struct address_space *mapping,
978 loff_t const holebegin, loff_t const holelen)
979 {
980 unmap_mapping_range(mapping, holebegin, holelen, 0);
981 }
982
983 extern void truncate_pagecache(struct inode *inode, loff_t old, loff_t new);
984 extern void truncate_setsize(struct inode *inode, loff_t newsize);
985 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
986 int truncate_inode_page(struct address_space *mapping, struct page *page);
987 int generic_error_remove_page(struct address_space *mapping, struct page *page);
988 int invalidate_inode_page(struct page *page);
989
990 #ifdef CONFIG_MMU
991 extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
992 unsigned long address, unsigned int flags);
993 extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
994 unsigned long address, unsigned int fault_flags);
995 #else
996 static inline int handle_mm_fault(struct mm_struct *mm,
997 struct vm_area_struct *vma, unsigned long address,
998 unsigned int flags)
999 {
1000 /* should never happen if there's no MMU */
1001 BUG();
1002 return VM_FAULT_SIGBUS;
1003 }
1004 static inline int fixup_user_fault(struct task_struct *tsk,
1005 struct mm_struct *mm, unsigned long address,
1006 unsigned int fault_flags)
1007 {
1008 /* should never happen if there's no MMU */
1009 BUG();
1010 return -EFAULT;
1011 }
1012 #endif
1013
1014 extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write);
1015 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1016 void *buf, int len, int write);
1017
1018 long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1019 unsigned long start, unsigned long nr_pages,
1020 unsigned int foll_flags, struct page **pages,
1021 struct vm_area_struct **vmas, int *nonblocking);
1022 long get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1023 unsigned long start, unsigned long nr_pages,
1024 int write, int force, struct page **pages,
1025 struct vm_area_struct **vmas);
1026 int get_user_pages_fast(unsigned long start, int nr_pages, int write,
1027 struct page **pages);
1028 struct kvec;
1029 int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1030 struct page **pages);
1031 int get_kernel_page(unsigned long start, int write, struct page **pages);
1032 struct page *get_dump_page(unsigned long addr);
1033
1034 extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
1035 extern void do_invalidatepage(struct page *page, unsigned long offset);
1036
1037 int __set_page_dirty_nobuffers(struct page *page);
1038 int __set_page_dirty_no_writeback(struct page *page);
1039 int redirty_page_for_writepage(struct writeback_control *wbc,
1040 struct page *page);
1041 void account_page_dirtied(struct page *page, struct address_space *mapping);
1042 void account_page_writeback(struct page *page);
1043 int set_page_dirty(struct page *page);
1044 int set_page_dirty_lock(struct page *page);
1045 int clear_page_dirty_for_io(struct page *page);
1046
1047 /* Is the vma a continuation of the stack vma above it? */
1048 static inline int vma_growsdown(struct vm_area_struct *vma, unsigned long addr)
1049 {
1050 return vma && (vma->vm_end == addr) && (vma->vm_flags & VM_GROWSDOWN);
1051 }
1052
1053 static inline int stack_guard_page_start(struct vm_area_struct *vma,
1054 unsigned long addr)
1055 {
1056 return (vma->vm_flags & VM_GROWSDOWN) &&
1057 (vma->vm_start == addr) &&
1058 !vma_growsdown(vma->vm_prev, addr);
1059 }
1060
1061 /* Is the vma a continuation of the stack vma below it? */
1062 static inline int vma_growsup(struct vm_area_struct *vma, unsigned long addr)
1063 {
1064 return vma && (vma->vm_start == addr) && (vma->vm_flags & VM_GROWSUP);
1065 }
1066
1067 static inline int stack_guard_page_end(struct vm_area_struct *vma,
1068 unsigned long addr)
1069 {
1070 return (vma->vm_flags & VM_GROWSUP) &&
1071 (vma->vm_end == addr) &&
1072 !vma_growsup(vma->vm_next, addr);
1073 }
1074
1075 extern pid_t
1076 vm_is_stack(struct task_struct *task, struct vm_area_struct *vma, int in_group);
1077
1078 extern unsigned long move_page_tables(struct vm_area_struct *vma,
1079 unsigned long old_addr, struct vm_area_struct *new_vma,
1080 unsigned long new_addr, unsigned long len,
1081 bool need_rmap_locks);
1082 extern unsigned long do_mremap(unsigned long addr,
1083 unsigned long old_len, unsigned long new_len,
1084 unsigned long flags, unsigned long new_addr);
1085 extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
1086 unsigned long end, pgprot_t newprot,
1087 int dirty_accountable, int prot_numa);
1088 extern int mprotect_fixup(struct vm_area_struct *vma,
1089 struct vm_area_struct **pprev, unsigned long start,
1090 unsigned long end, unsigned long newflags);
1091
1092 /*
1093 * doesn't attempt to fault and will return short.
1094 */
1095 int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1096 struct page **pages);
1097 /*
1098 * per-process(per-mm_struct) statistics.
1099 */
1100 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1101 {
1102 long val = atomic_long_read(&mm->rss_stat.count[member]);
1103
1104 #ifdef SPLIT_RSS_COUNTING
1105 /*
1106 * counter is updated in asynchronous manner and may go to minus.
1107 * But it's never be expected number for users.
1108 */
1109 if (val < 0)
1110 val = 0;
1111 #endif
1112 return (unsigned long)val;
1113 }
1114
1115 static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1116 {
1117 atomic_long_add(value, &mm->rss_stat.count[member]);
1118 }
1119
1120 static inline void inc_mm_counter(struct mm_struct *mm, int member)
1121 {
1122 atomic_long_inc(&mm->rss_stat.count[member]);
1123 }
1124
1125 static inline void dec_mm_counter(struct mm_struct *mm, int member)
1126 {
1127 atomic_long_dec(&mm->rss_stat.count[member]);
1128 }
1129
1130 static inline unsigned long get_mm_rss(struct mm_struct *mm)
1131 {
1132 return get_mm_counter(mm, MM_FILEPAGES) +
1133 get_mm_counter(mm, MM_ANONPAGES);
1134 }
1135
1136 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1137 {
1138 return max(mm->hiwater_rss, get_mm_rss(mm));
1139 }
1140
1141 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1142 {
1143 return max(mm->hiwater_vm, mm->total_vm);
1144 }
1145
1146 static inline void update_hiwater_rss(struct mm_struct *mm)
1147 {
1148 unsigned long _rss = get_mm_rss(mm);
1149
1150 if ((mm)->hiwater_rss < _rss)
1151 (mm)->hiwater_rss = _rss;
1152 }
1153
1154 static inline void update_hiwater_vm(struct mm_struct *mm)
1155 {
1156 if (mm->hiwater_vm < mm->total_vm)
1157 mm->hiwater_vm = mm->total_vm;
1158 }
1159
1160 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1161 struct mm_struct *mm)
1162 {
1163 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1164
1165 if (*maxrss < hiwater_rss)
1166 *maxrss = hiwater_rss;
1167 }
1168
1169 #if defined(SPLIT_RSS_COUNTING)
1170 void sync_mm_rss(struct mm_struct *mm);
1171 #else
1172 static inline void sync_mm_rss(struct mm_struct *mm)
1173 {
1174 }
1175 #endif
1176
1177 int vma_wants_writenotify(struct vm_area_struct *vma);
1178
1179 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1180 spinlock_t **ptl);
1181 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1182 spinlock_t **ptl)
1183 {
1184 pte_t *ptep;
1185 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
1186 return ptep;
1187 }
1188
1189 #ifdef __PAGETABLE_PUD_FOLDED
1190 static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd,
1191 unsigned long address)
1192 {
1193 return 0;
1194 }
1195 #else
1196 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
1197 #endif
1198
1199 #ifdef __PAGETABLE_PMD_FOLDED
1200 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
1201 unsigned long address)
1202 {
1203 return 0;
1204 }
1205 #else
1206 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
1207 #endif
1208
1209 int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
1210 pmd_t *pmd, unsigned long address);
1211 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
1212
1213 /*
1214 * The following ifdef needed to get the 4level-fixup.h header to work.
1215 * Remove it when 4level-fixup.h has been removed.
1216 */
1217 #if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
1218 static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
1219 {
1220 return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))?
1221 NULL: pud_offset(pgd, address);
1222 }
1223
1224 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1225 {
1226 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
1227 NULL: pmd_offset(pud, address);
1228 }
1229 #endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
1230
1231 #if USE_SPLIT_PTLOCKS
1232 /*
1233 * We tuck a spinlock to guard each pagetable page into its struct page,
1234 * at page->private, with BUILD_BUG_ON to make sure that this will not
1235 * overflow into the next struct page (as it might with DEBUG_SPINLOCK).
1236 * When freeing, reset page->mapping so free_pages_check won't complain.
1237 */
1238 #define __pte_lockptr(page) &((page)->ptl)
1239 #define pte_lock_init(_page) do { \
1240 spin_lock_init(__pte_lockptr(_page)); \
1241 } while (0)
1242 #define pte_lock_deinit(page) ((page)->mapping = NULL)
1243 #define pte_lockptr(mm, pmd) ({(void)(mm); __pte_lockptr(pmd_page(*(pmd)));})
1244 #else /* !USE_SPLIT_PTLOCKS */
1245 /*
1246 * We use mm->page_table_lock to guard all pagetable pages of the mm.
1247 */
1248 #define pte_lock_init(page) do {} while (0)
1249 #define pte_lock_deinit(page) do {} while (0)
1250 #define pte_lockptr(mm, pmd) ({(void)(pmd); &(mm)->page_table_lock;})
1251 #endif /* USE_SPLIT_PTLOCKS */
1252
1253 static inline void pgtable_page_ctor(struct page *page)
1254 {
1255 pte_lock_init(page);
1256 inc_zone_page_state(page, NR_PAGETABLE);
1257 }
1258
1259 static inline void pgtable_page_dtor(struct page *page)
1260 {
1261 pte_lock_deinit(page);
1262 dec_zone_page_state(page, NR_PAGETABLE);
1263 }
1264
1265 #define pte_offset_map_lock(mm, pmd, address, ptlp) \
1266 ({ \
1267 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
1268 pte_t *__pte = pte_offset_map(pmd, address); \
1269 *(ptlp) = __ptl; \
1270 spin_lock(__ptl); \
1271 __pte; \
1272 })
1273
1274 #define pte_unmap_unlock(pte, ptl) do { \
1275 spin_unlock(ptl); \
1276 pte_unmap(pte); \
1277 } while (0)
1278
1279 #define pte_alloc_map(mm, vma, pmd, address) \
1280 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, vma, \
1281 pmd, address))? \
1282 NULL: pte_offset_map(pmd, address))
1283
1284 #define pte_alloc_map_lock(mm, pmd, address, ptlp) \
1285 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, NULL, \
1286 pmd, address))? \
1287 NULL: pte_offset_map_lock(mm, pmd, address, ptlp))
1288
1289 #define pte_alloc_kernel(pmd, address) \
1290 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
1291 NULL: pte_offset_kernel(pmd, address))
1292
1293 extern void free_area_init(unsigned long * zones_size);
1294 extern void free_area_init_node(int nid, unsigned long * zones_size,
1295 unsigned long zone_start_pfn, unsigned long *zholes_size);
1296 extern void free_initmem(void);
1297
1298 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1299 /*
1300 * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its
1301 * zones, allocate the backing mem_map and account for memory holes in a more
1302 * architecture independent manner. This is a substitute for creating the
1303 * zone_sizes[] and zholes_size[] arrays and passing them to
1304 * free_area_init_node()
1305 *
1306 * An architecture is expected to register range of page frames backed by
1307 * physical memory with memblock_add[_node]() before calling
1308 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
1309 * usage, an architecture is expected to do something like
1310 *
1311 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
1312 * max_highmem_pfn};
1313 * for_each_valid_physical_page_range()
1314 * memblock_add_node(base, size, nid)
1315 * free_area_init_nodes(max_zone_pfns);
1316 *
1317 * free_bootmem_with_active_regions() calls free_bootmem_node() for each
1318 * registered physical page range. Similarly
1319 * sparse_memory_present_with_active_regions() calls memory_present() for
1320 * each range when SPARSEMEM is enabled.
1321 *
1322 * See mm/page_alloc.c for more information on each function exposed by
1323 * CONFIG_HAVE_MEMBLOCK_NODE_MAP.
1324 */
1325 extern void free_area_init_nodes(unsigned long *max_zone_pfn);
1326 unsigned long node_map_pfn_alignment(void);
1327 unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
1328 unsigned long end_pfn);
1329 extern unsigned long absent_pages_in_range(unsigned long start_pfn,
1330 unsigned long end_pfn);
1331 extern void get_pfn_range_for_nid(unsigned int nid,
1332 unsigned long *start_pfn, unsigned long *end_pfn);
1333 extern unsigned long find_min_pfn_with_active_regions(void);
1334 extern void free_bootmem_with_active_regions(int nid,
1335 unsigned long max_low_pfn);
1336 extern void sparse_memory_present_with_active_regions(int nid);
1337
1338 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
1339
1340 #if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \
1341 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
1342 static inline int __early_pfn_to_nid(unsigned long pfn)
1343 {
1344 return 0;
1345 }
1346 #else
1347 /* please see mm/page_alloc.c */
1348 extern int __meminit early_pfn_to_nid(unsigned long pfn);
1349 #ifdef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
1350 /* there is a per-arch backend function. */
1351 extern int __meminit __early_pfn_to_nid(unsigned long pfn);
1352 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
1353 #endif
1354
1355 extern void set_dma_reserve(unsigned long new_dma_reserve);
1356 extern void memmap_init_zone(unsigned long, int, unsigned long,
1357 unsigned long, enum memmap_context);
1358 extern void setup_per_zone_wmarks(void);
1359 extern int __meminit init_per_zone_wmark_min(void);
1360 extern void mem_init(void);
1361 extern void __init mmap_init(void);
1362 extern void show_mem(unsigned int flags);
1363 extern void si_meminfo(struct sysinfo * val);
1364 extern void si_meminfo_node(struct sysinfo *val, int nid);
1365
1366 extern __printf(3, 4)
1367 void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...);
1368
1369 extern void setup_per_cpu_pageset(void);
1370
1371 extern void zone_pcp_update(struct zone *zone);
1372 extern void zone_pcp_reset(struct zone *zone);
1373
1374 /* page_alloc.c */
1375 extern int min_free_kbytes;
1376
1377 /* nommu.c */
1378 extern atomic_long_t mmap_pages_allocated;
1379 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
1380
1381 /* interval_tree.c */
1382 void vma_interval_tree_insert(struct vm_area_struct *node,
1383 struct rb_root *root);
1384 void vma_interval_tree_insert_after(struct vm_area_struct *node,
1385 struct vm_area_struct *prev,
1386 struct rb_root *root);
1387 void vma_interval_tree_remove(struct vm_area_struct *node,
1388 struct rb_root *root);
1389 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root *root,
1390 unsigned long start, unsigned long last);
1391 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
1392 unsigned long start, unsigned long last);
1393
1394 #define vma_interval_tree_foreach(vma, root, start, last) \
1395 for (vma = vma_interval_tree_iter_first(root, start, last); \
1396 vma; vma = vma_interval_tree_iter_next(vma, start, last))
1397
1398 static inline void vma_nonlinear_insert(struct vm_area_struct *vma,
1399 struct list_head *list)
1400 {
1401 list_add_tail(&vma->shared.nonlinear, list);
1402 }
1403
1404 void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
1405 struct rb_root *root);
1406 void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
1407 struct rb_root *root);
1408 struct anon_vma_chain *anon_vma_interval_tree_iter_first(
1409 struct rb_root *root, unsigned long start, unsigned long last);
1410 struct anon_vma_chain *anon_vma_interval_tree_iter_next(
1411 struct anon_vma_chain *node, unsigned long start, unsigned long last);
1412 #ifdef CONFIG_DEBUG_VM_RB
1413 void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
1414 #endif
1415
1416 #define anon_vma_interval_tree_foreach(avc, root, start, last) \
1417 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
1418 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
1419
1420 /* mmap.c */
1421 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
1422 extern int vma_adjust(struct vm_area_struct *vma, unsigned long start,
1423 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert);
1424 extern struct vm_area_struct *vma_merge(struct mm_struct *,
1425 struct vm_area_struct *prev, unsigned long addr, unsigned long end,
1426 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
1427 struct mempolicy *);
1428 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
1429 extern int split_vma(struct mm_struct *,
1430 struct vm_area_struct *, unsigned long addr, int new_below);
1431 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
1432 extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
1433 struct rb_node **, struct rb_node *);
1434 extern void unlink_file_vma(struct vm_area_struct *);
1435 extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
1436 unsigned long addr, unsigned long len, pgoff_t pgoff,
1437 bool *need_rmap_locks);
1438 extern void exit_mmap(struct mm_struct *);
1439
1440 extern int mm_take_all_locks(struct mm_struct *mm);
1441 extern void mm_drop_all_locks(struct mm_struct *mm);
1442
1443 extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
1444 extern struct file *get_mm_exe_file(struct mm_struct *mm);
1445
1446 extern int may_expand_vm(struct mm_struct *mm, unsigned long npages);
1447 extern int install_special_mapping(struct mm_struct *mm,
1448 unsigned long addr, unsigned long len,
1449 unsigned long flags, struct page **pages);
1450
1451 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
1452
1453 extern unsigned long mmap_region(struct file *file, unsigned long addr,
1454 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff);
1455 extern unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
1456 unsigned long len, unsigned long prot, unsigned long flags,
1457 unsigned long pgoff, unsigned long *populate);
1458 extern int do_munmap(struct mm_struct *, unsigned long, size_t);
1459
1460 #ifdef CONFIG_MMU
1461 extern int __mm_populate(unsigned long addr, unsigned long len,
1462 int ignore_errors);
1463 static inline void mm_populate(unsigned long addr, unsigned long len)
1464 {
1465 /* Ignore errors */
1466 (void) __mm_populate(addr, len, 1);
1467 }
1468 #else
1469 static inline void mm_populate(unsigned long addr, unsigned long len) {}
1470 #endif
1471
1472 /* These take the mm semaphore themselves */
1473 extern unsigned long vm_brk(unsigned long, unsigned long);
1474 extern int vm_munmap(unsigned long, size_t);
1475 extern unsigned long vm_mmap(struct file *, unsigned long,
1476 unsigned long, unsigned long,
1477 unsigned long, unsigned long);
1478
1479 struct vm_unmapped_area_info {
1480 #define VM_UNMAPPED_AREA_TOPDOWN 1
1481 unsigned long flags;
1482 unsigned long length;
1483 unsigned long low_limit;
1484 unsigned long high_limit;
1485 unsigned long align_mask;
1486 unsigned long align_offset;
1487 };
1488
1489 extern unsigned long unmapped_area(struct vm_unmapped_area_info *info);
1490 extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info);
1491
1492 /*
1493 * Search for an unmapped address range.
1494 *
1495 * We are looking for a range that:
1496 * - does not intersect with any VMA;
1497 * - is contained within the [low_limit, high_limit) interval;
1498 * - is at least the desired size.
1499 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
1500 */
1501 static inline unsigned long
1502 vm_unmapped_area(struct vm_unmapped_area_info *info)
1503 {
1504 if (!(info->flags & VM_UNMAPPED_AREA_TOPDOWN))
1505 return unmapped_area(info);
1506 else
1507 return unmapped_area_topdown(info);
1508 }
1509
1510 /* truncate.c */
1511 extern void truncate_inode_pages(struct address_space *, loff_t);
1512 extern void truncate_inode_pages_range(struct address_space *,
1513 loff_t lstart, loff_t lend);
1514
1515 /* generic vm_area_ops exported for stackable file systems */
1516 extern int filemap_fault(struct vm_area_struct *, struct vm_fault *);
1517 extern int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf);
1518
1519 /* mm/page-writeback.c */
1520 int write_one_page(struct page *page, int wait);
1521 void task_dirty_inc(struct task_struct *tsk);
1522
1523 /* readahead.c */
1524 #define VM_MAX_READAHEAD 128 /* kbytes */
1525 #define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */
1526
1527 int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
1528 pgoff_t offset, unsigned long nr_to_read);
1529
1530 void page_cache_sync_readahead(struct address_space *mapping,
1531 struct file_ra_state *ra,
1532 struct file *filp,
1533 pgoff_t offset,
1534 unsigned long size);
1535
1536 void page_cache_async_readahead(struct address_space *mapping,
1537 struct file_ra_state *ra,
1538 struct file *filp,
1539 struct page *pg,
1540 pgoff_t offset,
1541 unsigned long size);
1542
1543 unsigned long max_sane_readahead(unsigned long nr);
1544 unsigned long ra_submit(struct file_ra_state *ra,
1545 struct address_space *mapping,
1546 struct file *filp);
1547
1548 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
1549 extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
1550
1551 /* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
1552 extern int expand_downwards(struct vm_area_struct *vma,
1553 unsigned long address);
1554 #if VM_GROWSUP
1555 extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
1556 #else
1557 #define expand_upwards(vma, address) do { } while (0)
1558 #endif
1559
1560 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
1561 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
1562 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
1563 struct vm_area_struct **pprev);
1564
1565 /* Look up the first VMA which intersects the interval start_addr..end_addr-1,
1566 NULL if none. Assume start_addr < end_addr. */
1567 static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
1568 {
1569 struct vm_area_struct * vma = find_vma(mm,start_addr);
1570
1571 if (vma && end_addr <= vma->vm_start)
1572 vma = NULL;
1573 return vma;
1574 }
1575
1576 static inline unsigned long vma_pages(struct vm_area_struct *vma)
1577 {
1578 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
1579 }
1580
1581 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */
1582 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
1583 unsigned long vm_start, unsigned long vm_end)
1584 {
1585 struct vm_area_struct *vma = find_vma(mm, vm_start);
1586
1587 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
1588 vma = NULL;
1589
1590 return vma;
1591 }
1592
1593 #ifdef CONFIG_MMU
1594 pgprot_t vm_get_page_prot(unsigned long vm_flags);
1595 #else
1596 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
1597 {
1598 return __pgprot(0);
1599 }
1600 #endif
1601
1602 #ifdef CONFIG_ARCH_USES_NUMA_PROT_NONE
1603 unsigned long change_prot_numa(struct vm_area_struct *vma,
1604 unsigned long start, unsigned long end);
1605 #endif
1606
1607 struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
1608 int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
1609 unsigned long pfn, unsigned long size, pgprot_t);
1610 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
1611 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1612 unsigned long pfn);
1613 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1614 unsigned long pfn);
1615
1616 struct page *follow_page_mask(struct vm_area_struct *vma,
1617 unsigned long address, unsigned int foll_flags,
1618 unsigned int *page_mask);
1619
1620 static inline struct page *follow_page(struct vm_area_struct *vma,
1621 unsigned long address, unsigned int foll_flags)
1622 {
1623 unsigned int unused_page_mask;
1624 return follow_page_mask(vma, address, foll_flags, &unused_page_mask);
1625 }
1626
1627 #define FOLL_WRITE 0x01 /* check pte is writable */
1628 #define FOLL_TOUCH 0x02 /* mark page accessed */
1629 #define FOLL_GET 0x04 /* do get_page on page */
1630 #define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
1631 #define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
1632 #define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO
1633 * and return without waiting upon it */
1634 #define FOLL_MLOCK 0x40 /* mark page as mlocked */
1635 #define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */
1636 #define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */
1637 #define FOLL_NUMA 0x200 /* force NUMA hinting page fault */
1638 #define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */
1639
1640 typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
1641 void *data);
1642 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
1643 unsigned long size, pte_fn_t fn, void *data);
1644
1645 #ifdef CONFIG_PROC_FS
1646 void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long);
1647 #else
1648 static inline void vm_stat_account(struct mm_struct *mm,
1649 unsigned long flags, struct file *file, long pages)
1650 {
1651 mm->total_vm += pages;
1652 }
1653 #endif /* CONFIG_PROC_FS */
1654
1655 #ifdef CONFIG_DEBUG_PAGEALLOC
1656 extern void kernel_map_pages(struct page *page, int numpages, int enable);
1657 #ifdef CONFIG_HIBERNATION
1658 extern bool kernel_page_present(struct page *page);
1659 #endif /* CONFIG_HIBERNATION */
1660 #else
1661 static inline void
1662 kernel_map_pages(struct page *page, int numpages, int enable) {}
1663 #ifdef CONFIG_HIBERNATION
1664 static inline bool kernel_page_present(struct page *page) { return true; }
1665 #endif /* CONFIG_HIBERNATION */
1666 #endif
1667
1668 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
1669 #ifdef __HAVE_ARCH_GATE_AREA
1670 int in_gate_area_no_mm(unsigned long addr);
1671 int in_gate_area(struct mm_struct *mm, unsigned long addr);
1672 #else
1673 int in_gate_area_no_mm(unsigned long addr);
1674 #define in_gate_area(mm, addr) ({(void)mm; in_gate_area_no_mm(addr);})
1675 #endif /* __HAVE_ARCH_GATE_AREA */
1676
1677 int drop_caches_sysctl_handler(struct ctl_table *, int,
1678 void __user *, size_t *, loff_t *);
1679 unsigned long shrink_slab(struct shrink_control *shrink,
1680 unsigned long nr_pages_scanned,
1681 unsigned long lru_pages);
1682
1683 #ifndef CONFIG_MMU
1684 #define randomize_va_space 0
1685 #else
1686 extern int randomize_va_space;
1687 #endif
1688
1689 const char * arch_vma_name(struct vm_area_struct *vma);
1690 void print_vma_addr(char *prefix, unsigned long rip);
1691
1692 void sparse_mem_maps_populate_node(struct page **map_map,
1693 unsigned long pnum_begin,
1694 unsigned long pnum_end,
1695 unsigned long map_count,
1696 int nodeid);
1697
1698 struct page *sparse_mem_map_populate(unsigned long pnum, int nid);
1699 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
1700 pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node);
1701 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
1702 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
1703 void *vmemmap_alloc_block(unsigned long size, int node);
1704 void *vmemmap_alloc_block_buf(unsigned long size, int node);
1705 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
1706 int vmemmap_populate_basepages(struct page *start_page,
1707 unsigned long pages, int node);
1708 int vmemmap_populate(struct page *start_page, unsigned long pages, int node);
1709 void vmemmap_populate_print_last(void);
1710 #ifdef CONFIG_MEMORY_HOTPLUG
1711 void vmemmap_free(struct page *memmap, unsigned long nr_pages);
1712 #endif
1713 void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
1714 unsigned long size);
1715
1716 enum mf_flags {
1717 MF_COUNT_INCREASED = 1 << 0,
1718 MF_ACTION_REQUIRED = 1 << 1,
1719 MF_MUST_KILL = 1 << 2,
1720 };
1721 extern int memory_failure(unsigned long pfn, int trapno, int flags);
1722 extern void memory_failure_queue(unsigned long pfn, int trapno, int flags);
1723 extern int unpoison_memory(unsigned long pfn);
1724 extern int sysctl_memory_failure_early_kill;
1725 extern int sysctl_memory_failure_recovery;
1726 extern void shake_page(struct page *p, int access);
1727 extern atomic_long_t num_poisoned_pages;
1728 extern int soft_offline_page(struct page *page, int flags);
1729
1730 extern void dump_page(struct page *page);
1731
1732 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
1733 extern void clear_huge_page(struct page *page,
1734 unsigned long addr,
1735 unsigned int pages_per_huge_page);
1736 extern void copy_user_huge_page(struct page *dst, struct page *src,
1737 unsigned long addr, struct vm_area_struct *vma,
1738 unsigned int pages_per_huge_page);
1739 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
1740
1741 #ifdef CONFIG_DEBUG_PAGEALLOC
1742 extern unsigned int _debug_guardpage_minorder;
1743
1744 static inline unsigned int debug_guardpage_minorder(void)
1745 {
1746 return _debug_guardpage_minorder;
1747 }
1748
1749 static inline bool page_is_guard(struct page *page)
1750 {
1751 return test_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
1752 }
1753 #else
1754 static inline unsigned int debug_guardpage_minorder(void) { return 0; }
1755 static inline bool page_is_guard(struct page *page) { return false; }
1756 #endif /* CONFIG_DEBUG_PAGEALLOC */
1757
1758 #endif /* __KERNEL__ */
1759 #endif /* _LINUX_MM_H */
This page took 0.07074 seconds and 5 git commands to generate.