mm: fix fault vs invalidate race for linear mappings
[deliverable/linux.git] / include / linux / mm.h
1 #ifndef _LINUX_MM_H
2 #define _LINUX_MM_H
3
4 #include <linux/errno.h>
5
6 #ifdef __KERNEL__
7
8 #include <linux/gfp.h>
9 #include <linux/list.h>
10 #include <linux/mmzone.h>
11 #include <linux/rbtree.h>
12 #include <linux/prio_tree.h>
13 #include <linux/fs.h>
14 #include <linux/mutex.h>
15 #include <linux/debug_locks.h>
16 #include <linux/backing-dev.h>
17 #include <linux/mm_types.h>
18
19 struct mempolicy;
20 struct anon_vma;
21 struct user_struct;
22
23 #ifndef CONFIG_DISCONTIGMEM /* Don't use mapnrs, do it properly */
24 extern unsigned long max_mapnr;
25 #endif
26
27 extern unsigned long num_physpages;
28 extern void * high_memory;
29 extern int page_cluster;
30
31 #ifdef CONFIG_SYSCTL
32 extern int sysctl_legacy_va_layout;
33 #else
34 #define sysctl_legacy_va_layout 0
35 #endif
36
37 #include <asm/page.h>
38 #include <asm/pgtable.h>
39 #include <asm/processor.h>
40
41 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
42
43 /*
44 * Linux kernel virtual memory manager primitives.
45 * The idea being to have a "virtual" mm in the same way
46 * we have a virtual fs - giving a cleaner interface to the
47 * mm details, and allowing different kinds of memory mappings
48 * (from shared memory to executable loading to arbitrary
49 * mmap() functions).
50 */
51
52 /*
53 * This struct defines a memory VMM memory area. There is one of these
54 * per VM-area/task. A VM area is any part of the process virtual memory
55 * space that has a special rule for the page-fault handlers (ie a shared
56 * library, the executable area etc).
57 */
58 struct vm_area_struct {
59 struct mm_struct * vm_mm; /* The address space we belong to. */
60 unsigned long vm_start; /* Our start address within vm_mm. */
61 unsigned long vm_end; /* The first byte after our end address
62 within vm_mm. */
63
64 /* linked list of VM areas per task, sorted by address */
65 struct vm_area_struct *vm_next;
66
67 pgprot_t vm_page_prot; /* Access permissions of this VMA. */
68 unsigned long vm_flags; /* Flags, listed below. */
69
70 struct rb_node vm_rb;
71
72 /*
73 * For areas with an address space and backing store,
74 * linkage into the address_space->i_mmap prio tree, or
75 * linkage to the list of like vmas hanging off its node, or
76 * linkage of vma in the address_space->i_mmap_nonlinear list.
77 */
78 union {
79 struct {
80 struct list_head list;
81 void *parent; /* aligns with prio_tree_node parent */
82 struct vm_area_struct *head;
83 } vm_set;
84
85 struct raw_prio_tree_node prio_tree_node;
86 } shared;
87
88 /*
89 * A file's MAP_PRIVATE vma can be in both i_mmap tree and anon_vma
90 * list, after a COW of one of the file pages. A MAP_SHARED vma
91 * can only be in the i_mmap tree. An anonymous MAP_PRIVATE, stack
92 * or brk vma (with NULL file) can only be in an anon_vma list.
93 */
94 struct list_head anon_vma_node; /* Serialized by anon_vma->lock */
95 struct anon_vma *anon_vma; /* Serialized by page_table_lock */
96
97 /* Function pointers to deal with this struct. */
98 struct vm_operations_struct * vm_ops;
99
100 /* Information about our backing store: */
101 unsigned long vm_pgoff; /* Offset (within vm_file) in PAGE_SIZE
102 units, *not* PAGE_CACHE_SIZE */
103 struct file * vm_file; /* File we map to (can be NULL). */
104 void * vm_private_data; /* was vm_pte (shared mem) */
105 unsigned long vm_truncate_count;/* truncate_count or restart_addr */
106
107 #ifndef CONFIG_MMU
108 atomic_t vm_usage; /* refcount (VMAs shared if !MMU) */
109 #endif
110 #ifdef CONFIG_NUMA
111 struct mempolicy *vm_policy; /* NUMA policy for the VMA */
112 #endif
113 };
114
115 extern struct kmem_cache *vm_area_cachep;
116
117 /*
118 * This struct defines the per-mm list of VMAs for uClinux. If CONFIG_MMU is
119 * disabled, then there's a single shared list of VMAs maintained by the
120 * system, and mm's subscribe to these individually
121 */
122 struct vm_list_struct {
123 struct vm_list_struct *next;
124 struct vm_area_struct *vma;
125 };
126
127 #ifndef CONFIG_MMU
128 extern struct rb_root nommu_vma_tree;
129 extern struct rw_semaphore nommu_vma_sem;
130
131 extern unsigned int kobjsize(const void *objp);
132 #endif
133
134 /*
135 * vm_flags..
136 */
137 #define VM_READ 0x00000001 /* currently active flags */
138 #define VM_WRITE 0x00000002
139 #define VM_EXEC 0x00000004
140 #define VM_SHARED 0x00000008
141
142 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
143 #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
144 #define VM_MAYWRITE 0x00000020
145 #define VM_MAYEXEC 0x00000040
146 #define VM_MAYSHARE 0x00000080
147
148 #define VM_GROWSDOWN 0x00000100 /* general info on the segment */
149 #define VM_GROWSUP 0x00000200
150 #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
151 #define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
152
153 #define VM_EXECUTABLE 0x00001000
154 #define VM_LOCKED 0x00002000
155 #define VM_IO 0x00004000 /* Memory mapped I/O or similar */
156
157 /* Used by sys_madvise() */
158 #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
159 #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
160
161 #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
162 #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
163 #define VM_RESERVED 0x00080000 /* Count as reserved_vm like IO */
164 #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
165 #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
166 #define VM_NONLINEAR 0x00800000 /* Is non-linear (remap_file_pages) */
167 #define VM_MAPPED_COPY 0x01000000 /* T if mapped copy of data (nommu mmap) */
168 #define VM_INSERTPAGE 0x02000000 /* The vma has had "vm_insert_page()" done on it */
169 #define VM_ALWAYSDUMP 0x04000000 /* Always include in core dumps */
170
171 #define VM_CAN_INVALIDATE 0x08000000 /* The mapping may be invalidated,
172 * eg. truncate or invalidate_inode_*.
173 * In this case, do_no_page must
174 * return with the page locked.
175 */
176
177 #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
178 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
179 #endif
180
181 #ifdef CONFIG_STACK_GROWSUP
182 #define VM_STACK_FLAGS (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
183 #else
184 #define VM_STACK_FLAGS (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
185 #endif
186
187 #define VM_READHINTMASK (VM_SEQ_READ | VM_RAND_READ)
188 #define VM_ClearReadHint(v) (v)->vm_flags &= ~VM_READHINTMASK
189 #define VM_NormalReadHint(v) (!((v)->vm_flags & VM_READHINTMASK))
190 #define VM_SequentialReadHint(v) ((v)->vm_flags & VM_SEQ_READ)
191 #define VM_RandomReadHint(v) ((v)->vm_flags & VM_RAND_READ)
192
193 /*
194 * mapping from the currently active vm_flags protection bits (the
195 * low four bits) to a page protection mask..
196 */
197 extern pgprot_t protection_map[16];
198
199
200 /*
201 * These are the virtual MM functions - opening of an area, closing and
202 * unmapping it (needed to keep files on disk up-to-date etc), pointer
203 * to the functions called when a no-page or a wp-page exception occurs.
204 */
205 struct vm_operations_struct {
206 void (*open)(struct vm_area_struct * area);
207 void (*close)(struct vm_area_struct * area);
208 struct page * (*nopage)(struct vm_area_struct * area, unsigned long address, int *type);
209 unsigned long (*nopfn)(struct vm_area_struct * area, unsigned long address);
210 int (*populate)(struct vm_area_struct * area, unsigned long address, unsigned long len, pgprot_t prot, unsigned long pgoff, int nonblock);
211
212 /* notification that a previously read-only page is about to become
213 * writable, if an error is returned it will cause a SIGBUS */
214 int (*page_mkwrite)(struct vm_area_struct *vma, struct page *page);
215 #ifdef CONFIG_NUMA
216 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
217 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
218 unsigned long addr);
219 int (*migrate)(struct vm_area_struct *vma, const nodemask_t *from,
220 const nodemask_t *to, unsigned long flags);
221 #endif
222 };
223
224 struct mmu_gather;
225 struct inode;
226
227 #define page_private(page) ((page)->private)
228 #define set_page_private(page, v) ((page)->private = (v))
229
230 /*
231 * FIXME: take this include out, include page-flags.h in
232 * files which need it (119 of them)
233 */
234 #include <linux/page-flags.h>
235
236 #ifdef CONFIG_DEBUG_VM
237 #define VM_BUG_ON(cond) BUG_ON(cond)
238 #else
239 #define VM_BUG_ON(condition) do { } while(0)
240 #endif
241
242 /*
243 * Methods to modify the page usage count.
244 *
245 * What counts for a page usage:
246 * - cache mapping (page->mapping)
247 * - private data (page->private)
248 * - page mapped in a task's page tables, each mapping
249 * is counted separately
250 *
251 * Also, many kernel routines increase the page count before a critical
252 * routine so they can be sure the page doesn't go away from under them.
253 */
254
255 /*
256 * Drop a ref, return true if the refcount fell to zero (the page has no users)
257 */
258 static inline int put_page_testzero(struct page *page)
259 {
260 VM_BUG_ON(atomic_read(&page->_count) == 0);
261 return atomic_dec_and_test(&page->_count);
262 }
263
264 /*
265 * Try to grab a ref unless the page has a refcount of zero, return false if
266 * that is the case.
267 */
268 static inline int get_page_unless_zero(struct page *page)
269 {
270 VM_BUG_ON(PageCompound(page));
271 return atomic_inc_not_zero(&page->_count);
272 }
273
274 static inline struct page *compound_head(struct page *page)
275 {
276 if (unlikely(PageTail(page)))
277 return page->first_page;
278 return page;
279 }
280
281 static inline int page_count(struct page *page)
282 {
283 return atomic_read(&compound_head(page)->_count);
284 }
285
286 static inline void get_page(struct page *page)
287 {
288 page = compound_head(page);
289 VM_BUG_ON(atomic_read(&page->_count) == 0);
290 atomic_inc(&page->_count);
291 }
292
293 static inline struct page *virt_to_head_page(const void *x)
294 {
295 struct page *page = virt_to_page(x);
296 return compound_head(page);
297 }
298
299 /*
300 * Setup the page count before being freed into the page allocator for
301 * the first time (boot or memory hotplug)
302 */
303 static inline void init_page_count(struct page *page)
304 {
305 atomic_set(&page->_count, 1);
306 }
307
308 void put_page(struct page *page);
309 void put_pages_list(struct list_head *pages);
310
311 void split_page(struct page *page, unsigned int order);
312
313 /*
314 * Compound pages have a destructor function. Provide a
315 * prototype for that function and accessor functions.
316 * These are _only_ valid on the head of a PG_compound page.
317 */
318 typedef void compound_page_dtor(struct page *);
319
320 static inline void set_compound_page_dtor(struct page *page,
321 compound_page_dtor *dtor)
322 {
323 page[1].lru.next = (void *)dtor;
324 }
325
326 static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
327 {
328 return (compound_page_dtor *)page[1].lru.next;
329 }
330
331 static inline int compound_order(struct page *page)
332 {
333 if (!PageHead(page))
334 return 0;
335 return (unsigned long)page[1].lru.prev;
336 }
337
338 static inline void set_compound_order(struct page *page, unsigned long order)
339 {
340 page[1].lru.prev = (void *)order;
341 }
342
343 /*
344 * Multiple processes may "see" the same page. E.g. for untouched
345 * mappings of /dev/null, all processes see the same page full of
346 * zeroes, and text pages of executables and shared libraries have
347 * only one copy in memory, at most, normally.
348 *
349 * For the non-reserved pages, page_count(page) denotes a reference count.
350 * page_count() == 0 means the page is free. page->lru is then used for
351 * freelist management in the buddy allocator.
352 * page_count() > 0 means the page has been allocated.
353 *
354 * Pages are allocated by the slab allocator in order to provide memory
355 * to kmalloc and kmem_cache_alloc. In this case, the management of the
356 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
357 * unless a particular usage is carefully commented. (the responsibility of
358 * freeing the kmalloc memory is the caller's, of course).
359 *
360 * A page may be used by anyone else who does a __get_free_page().
361 * In this case, page_count still tracks the references, and should only
362 * be used through the normal accessor functions. The top bits of page->flags
363 * and page->virtual store page management information, but all other fields
364 * are unused and could be used privately, carefully. The management of this
365 * page is the responsibility of the one who allocated it, and those who have
366 * subsequently been given references to it.
367 *
368 * The other pages (we may call them "pagecache pages") are completely
369 * managed by the Linux memory manager: I/O, buffers, swapping etc.
370 * The following discussion applies only to them.
371 *
372 * A pagecache page contains an opaque `private' member, which belongs to the
373 * page's address_space. Usually, this is the address of a circular list of
374 * the page's disk buffers. PG_private must be set to tell the VM to call
375 * into the filesystem to release these pages.
376 *
377 * A page may belong to an inode's memory mapping. In this case, page->mapping
378 * is the pointer to the inode, and page->index is the file offset of the page,
379 * in units of PAGE_CACHE_SIZE.
380 *
381 * If pagecache pages are not associated with an inode, they are said to be
382 * anonymous pages. These may become associated with the swapcache, and in that
383 * case PG_swapcache is set, and page->private is an offset into the swapcache.
384 *
385 * In either case (swapcache or inode backed), the pagecache itself holds one
386 * reference to the page. Setting PG_private should also increment the
387 * refcount. The each user mapping also has a reference to the page.
388 *
389 * The pagecache pages are stored in a per-mapping radix tree, which is
390 * rooted at mapping->page_tree, and indexed by offset.
391 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
392 * lists, we instead now tag pages as dirty/writeback in the radix tree.
393 *
394 * All pagecache pages may be subject to I/O:
395 * - inode pages may need to be read from disk,
396 * - inode pages which have been modified and are MAP_SHARED may need
397 * to be written back to the inode on disk,
398 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
399 * modified may need to be swapped out to swap space and (later) to be read
400 * back into memory.
401 */
402
403 /*
404 * The zone field is never updated after free_area_init_core()
405 * sets it, so none of the operations on it need to be atomic.
406 */
407
408
409 /*
410 * page->flags layout:
411 *
412 * There are three possibilities for how page->flags get
413 * laid out. The first is for the normal case, without
414 * sparsemem. The second is for sparsemem when there is
415 * plenty of space for node and section. The last is when
416 * we have run out of space and have to fall back to an
417 * alternate (slower) way of determining the node.
418 *
419 * No sparsemem: | NODE | ZONE | ... | FLAGS |
420 * with space for node: | SECTION | NODE | ZONE | ... | FLAGS |
421 * no space for node: | SECTION | ZONE | ... | FLAGS |
422 */
423 #ifdef CONFIG_SPARSEMEM
424 #define SECTIONS_WIDTH SECTIONS_SHIFT
425 #else
426 #define SECTIONS_WIDTH 0
427 #endif
428
429 #define ZONES_WIDTH ZONES_SHIFT
430
431 #if SECTIONS_WIDTH+ZONES_WIDTH+NODES_SHIFT <= FLAGS_RESERVED
432 #define NODES_WIDTH NODES_SHIFT
433 #else
434 #define NODES_WIDTH 0
435 #endif
436
437 /* Page flags: | [SECTION] | [NODE] | ZONE | ... | FLAGS | */
438 #define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
439 #define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
440 #define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
441
442 /*
443 * We are going to use the flags for the page to node mapping if its in
444 * there. This includes the case where there is no node, so it is implicit.
445 */
446 #if !(NODES_WIDTH > 0 || NODES_SHIFT == 0)
447 #define NODE_NOT_IN_PAGE_FLAGS
448 #endif
449
450 #ifndef PFN_SECTION_SHIFT
451 #define PFN_SECTION_SHIFT 0
452 #endif
453
454 /*
455 * Define the bit shifts to access each section. For non-existant
456 * sections we define the shift as 0; that plus a 0 mask ensures
457 * the compiler will optimise away reference to them.
458 */
459 #define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
460 #define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
461 #define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
462
463 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allcator */
464 #ifdef NODE_NOT_IN_PAGEFLAGS
465 #define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
466 #define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
467 SECTIONS_PGOFF : ZONES_PGOFF)
468 #else
469 #define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
470 #define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
471 NODES_PGOFF : ZONES_PGOFF)
472 #endif
473
474 #define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
475
476 #if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > FLAGS_RESERVED
477 #error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > FLAGS_RESERVED
478 #endif
479
480 #define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
481 #define NODES_MASK ((1UL << NODES_WIDTH) - 1)
482 #define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
483 #define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
484
485 static inline enum zone_type page_zonenum(struct page *page)
486 {
487 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
488 }
489
490 /*
491 * The identification function is only used by the buddy allocator for
492 * determining if two pages could be buddies. We are not really
493 * identifying a zone since we could be using a the section number
494 * id if we have not node id available in page flags.
495 * We guarantee only that it will return the same value for two
496 * combinable pages in a zone.
497 */
498 static inline int page_zone_id(struct page *page)
499 {
500 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
501 }
502
503 static inline int zone_to_nid(struct zone *zone)
504 {
505 #ifdef CONFIG_NUMA
506 return zone->node;
507 #else
508 return 0;
509 #endif
510 }
511
512 #ifdef NODE_NOT_IN_PAGE_FLAGS
513 extern int page_to_nid(struct page *page);
514 #else
515 static inline int page_to_nid(struct page *page)
516 {
517 return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
518 }
519 #endif
520
521 static inline struct zone *page_zone(struct page *page)
522 {
523 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
524 }
525
526 static inline unsigned long page_to_section(struct page *page)
527 {
528 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
529 }
530
531 static inline void set_page_zone(struct page *page, enum zone_type zone)
532 {
533 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
534 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
535 }
536
537 static inline void set_page_node(struct page *page, unsigned long node)
538 {
539 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
540 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
541 }
542
543 static inline void set_page_section(struct page *page, unsigned long section)
544 {
545 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
546 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
547 }
548
549 static inline void set_page_links(struct page *page, enum zone_type zone,
550 unsigned long node, unsigned long pfn)
551 {
552 set_page_zone(page, zone);
553 set_page_node(page, node);
554 set_page_section(page, pfn_to_section_nr(pfn));
555 }
556
557 /*
558 * Some inline functions in vmstat.h depend on page_zone()
559 */
560 #include <linux/vmstat.h>
561
562 static __always_inline void *lowmem_page_address(struct page *page)
563 {
564 return __va(page_to_pfn(page) << PAGE_SHIFT);
565 }
566
567 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
568 #define HASHED_PAGE_VIRTUAL
569 #endif
570
571 #if defined(WANT_PAGE_VIRTUAL)
572 #define page_address(page) ((page)->virtual)
573 #define set_page_address(page, address) \
574 do { \
575 (page)->virtual = (address); \
576 } while(0)
577 #define page_address_init() do { } while(0)
578 #endif
579
580 #if defined(HASHED_PAGE_VIRTUAL)
581 void *page_address(struct page *page);
582 void set_page_address(struct page *page, void *virtual);
583 void page_address_init(void);
584 #endif
585
586 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
587 #define page_address(page) lowmem_page_address(page)
588 #define set_page_address(page, address) do { } while(0)
589 #define page_address_init() do { } while(0)
590 #endif
591
592 /*
593 * On an anonymous page mapped into a user virtual memory area,
594 * page->mapping points to its anon_vma, not to a struct address_space;
595 * with the PAGE_MAPPING_ANON bit set to distinguish it.
596 *
597 * Please note that, confusingly, "page_mapping" refers to the inode
598 * address_space which maps the page from disk; whereas "page_mapped"
599 * refers to user virtual address space into which the page is mapped.
600 */
601 #define PAGE_MAPPING_ANON 1
602
603 extern struct address_space swapper_space;
604 static inline struct address_space *page_mapping(struct page *page)
605 {
606 struct address_space *mapping = page->mapping;
607
608 VM_BUG_ON(PageSlab(page));
609 if (unlikely(PageSwapCache(page)))
610 mapping = &swapper_space;
611 #ifdef CONFIG_SLUB
612 else if (unlikely(PageSlab(page)))
613 mapping = NULL;
614 #endif
615 else if (unlikely((unsigned long)mapping & PAGE_MAPPING_ANON))
616 mapping = NULL;
617 return mapping;
618 }
619
620 static inline int PageAnon(struct page *page)
621 {
622 return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0;
623 }
624
625 /*
626 * Return the pagecache index of the passed page. Regular pagecache pages
627 * use ->index whereas swapcache pages use ->private
628 */
629 static inline pgoff_t page_index(struct page *page)
630 {
631 if (unlikely(PageSwapCache(page)))
632 return page_private(page);
633 return page->index;
634 }
635
636 /*
637 * The atomic page->_mapcount, like _count, starts from -1:
638 * so that transitions both from it and to it can be tracked,
639 * using atomic_inc_and_test and atomic_add_negative(-1).
640 */
641 static inline void reset_page_mapcount(struct page *page)
642 {
643 atomic_set(&(page)->_mapcount, -1);
644 }
645
646 static inline int page_mapcount(struct page *page)
647 {
648 return atomic_read(&(page)->_mapcount) + 1;
649 }
650
651 /*
652 * Return true if this page is mapped into pagetables.
653 */
654 static inline int page_mapped(struct page *page)
655 {
656 return atomic_read(&(page)->_mapcount) >= 0;
657 }
658
659 /*
660 * Error return values for the *_nopage functions
661 */
662 #define NOPAGE_SIGBUS (NULL)
663 #define NOPAGE_OOM ((struct page *) (-1))
664 #define NOPAGE_REFAULT ((struct page *) (-2)) /* Return to userspace, rerun */
665
666 /*
667 * Error return values for the *_nopfn functions
668 */
669 #define NOPFN_SIGBUS ((unsigned long) -1)
670 #define NOPFN_OOM ((unsigned long) -2)
671 #define NOPFN_REFAULT ((unsigned long) -3)
672
673 /*
674 * Different kinds of faults, as returned by handle_mm_fault().
675 * Used to decide whether a process gets delivered SIGBUS or
676 * just gets major/minor fault counters bumped up.
677 */
678 #define VM_FAULT_OOM 0x00
679 #define VM_FAULT_SIGBUS 0x01
680 #define VM_FAULT_MINOR 0x02
681 #define VM_FAULT_MAJOR 0x03
682
683 /*
684 * Special case for get_user_pages.
685 * Must be in a distinct bit from the above VM_FAULT_ flags.
686 */
687 #define VM_FAULT_WRITE 0x10
688
689 #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
690
691 extern void show_free_areas(void);
692
693 #ifdef CONFIG_SHMEM
694 int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *new);
695 struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
696 unsigned long addr);
697 int shmem_lock(struct file *file, int lock, struct user_struct *user);
698 #else
699 static inline int shmem_lock(struct file *file, int lock,
700 struct user_struct *user)
701 {
702 return 0;
703 }
704
705 static inline int shmem_set_policy(struct vm_area_struct *vma,
706 struct mempolicy *new)
707 {
708 return 0;
709 }
710
711 static inline struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
712 unsigned long addr)
713 {
714 return NULL;
715 }
716 #endif
717 struct file *shmem_file_setup(char *name, loff_t size, unsigned long flags);
718
719 int shmem_zero_setup(struct vm_area_struct *);
720
721 #ifndef CONFIG_MMU
722 extern unsigned long shmem_get_unmapped_area(struct file *file,
723 unsigned long addr,
724 unsigned long len,
725 unsigned long pgoff,
726 unsigned long flags);
727 #endif
728
729 extern int can_do_mlock(void);
730 extern int user_shm_lock(size_t, struct user_struct *);
731 extern void user_shm_unlock(size_t, struct user_struct *);
732
733 /*
734 * Parameter block passed down to zap_pte_range in exceptional cases.
735 */
736 struct zap_details {
737 struct vm_area_struct *nonlinear_vma; /* Check page->index if set */
738 struct address_space *check_mapping; /* Check page->mapping if set */
739 pgoff_t first_index; /* Lowest page->index to unmap */
740 pgoff_t last_index; /* Highest page->index to unmap */
741 spinlock_t *i_mmap_lock; /* For unmap_mapping_range: */
742 unsigned long truncate_count; /* Compare vm_truncate_count */
743 };
744
745 struct page *vm_normal_page(struct vm_area_struct *, unsigned long, pte_t);
746 unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
747 unsigned long size, struct zap_details *);
748 unsigned long unmap_vmas(struct mmu_gather **tlb,
749 struct vm_area_struct *start_vma, unsigned long start_addr,
750 unsigned long end_addr, unsigned long *nr_accounted,
751 struct zap_details *);
752 void free_pgd_range(struct mmu_gather **tlb, unsigned long addr,
753 unsigned long end, unsigned long floor, unsigned long ceiling);
754 void free_pgtables(struct mmu_gather **tlb, struct vm_area_struct *start_vma,
755 unsigned long floor, unsigned long ceiling);
756 int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
757 struct vm_area_struct *vma);
758 int zeromap_page_range(struct vm_area_struct *vma, unsigned long from,
759 unsigned long size, pgprot_t prot);
760 void unmap_mapping_range(struct address_space *mapping,
761 loff_t const holebegin, loff_t const holelen, int even_cows);
762
763 static inline void unmap_shared_mapping_range(struct address_space *mapping,
764 loff_t const holebegin, loff_t const holelen)
765 {
766 unmap_mapping_range(mapping, holebegin, holelen, 0);
767 }
768
769 extern int vmtruncate(struct inode * inode, loff_t offset);
770 extern int vmtruncate_range(struct inode * inode, loff_t offset, loff_t end);
771 extern int install_page(struct mm_struct *mm, struct vm_area_struct *vma, unsigned long addr, struct page *page, pgprot_t prot);
772 extern int install_file_pte(struct mm_struct *mm, struct vm_area_struct *vma, unsigned long addr, unsigned long pgoff, pgprot_t prot);
773
774 #ifdef CONFIG_MMU
775 extern int __handle_mm_fault(struct mm_struct *mm,struct vm_area_struct *vma,
776 unsigned long address, int write_access);
777
778 static inline int handle_mm_fault(struct mm_struct *mm,
779 struct vm_area_struct *vma, unsigned long address,
780 int write_access)
781 {
782 return __handle_mm_fault(mm, vma, address, write_access) &
783 (~VM_FAULT_WRITE);
784 }
785 #else
786 static inline int handle_mm_fault(struct mm_struct *mm,
787 struct vm_area_struct *vma, unsigned long address,
788 int write_access)
789 {
790 /* should never happen if there's no MMU */
791 BUG();
792 return VM_FAULT_SIGBUS;
793 }
794 #endif
795
796 extern int make_pages_present(unsigned long addr, unsigned long end);
797 extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write);
798 void install_arg_page(struct vm_area_struct *, struct page *, unsigned long);
799
800 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm, unsigned long start,
801 int len, int write, int force, struct page **pages, struct vm_area_struct **vmas);
802 void print_bad_pte(struct vm_area_struct *, pte_t, unsigned long);
803
804 extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
805 extern void do_invalidatepage(struct page *page, unsigned long offset);
806
807 int __set_page_dirty_nobuffers(struct page *page);
808 int __set_page_dirty_no_writeback(struct page *page);
809 int redirty_page_for_writepage(struct writeback_control *wbc,
810 struct page *page);
811 int FASTCALL(set_page_dirty(struct page *page));
812 int set_page_dirty_lock(struct page *page);
813 int clear_page_dirty_for_io(struct page *page);
814
815 extern unsigned long do_mremap(unsigned long addr,
816 unsigned long old_len, unsigned long new_len,
817 unsigned long flags, unsigned long new_addr);
818
819 /*
820 * A callback you can register to apply pressure to ageable caches.
821 *
822 * 'shrink' is passed a count 'nr_to_scan' and a 'gfpmask'. It should
823 * look through the least-recently-used 'nr_to_scan' entries and
824 * attempt to free them up. It should return the number of objects
825 * which remain in the cache. If it returns -1, it means it cannot do
826 * any scanning at this time (eg. there is a risk of deadlock).
827 *
828 * The 'gfpmask' refers to the allocation we are currently trying to
829 * fulfil.
830 *
831 * Note that 'shrink' will be passed nr_to_scan == 0 when the VM is
832 * querying the cache size, so a fastpath for that case is appropriate.
833 */
834 struct shrinker {
835 int (*shrink)(int nr_to_scan, gfp_t gfp_mask);
836 int seeks; /* seeks to recreate an obj */
837
838 /* These are for internal use */
839 struct list_head list;
840 long nr; /* objs pending delete */
841 };
842 #define DEFAULT_SEEKS 2 /* A good number if you don't know better. */
843 extern void register_shrinker(struct shrinker *);
844 extern void unregister_shrinker(struct shrinker *);
845
846 /*
847 * Some shared mappigns will want the pages marked read-only
848 * to track write events. If so, we'll downgrade vm_page_prot
849 * to the private version (using protection_map[] without the
850 * VM_SHARED bit).
851 */
852 static inline int vma_wants_writenotify(struct vm_area_struct *vma)
853 {
854 unsigned int vm_flags = vma->vm_flags;
855
856 /* If it was private or non-writable, the write bit is already clear */
857 if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
858 return 0;
859
860 /* The backer wishes to know when pages are first written to? */
861 if (vma->vm_ops && vma->vm_ops->page_mkwrite)
862 return 1;
863
864 /* The open routine did something to the protections already? */
865 if (pgprot_val(vma->vm_page_prot) !=
866 pgprot_val(protection_map[vm_flags &
867 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]))
868 return 0;
869
870 /* Specialty mapping? */
871 if (vm_flags & (VM_PFNMAP|VM_INSERTPAGE))
872 return 0;
873
874 /* Can the mapping track the dirty pages? */
875 return vma->vm_file && vma->vm_file->f_mapping &&
876 mapping_cap_account_dirty(vma->vm_file->f_mapping);
877 }
878
879 extern pte_t *FASTCALL(get_locked_pte(struct mm_struct *mm, unsigned long addr, spinlock_t **ptl));
880
881 #ifdef __PAGETABLE_PUD_FOLDED
882 static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd,
883 unsigned long address)
884 {
885 return 0;
886 }
887 #else
888 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
889 #endif
890
891 #ifdef __PAGETABLE_PMD_FOLDED
892 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
893 unsigned long address)
894 {
895 return 0;
896 }
897 #else
898 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
899 #endif
900
901 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address);
902 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
903
904 /*
905 * The following ifdef needed to get the 4level-fixup.h header to work.
906 * Remove it when 4level-fixup.h has been removed.
907 */
908 #if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
909 static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
910 {
911 return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))?
912 NULL: pud_offset(pgd, address);
913 }
914
915 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
916 {
917 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
918 NULL: pmd_offset(pud, address);
919 }
920 #endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
921
922 #if NR_CPUS >= CONFIG_SPLIT_PTLOCK_CPUS
923 /*
924 * We tuck a spinlock to guard each pagetable page into its struct page,
925 * at page->private, with BUILD_BUG_ON to make sure that this will not
926 * overflow into the next struct page (as it might with DEBUG_SPINLOCK).
927 * When freeing, reset page->mapping so free_pages_check won't complain.
928 */
929 #define __pte_lockptr(page) &((page)->ptl)
930 #define pte_lock_init(_page) do { \
931 spin_lock_init(__pte_lockptr(_page)); \
932 } while (0)
933 #define pte_lock_deinit(page) ((page)->mapping = NULL)
934 #define pte_lockptr(mm, pmd) ({(void)(mm); __pte_lockptr(pmd_page(*(pmd)));})
935 #else
936 /*
937 * We use mm->page_table_lock to guard all pagetable pages of the mm.
938 */
939 #define pte_lock_init(page) do {} while (0)
940 #define pte_lock_deinit(page) do {} while (0)
941 #define pte_lockptr(mm, pmd) ({(void)(pmd); &(mm)->page_table_lock;})
942 #endif /* NR_CPUS < CONFIG_SPLIT_PTLOCK_CPUS */
943
944 #define pte_offset_map_lock(mm, pmd, address, ptlp) \
945 ({ \
946 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
947 pte_t *__pte = pte_offset_map(pmd, address); \
948 *(ptlp) = __ptl; \
949 spin_lock(__ptl); \
950 __pte; \
951 })
952
953 #define pte_unmap_unlock(pte, ptl) do { \
954 spin_unlock(ptl); \
955 pte_unmap(pte); \
956 } while (0)
957
958 #define pte_alloc_map(mm, pmd, address) \
959 ((unlikely(!pmd_present(*(pmd))) && __pte_alloc(mm, pmd, address))? \
960 NULL: pte_offset_map(pmd, address))
961
962 #define pte_alloc_map_lock(mm, pmd, address, ptlp) \
963 ((unlikely(!pmd_present(*(pmd))) && __pte_alloc(mm, pmd, address))? \
964 NULL: pte_offset_map_lock(mm, pmd, address, ptlp))
965
966 #define pte_alloc_kernel(pmd, address) \
967 ((unlikely(!pmd_present(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
968 NULL: pte_offset_kernel(pmd, address))
969
970 extern void free_area_init(unsigned long * zones_size);
971 extern void free_area_init_node(int nid, pg_data_t *pgdat,
972 unsigned long * zones_size, unsigned long zone_start_pfn,
973 unsigned long *zholes_size);
974 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
975 /*
976 * With CONFIG_ARCH_POPULATES_NODE_MAP set, an architecture may initialise its
977 * zones, allocate the backing mem_map and account for memory holes in a more
978 * architecture independent manner. This is a substitute for creating the
979 * zone_sizes[] and zholes_size[] arrays and passing them to
980 * free_area_init_node()
981 *
982 * An architecture is expected to register range of page frames backed by
983 * physical memory with add_active_range() before calling
984 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
985 * usage, an architecture is expected to do something like
986 *
987 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
988 * max_highmem_pfn};
989 * for_each_valid_physical_page_range()
990 * add_active_range(node_id, start_pfn, end_pfn)
991 * free_area_init_nodes(max_zone_pfns);
992 *
993 * If the architecture guarantees that there are no holes in the ranges
994 * registered with add_active_range(), free_bootmem_active_regions()
995 * will call free_bootmem_node() for each registered physical page range.
996 * Similarly sparse_memory_present_with_active_regions() calls
997 * memory_present() for each range when SPARSEMEM is enabled.
998 *
999 * See mm/page_alloc.c for more information on each function exposed by
1000 * CONFIG_ARCH_POPULATES_NODE_MAP
1001 */
1002 extern void free_area_init_nodes(unsigned long *max_zone_pfn);
1003 extern void add_active_range(unsigned int nid, unsigned long start_pfn,
1004 unsigned long end_pfn);
1005 extern void shrink_active_range(unsigned int nid, unsigned long old_end_pfn,
1006 unsigned long new_end_pfn);
1007 extern void push_node_boundaries(unsigned int nid, unsigned long start_pfn,
1008 unsigned long end_pfn);
1009 extern void remove_all_active_ranges(void);
1010 extern unsigned long absent_pages_in_range(unsigned long start_pfn,
1011 unsigned long end_pfn);
1012 extern void get_pfn_range_for_nid(unsigned int nid,
1013 unsigned long *start_pfn, unsigned long *end_pfn);
1014 extern unsigned long find_min_pfn_with_active_regions(void);
1015 extern unsigned long find_max_pfn_with_active_regions(void);
1016 extern void free_bootmem_with_active_regions(int nid,
1017 unsigned long max_low_pfn);
1018 extern void sparse_memory_present_with_active_regions(int nid);
1019 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
1020 extern int early_pfn_to_nid(unsigned long pfn);
1021 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
1022 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
1023 extern void set_dma_reserve(unsigned long new_dma_reserve);
1024 extern void memmap_init_zone(unsigned long, int, unsigned long,
1025 unsigned long, enum memmap_context);
1026 extern void setup_per_zone_pages_min(void);
1027 extern void mem_init(void);
1028 extern void show_mem(void);
1029 extern void si_meminfo(struct sysinfo * val);
1030 extern void si_meminfo_node(struct sysinfo *val, int nid);
1031
1032 #ifdef CONFIG_NUMA
1033 extern void setup_per_cpu_pageset(void);
1034 #else
1035 static inline void setup_per_cpu_pageset(void) {}
1036 #endif
1037
1038 /* prio_tree.c */
1039 void vma_prio_tree_add(struct vm_area_struct *, struct vm_area_struct *old);
1040 void vma_prio_tree_insert(struct vm_area_struct *, struct prio_tree_root *);
1041 void vma_prio_tree_remove(struct vm_area_struct *, struct prio_tree_root *);
1042 struct vm_area_struct *vma_prio_tree_next(struct vm_area_struct *vma,
1043 struct prio_tree_iter *iter);
1044
1045 #define vma_prio_tree_foreach(vma, iter, root, begin, end) \
1046 for (prio_tree_iter_init(iter, root, begin, end), vma = NULL; \
1047 (vma = vma_prio_tree_next(vma, iter)); )
1048
1049 static inline void vma_nonlinear_insert(struct vm_area_struct *vma,
1050 struct list_head *list)
1051 {
1052 vma->shared.vm_set.parent = NULL;
1053 list_add_tail(&vma->shared.vm_set.list, list);
1054 }
1055
1056 /* mmap.c */
1057 extern int __vm_enough_memory(long pages, int cap_sys_admin);
1058 extern void vma_adjust(struct vm_area_struct *vma, unsigned long start,
1059 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert);
1060 extern struct vm_area_struct *vma_merge(struct mm_struct *,
1061 struct vm_area_struct *prev, unsigned long addr, unsigned long end,
1062 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
1063 struct mempolicy *);
1064 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
1065 extern int split_vma(struct mm_struct *,
1066 struct vm_area_struct *, unsigned long addr, int new_below);
1067 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
1068 extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
1069 struct rb_node **, struct rb_node *);
1070 extern void unlink_file_vma(struct vm_area_struct *);
1071 extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
1072 unsigned long addr, unsigned long len, pgoff_t pgoff);
1073 extern void exit_mmap(struct mm_struct *);
1074 extern int may_expand_vm(struct mm_struct *mm, unsigned long npages);
1075 extern int install_special_mapping(struct mm_struct *mm,
1076 unsigned long addr, unsigned long len,
1077 unsigned long flags, struct page **pages);
1078
1079 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
1080
1081 extern unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
1082 unsigned long len, unsigned long prot,
1083 unsigned long flag, unsigned long pgoff);
1084 extern unsigned long mmap_region(struct file *file, unsigned long addr,
1085 unsigned long len, unsigned long flags,
1086 unsigned int vm_flags, unsigned long pgoff,
1087 int accountable);
1088
1089 static inline unsigned long do_mmap(struct file *file, unsigned long addr,
1090 unsigned long len, unsigned long prot,
1091 unsigned long flag, unsigned long offset)
1092 {
1093 unsigned long ret = -EINVAL;
1094 if ((offset + PAGE_ALIGN(len)) < offset)
1095 goto out;
1096 if (!(offset & ~PAGE_MASK))
1097 ret = do_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT);
1098 out:
1099 return ret;
1100 }
1101
1102 extern int do_munmap(struct mm_struct *, unsigned long, size_t);
1103
1104 extern unsigned long do_brk(unsigned long, unsigned long);
1105
1106 /* filemap.c */
1107 extern unsigned long page_unuse(struct page *);
1108 extern void truncate_inode_pages(struct address_space *, loff_t);
1109 extern void truncate_inode_pages_range(struct address_space *,
1110 loff_t lstart, loff_t lend);
1111
1112 /* generic vm_area_ops exported for stackable file systems */
1113 extern struct page *filemap_nopage(struct vm_area_struct *, unsigned long, int *);
1114 extern int filemap_populate(struct vm_area_struct *, unsigned long,
1115 unsigned long, pgprot_t, unsigned long, int);
1116
1117 /* mm/page-writeback.c */
1118 int write_one_page(struct page *page, int wait);
1119
1120 /* readahead.c */
1121 #define VM_MAX_READAHEAD 128 /* kbytes */
1122 #define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */
1123 #define VM_MAX_CACHE_HIT 256 /* max pages in a row in cache before
1124 * turning readahead off */
1125
1126 int do_page_cache_readahead(struct address_space *mapping, struct file *filp,
1127 pgoff_t offset, unsigned long nr_to_read);
1128 int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
1129 pgoff_t offset, unsigned long nr_to_read);
1130 unsigned long page_cache_readahead(struct address_space *mapping,
1131 struct file_ra_state *ra,
1132 struct file *filp,
1133 pgoff_t offset,
1134 unsigned long size);
1135 void handle_ra_miss(struct address_space *mapping,
1136 struct file_ra_state *ra, pgoff_t offset);
1137 unsigned long max_sane_readahead(unsigned long nr);
1138
1139 /* Do stack extension */
1140 extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
1141 #ifdef CONFIG_IA64
1142 extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
1143 #endif
1144
1145 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
1146 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
1147 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
1148 struct vm_area_struct **pprev);
1149
1150 /* Look up the first VMA which intersects the interval start_addr..end_addr-1,
1151 NULL if none. Assume start_addr < end_addr. */
1152 static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
1153 {
1154 struct vm_area_struct * vma = find_vma(mm,start_addr);
1155
1156 if (vma && end_addr <= vma->vm_start)
1157 vma = NULL;
1158 return vma;
1159 }
1160
1161 static inline unsigned long vma_pages(struct vm_area_struct *vma)
1162 {
1163 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
1164 }
1165
1166 pgprot_t vm_get_page_prot(unsigned long vm_flags);
1167 struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
1168 struct page *vmalloc_to_page(void *addr);
1169 unsigned long vmalloc_to_pfn(void *addr);
1170 int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
1171 unsigned long pfn, unsigned long size, pgprot_t);
1172 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
1173 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1174 unsigned long pfn);
1175
1176 struct page *follow_page(struct vm_area_struct *, unsigned long address,
1177 unsigned int foll_flags);
1178 #define FOLL_WRITE 0x01 /* check pte is writable */
1179 #define FOLL_TOUCH 0x02 /* mark page accessed */
1180 #define FOLL_GET 0x04 /* do get_page on page */
1181 #define FOLL_ANON 0x08 /* give ZERO_PAGE if no pgtable */
1182
1183 typedef int (*pte_fn_t)(pte_t *pte, struct page *pmd_page, unsigned long addr,
1184 void *data);
1185 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
1186 unsigned long size, pte_fn_t fn, void *data);
1187
1188 #ifdef CONFIG_PROC_FS
1189 void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long);
1190 #else
1191 static inline void vm_stat_account(struct mm_struct *mm,
1192 unsigned long flags, struct file *file, long pages)
1193 {
1194 }
1195 #endif /* CONFIG_PROC_FS */
1196
1197 #ifndef CONFIG_DEBUG_PAGEALLOC
1198 static inline void
1199 kernel_map_pages(struct page *page, int numpages, int enable) {}
1200 #endif
1201
1202 extern struct vm_area_struct *get_gate_vma(struct task_struct *tsk);
1203 #ifdef __HAVE_ARCH_GATE_AREA
1204 int in_gate_area_no_task(unsigned long addr);
1205 int in_gate_area(struct task_struct *task, unsigned long addr);
1206 #else
1207 int in_gate_area_no_task(unsigned long addr);
1208 #define in_gate_area(task, addr) ({(void)task; in_gate_area_no_task(addr);})
1209 #endif /* __HAVE_ARCH_GATE_AREA */
1210
1211 int drop_caches_sysctl_handler(struct ctl_table *, int, struct file *,
1212 void __user *, size_t *, loff_t *);
1213 unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask,
1214 unsigned long lru_pages);
1215 void drop_pagecache(void);
1216 void drop_slab(void);
1217
1218 #ifndef CONFIG_MMU
1219 #define randomize_va_space 0
1220 #else
1221 extern int randomize_va_space;
1222 #endif
1223
1224 __attribute__((weak)) const char *arch_vma_name(struct vm_area_struct *vma);
1225
1226 #endif /* __KERNEL__ */
1227 #endif /* _LINUX_MM_H */
This page took 0.082194 seconds and 5 git commands to generate.