mm: create a separate slab for page->ptl allocation
[deliverable/linux.git] / include / linux / mm.h
1 #ifndef _LINUX_MM_H
2 #define _LINUX_MM_H
3
4 #include <linux/errno.h>
5
6 #ifdef __KERNEL__
7
8 #include <linux/gfp.h>
9 #include <linux/bug.h>
10 #include <linux/list.h>
11 #include <linux/mmzone.h>
12 #include <linux/rbtree.h>
13 #include <linux/atomic.h>
14 #include <linux/debug_locks.h>
15 #include <linux/mm_types.h>
16 #include <linux/range.h>
17 #include <linux/pfn.h>
18 #include <linux/bit_spinlock.h>
19 #include <linux/shrinker.h>
20
21 struct mempolicy;
22 struct anon_vma;
23 struct anon_vma_chain;
24 struct file_ra_state;
25 struct user_struct;
26 struct writeback_control;
27
28 #ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */
29 extern unsigned long max_mapnr;
30
31 static inline void set_max_mapnr(unsigned long limit)
32 {
33 max_mapnr = limit;
34 }
35 #else
36 static inline void set_max_mapnr(unsigned long limit) { }
37 #endif
38
39 extern unsigned long totalram_pages;
40 extern void * high_memory;
41 extern int page_cluster;
42
43 #ifdef CONFIG_SYSCTL
44 extern int sysctl_legacy_va_layout;
45 #else
46 #define sysctl_legacy_va_layout 0
47 #endif
48
49 #include <asm/page.h>
50 #include <asm/pgtable.h>
51 #include <asm/processor.h>
52
53 #ifndef __pa_symbol
54 #define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0))
55 #endif
56
57 extern unsigned long sysctl_user_reserve_kbytes;
58 extern unsigned long sysctl_admin_reserve_kbytes;
59
60 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
61
62 /* to align the pointer to the (next) page boundary */
63 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
64
65 /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
66 #define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)addr, PAGE_SIZE)
67
68 /*
69 * Linux kernel virtual memory manager primitives.
70 * The idea being to have a "virtual" mm in the same way
71 * we have a virtual fs - giving a cleaner interface to the
72 * mm details, and allowing different kinds of memory mappings
73 * (from shared memory to executable loading to arbitrary
74 * mmap() functions).
75 */
76
77 extern struct kmem_cache *vm_area_cachep;
78
79 #ifndef CONFIG_MMU
80 extern struct rb_root nommu_region_tree;
81 extern struct rw_semaphore nommu_region_sem;
82
83 extern unsigned int kobjsize(const void *objp);
84 #endif
85
86 /*
87 * vm_flags in vm_area_struct, see mm_types.h.
88 */
89 #define VM_NONE 0x00000000
90
91 #define VM_READ 0x00000001 /* currently active flags */
92 #define VM_WRITE 0x00000002
93 #define VM_EXEC 0x00000004
94 #define VM_SHARED 0x00000008
95
96 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
97 #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
98 #define VM_MAYWRITE 0x00000020
99 #define VM_MAYEXEC 0x00000040
100 #define VM_MAYSHARE 0x00000080
101
102 #define VM_GROWSDOWN 0x00000100 /* general info on the segment */
103 #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
104 #define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
105
106 #define VM_LOCKED 0x00002000
107 #define VM_IO 0x00004000 /* Memory mapped I/O or similar */
108
109 /* Used by sys_madvise() */
110 #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
111 #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
112
113 #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
114 #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
115 #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
116 #define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
117 #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
118 #define VM_NONLINEAR 0x00800000 /* Is non-linear (remap_file_pages) */
119 #define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
120 #define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
121
122 #ifdef CONFIG_MEM_SOFT_DIRTY
123 # define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */
124 #else
125 # define VM_SOFTDIRTY 0
126 #endif
127
128 #define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
129 #define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
130 #define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
131 #define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
132
133 #if defined(CONFIG_X86)
134 # define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
135 #elif defined(CONFIG_PPC)
136 # define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
137 #elif defined(CONFIG_PARISC)
138 # define VM_GROWSUP VM_ARCH_1
139 #elif defined(CONFIG_METAG)
140 # define VM_GROWSUP VM_ARCH_1
141 #elif defined(CONFIG_IA64)
142 # define VM_GROWSUP VM_ARCH_1
143 #elif !defined(CONFIG_MMU)
144 # define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
145 #endif
146
147 #ifndef VM_GROWSUP
148 # define VM_GROWSUP VM_NONE
149 #endif
150
151 /* Bits set in the VMA until the stack is in its final location */
152 #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
153
154 #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
155 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
156 #endif
157
158 #ifdef CONFIG_STACK_GROWSUP
159 #define VM_STACK_FLAGS (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
160 #else
161 #define VM_STACK_FLAGS (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
162 #endif
163
164 /*
165 * Special vmas that are non-mergable, non-mlock()able.
166 * Note: mm/huge_memory.c VM_NO_THP depends on this definition.
167 */
168 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP)
169
170 /*
171 * mapping from the currently active vm_flags protection bits (the
172 * low four bits) to a page protection mask..
173 */
174 extern pgprot_t protection_map[16];
175
176 #define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */
177 #define FAULT_FLAG_NONLINEAR 0x02 /* Fault was via a nonlinear mapping */
178 #define FAULT_FLAG_MKWRITE 0x04 /* Fault was mkwrite of existing pte */
179 #define FAULT_FLAG_ALLOW_RETRY 0x08 /* Retry fault if blocking */
180 #define FAULT_FLAG_RETRY_NOWAIT 0x10 /* Don't drop mmap_sem and wait when retrying */
181 #define FAULT_FLAG_KILLABLE 0x20 /* The fault task is in SIGKILL killable region */
182 #define FAULT_FLAG_TRIED 0x40 /* second try */
183 #define FAULT_FLAG_USER 0x80 /* The fault originated in userspace */
184
185 /*
186 * vm_fault is filled by the the pagefault handler and passed to the vma's
187 * ->fault function. The vma's ->fault is responsible for returning a bitmask
188 * of VM_FAULT_xxx flags that give details about how the fault was handled.
189 *
190 * pgoff should be used in favour of virtual_address, if possible. If pgoff
191 * is used, one may implement ->remap_pages to get nonlinear mapping support.
192 */
193 struct vm_fault {
194 unsigned int flags; /* FAULT_FLAG_xxx flags */
195 pgoff_t pgoff; /* Logical page offset based on vma */
196 void __user *virtual_address; /* Faulting virtual address */
197
198 struct page *page; /* ->fault handlers should return a
199 * page here, unless VM_FAULT_NOPAGE
200 * is set (which is also implied by
201 * VM_FAULT_ERROR).
202 */
203 };
204
205 /*
206 * These are the virtual MM functions - opening of an area, closing and
207 * unmapping it (needed to keep files on disk up-to-date etc), pointer
208 * to the functions called when a no-page or a wp-page exception occurs.
209 */
210 struct vm_operations_struct {
211 void (*open)(struct vm_area_struct * area);
212 void (*close)(struct vm_area_struct * area);
213 int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf);
214
215 /* notification that a previously read-only page is about to become
216 * writable, if an error is returned it will cause a SIGBUS */
217 int (*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
218
219 /* called by access_process_vm when get_user_pages() fails, typically
220 * for use by special VMAs that can switch between memory and hardware
221 */
222 int (*access)(struct vm_area_struct *vma, unsigned long addr,
223 void *buf, int len, int write);
224 #ifdef CONFIG_NUMA
225 /*
226 * set_policy() op must add a reference to any non-NULL @new mempolicy
227 * to hold the policy upon return. Caller should pass NULL @new to
228 * remove a policy and fall back to surrounding context--i.e. do not
229 * install a MPOL_DEFAULT policy, nor the task or system default
230 * mempolicy.
231 */
232 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
233
234 /*
235 * get_policy() op must add reference [mpol_get()] to any policy at
236 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
237 * in mm/mempolicy.c will do this automatically.
238 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
239 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
240 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
241 * must return NULL--i.e., do not "fallback" to task or system default
242 * policy.
243 */
244 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
245 unsigned long addr);
246 int (*migrate)(struct vm_area_struct *vma, const nodemask_t *from,
247 const nodemask_t *to, unsigned long flags);
248 #endif
249 /* called by sys_remap_file_pages() to populate non-linear mapping */
250 int (*remap_pages)(struct vm_area_struct *vma, unsigned long addr,
251 unsigned long size, pgoff_t pgoff);
252 };
253
254 struct mmu_gather;
255 struct inode;
256
257 #define page_private(page) ((page)->private)
258 #define set_page_private(page, v) ((page)->private = (v))
259
260 /* It's valid only if the page is free path or free_list */
261 static inline void set_freepage_migratetype(struct page *page, int migratetype)
262 {
263 page->index = migratetype;
264 }
265
266 /* It's valid only if the page is free path or free_list */
267 static inline int get_freepage_migratetype(struct page *page)
268 {
269 return page->index;
270 }
271
272 /*
273 * FIXME: take this include out, include page-flags.h in
274 * files which need it (119 of them)
275 */
276 #include <linux/page-flags.h>
277 #include <linux/huge_mm.h>
278
279 /*
280 * Methods to modify the page usage count.
281 *
282 * What counts for a page usage:
283 * - cache mapping (page->mapping)
284 * - private data (page->private)
285 * - page mapped in a task's page tables, each mapping
286 * is counted separately
287 *
288 * Also, many kernel routines increase the page count before a critical
289 * routine so they can be sure the page doesn't go away from under them.
290 */
291
292 /*
293 * Drop a ref, return true if the refcount fell to zero (the page has no users)
294 */
295 static inline int put_page_testzero(struct page *page)
296 {
297 VM_BUG_ON(atomic_read(&page->_count) == 0);
298 return atomic_dec_and_test(&page->_count);
299 }
300
301 /*
302 * Try to grab a ref unless the page has a refcount of zero, return false if
303 * that is the case.
304 * This can be called when MMU is off so it must not access
305 * any of the virtual mappings.
306 */
307 static inline int get_page_unless_zero(struct page *page)
308 {
309 return atomic_inc_not_zero(&page->_count);
310 }
311
312 /*
313 * Try to drop a ref unless the page has a refcount of one, return false if
314 * that is the case.
315 * This is to make sure that the refcount won't become zero after this drop.
316 * This can be called when MMU is off so it must not access
317 * any of the virtual mappings.
318 */
319 static inline int put_page_unless_one(struct page *page)
320 {
321 return atomic_add_unless(&page->_count, -1, 1);
322 }
323
324 extern int page_is_ram(unsigned long pfn);
325
326 /* Support for virtually mapped pages */
327 struct page *vmalloc_to_page(const void *addr);
328 unsigned long vmalloc_to_pfn(const void *addr);
329
330 /*
331 * Determine if an address is within the vmalloc range
332 *
333 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
334 * is no special casing required.
335 */
336 static inline int is_vmalloc_addr(const void *x)
337 {
338 #ifdef CONFIG_MMU
339 unsigned long addr = (unsigned long)x;
340
341 return addr >= VMALLOC_START && addr < VMALLOC_END;
342 #else
343 return 0;
344 #endif
345 }
346 #ifdef CONFIG_MMU
347 extern int is_vmalloc_or_module_addr(const void *x);
348 #else
349 static inline int is_vmalloc_or_module_addr(const void *x)
350 {
351 return 0;
352 }
353 #endif
354
355 static inline void compound_lock(struct page *page)
356 {
357 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
358 VM_BUG_ON(PageSlab(page));
359 bit_spin_lock(PG_compound_lock, &page->flags);
360 #endif
361 }
362
363 static inline void compound_unlock(struct page *page)
364 {
365 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
366 VM_BUG_ON(PageSlab(page));
367 bit_spin_unlock(PG_compound_lock, &page->flags);
368 #endif
369 }
370
371 static inline unsigned long compound_lock_irqsave(struct page *page)
372 {
373 unsigned long uninitialized_var(flags);
374 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
375 local_irq_save(flags);
376 compound_lock(page);
377 #endif
378 return flags;
379 }
380
381 static inline void compound_unlock_irqrestore(struct page *page,
382 unsigned long flags)
383 {
384 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
385 compound_unlock(page);
386 local_irq_restore(flags);
387 #endif
388 }
389
390 static inline struct page *compound_head(struct page *page)
391 {
392 if (unlikely(PageTail(page)))
393 return page->first_page;
394 return page;
395 }
396
397 /*
398 * The atomic page->_mapcount, starts from -1: so that transitions
399 * both from it and to it can be tracked, using atomic_inc_and_test
400 * and atomic_add_negative(-1).
401 */
402 static inline void page_mapcount_reset(struct page *page)
403 {
404 atomic_set(&(page)->_mapcount, -1);
405 }
406
407 static inline int page_mapcount(struct page *page)
408 {
409 return atomic_read(&(page)->_mapcount) + 1;
410 }
411
412 static inline int page_count(struct page *page)
413 {
414 return atomic_read(&compound_head(page)->_count);
415 }
416
417 #ifdef CONFIG_HUGETLB_PAGE
418 extern int PageHeadHuge(struct page *page_head);
419 #else /* CONFIG_HUGETLB_PAGE */
420 static inline int PageHeadHuge(struct page *page_head)
421 {
422 return 0;
423 }
424 #endif /* CONFIG_HUGETLB_PAGE */
425
426 static inline bool __compound_tail_refcounted(struct page *page)
427 {
428 return !PageSlab(page) && !PageHeadHuge(page);
429 }
430
431 /*
432 * This takes a head page as parameter and tells if the
433 * tail page reference counting can be skipped.
434 *
435 * For this to be safe, PageSlab and PageHeadHuge must remain true on
436 * any given page where they return true here, until all tail pins
437 * have been released.
438 */
439 static inline bool compound_tail_refcounted(struct page *page)
440 {
441 VM_BUG_ON(!PageHead(page));
442 return __compound_tail_refcounted(page);
443 }
444
445 static inline void get_huge_page_tail(struct page *page)
446 {
447 /*
448 * __split_huge_page_refcount() cannot run from under us.
449 */
450 VM_BUG_ON(!PageTail(page));
451 VM_BUG_ON(page_mapcount(page) < 0);
452 VM_BUG_ON(atomic_read(&page->_count) != 0);
453 if (compound_tail_refcounted(page->first_page))
454 atomic_inc(&page->_mapcount);
455 }
456
457 extern bool __get_page_tail(struct page *page);
458
459 static inline void get_page(struct page *page)
460 {
461 if (unlikely(PageTail(page)))
462 if (likely(__get_page_tail(page)))
463 return;
464 /*
465 * Getting a normal page or the head of a compound page
466 * requires to already have an elevated page->_count.
467 */
468 VM_BUG_ON(atomic_read(&page->_count) <= 0);
469 atomic_inc(&page->_count);
470 }
471
472 static inline struct page *virt_to_head_page(const void *x)
473 {
474 struct page *page = virt_to_page(x);
475 return compound_head(page);
476 }
477
478 /*
479 * Setup the page count before being freed into the page allocator for
480 * the first time (boot or memory hotplug)
481 */
482 static inline void init_page_count(struct page *page)
483 {
484 atomic_set(&page->_count, 1);
485 }
486
487 /*
488 * PageBuddy() indicate that the page is free and in the buddy system
489 * (see mm/page_alloc.c).
490 *
491 * PAGE_BUDDY_MAPCOUNT_VALUE must be <= -2 but better not too close to
492 * -2 so that an underflow of the page_mapcount() won't be mistaken
493 * for a genuine PAGE_BUDDY_MAPCOUNT_VALUE. -128 can be created very
494 * efficiently by most CPU architectures.
495 */
496 #define PAGE_BUDDY_MAPCOUNT_VALUE (-128)
497
498 static inline int PageBuddy(struct page *page)
499 {
500 return atomic_read(&page->_mapcount) == PAGE_BUDDY_MAPCOUNT_VALUE;
501 }
502
503 static inline void __SetPageBuddy(struct page *page)
504 {
505 VM_BUG_ON(atomic_read(&page->_mapcount) != -1);
506 atomic_set(&page->_mapcount, PAGE_BUDDY_MAPCOUNT_VALUE);
507 }
508
509 static inline void __ClearPageBuddy(struct page *page)
510 {
511 VM_BUG_ON(!PageBuddy(page));
512 atomic_set(&page->_mapcount, -1);
513 }
514
515 void put_page(struct page *page);
516 void put_pages_list(struct list_head *pages);
517
518 void split_page(struct page *page, unsigned int order);
519 int split_free_page(struct page *page);
520
521 /*
522 * Compound pages have a destructor function. Provide a
523 * prototype for that function and accessor functions.
524 * These are _only_ valid on the head of a PG_compound page.
525 */
526 typedef void compound_page_dtor(struct page *);
527
528 static inline void set_compound_page_dtor(struct page *page,
529 compound_page_dtor *dtor)
530 {
531 page[1].lru.next = (void *)dtor;
532 }
533
534 static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
535 {
536 return (compound_page_dtor *)page[1].lru.next;
537 }
538
539 static inline int compound_order(struct page *page)
540 {
541 if (!PageHead(page))
542 return 0;
543 return (unsigned long)page[1].lru.prev;
544 }
545
546 static inline void set_compound_order(struct page *page, unsigned long order)
547 {
548 page[1].lru.prev = (void *)order;
549 }
550
551 #ifdef CONFIG_MMU
552 /*
553 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
554 * servicing faults for write access. In the normal case, do always want
555 * pte_mkwrite. But get_user_pages can cause write faults for mappings
556 * that do not have writing enabled, when used by access_process_vm.
557 */
558 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
559 {
560 if (likely(vma->vm_flags & VM_WRITE))
561 pte = pte_mkwrite(pte);
562 return pte;
563 }
564 #endif
565
566 /*
567 * Multiple processes may "see" the same page. E.g. for untouched
568 * mappings of /dev/null, all processes see the same page full of
569 * zeroes, and text pages of executables and shared libraries have
570 * only one copy in memory, at most, normally.
571 *
572 * For the non-reserved pages, page_count(page) denotes a reference count.
573 * page_count() == 0 means the page is free. page->lru is then used for
574 * freelist management in the buddy allocator.
575 * page_count() > 0 means the page has been allocated.
576 *
577 * Pages are allocated by the slab allocator in order to provide memory
578 * to kmalloc and kmem_cache_alloc. In this case, the management of the
579 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
580 * unless a particular usage is carefully commented. (the responsibility of
581 * freeing the kmalloc memory is the caller's, of course).
582 *
583 * A page may be used by anyone else who does a __get_free_page().
584 * In this case, page_count still tracks the references, and should only
585 * be used through the normal accessor functions. The top bits of page->flags
586 * and page->virtual store page management information, but all other fields
587 * are unused and could be used privately, carefully. The management of this
588 * page is the responsibility of the one who allocated it, and those who have
589 * subsequently been given references to it.
590 *
591 * The other pages (we may call them "pagecache pages") are completely
592 * managed by the Linux memory manager: I/O, buffers, swapping etc.
593 * The following discussion applies only to them.
594 *
595 * A pagecache page contains an opaque `private' member, which belongs to the
596 * page's address_space. Usually, this is the address of a circular list of
597 * the page's disk buffers. PG_private must be set to tell the VM to call
598 * into the filesystem to release these pages.
599 *
600 * A page may belong to an inode's memory mapping. In this case, page->mapping
601 * is the pointer to the inode, and page->index is the file offset of the page,
602 * in units of PAGE_CACHE_SIZE.
603 *
604 * If pagecache pages are not associated with an inode, they are said to be
605 * anonymous pages. These may become associated with the swapcache, and in that
606 * case PG_swapcache is set, and page->private is an offset into the swapcache.
607 *
608 * In either case (swapcache or inode backed), the pagecache itself holds one
609 * reference to the page. Setting PG_private should also increment the
610 * refcount. The each user mapping also has a reference to the page.
611 *
612 * The pagecache pages are stored in a per-mapping radix tree, which is
613 * rooted at mapping->page_tree, and indexed by offset.
614 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
615 * lists, we instead now tag pages as dirty/writeback in the radix tree.
616 *
617 * All pagecache pages may be subject to I/O:
618 * - inode pages may need to be read from disk,
619 * - inode pages which have been modified and are MAP_SHARED may need
620 * to be written back to the inode on disk,
621 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
622 * modified may need to be swapped out to swap space and (later) to be read
623 * back into memory.
624 */
625
626 /*
627 * The zone field is never updated after free_area_init_core()
628 * sets it, so none of the operations on it need to be atomic.
629 */
630
631 /* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
632 #define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
633 #define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
634 #define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
635 #define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH)
636
637 /*
638 * Define the bit shifts to access each section. For non-existent
639 * sections we define the shift as 0; that plus a 0 mask ensures
640 * the compiler will optimise away reference to them.
641 */
642 #define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
643 #define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
644 #define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
645 #define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
646
647 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
648 #ifdef NODE_NOT_IN_PAGE_FLAGS
649 #define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
650 #define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
651 SECTIONS_PGOFF : ZONES_PGOFF)
652 #else
653 #define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
654 #define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
655 NODES_PGOFF : ZONES_PGOFF)
656 #endif
657
658 #define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
659
660 #if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
661 #error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
662 #endif
663
664 #define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
665 #define NODES_MASK ((1UL << NODES_WIDTH) - 1)
666 #define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
667 #define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_WIDTH) - 1)
668 #define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
669
670 static inline enum zone_type page_zonenum(const struct page *page)
671 {
672 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
673 }
674
675 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
676 #define SECTION_IN_PAGE_FLAGS
677 #endif
678
679 /*
680 * The identification function is mainly used by the buddy allocator for
681 * determining if two pages could be buddies. We are not really identifying
682 * the zone since we could be using the section number id if we do not have
683 * node id available in page flags.
684 * We only guarantee that it will return the same value for two combinable
685 * pages in a zone.
686 */
687 static inline int page_zone_id(struct page *page)
688 {
689 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
690 }
691
692 static inline int zone_to_nid(struct zone *zone)
693 {
694 #ifdef CONFIG_NUMA
695 return zone->node;
696 #else
697 return 0;
698 #endif
699 }
700
701 #ifdef NODE_NOT_IN_PAGE_FLAGS
702 extern int page_to_nid(const struct page *page);
703 #else
704 static inline int page_to_nid(const struct page *page)
705 {
706 return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
707 }
708 #endif
709
710 #ifdef CONFIG_NUMA_BALANCING
711 static inline int cpu_pid_to_cpupid(int cpu, int pid)
712 {
713 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
714 }
715
716 static inline int cpupid_to_pid(int cpupid)
717 {
718 return cpupid & LAST__PID_MASK;
719 }
720
721 static inline int cpupid_to_cpu(int cpupid)
722 {
723 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
724 }
725
726 static inline int cpupid_to_nid(int cpupid)
727 {
728 return cpu_to_node(cpupid_to_cpu(cpupid));
729 }
730
731 static inline bool cpupid_pid_unset(int cpupid)
732 {
733 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
734 }
735
736 static inline bool cpupid_cpu_unset(int cpupid)
737 {
738 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
739 }
740
741 static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
742 {
743 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
744 }
745
746 #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
747 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
748 static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
749 {
750 return xchg(&page->_last_cpupid, cpupid);
751 }
752
753 static inline int page_cpupid_last(struct page *page)
754 {
755 return page->_last_cpupid;
756 }
757 static inline void page_cpupid_reset_last(struct page *page)
758 {
759 page->_last_cpupid = -1;
760 }
761 #else
762 static inline int page_cpupid_last(struct page *page)
763 {
764 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
765 }
766
767 extern int page_cpupid_xchg_last(struct page *page, int cpupid);
768
769 static inline void page_cpupid_reset_last(struct page *page)
770 {
771 int cpupid = (1 << LAST_CPUPID_SHIFT) - 1;
772
773 page->flags &= ~(LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT);
774 page->flags |= (cpupid & LAST_CPUPID_MASK) << LAST_CPUPID_PGSHIFT;
775 }
776 #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
777 #else /* !CONFIG_NUMA_BALANCING */
778 static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
779 {
780 return page_to_nid(page); /* XXX */
781 }
782
783 static inline int page_cpupid_last(struct page *page)
784 {
785 return page_to_nid(page); /* XXX */
786 }
787
788 static inline int cpupid_to_nid(int cpupid)
789 {
790 return -1;
791 }
792
793 static inline int cpupid_to_pid(int cpupid)
794 {
795 return -1;
796 }
797
798 static inline int cpupid_to_cpu(int cpupid)
799 {
800 return -1;
801 }
802
803 static inline int cpu_pid_to_cpupid(int nid, int pid)
804 {
805 return -1;
806 }
807
808 static inline bool cpupid_pid_unset(int cpupid)
809 {
810 return 1;
811 }
812
813 static inline void page_cpupid_reset_last(struct page *page)
814 {
815 }
816
817 static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
818 {
819 return false;
820 }
821 #endif /* CONFIG_NUMA_BALANCING */
822
823 static inline struct zone *page_zone(const struct page *page)
824 {
825 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
826 }
827
828 #ifdef SECTION_IN_PAGE_FLAGS
829 static inline void set_page_section(struct page *page, unsigned long section)
830 {
831 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
832 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
833 }
834
835 static inline unsigned long page_to_section(const struct page *page)
836 {
837 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
838 }
839 #endif
840
841 static inline void set_page_zone(struct page *page, enum zone_type zone)
842 {
843 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
844 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
845 }
846
847 static inline void set_page_node(struct page *page, unsigned long node)
848 {
849 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
850 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
851 }
852
853 static inline void set_page_links(struct page *page, enum zone_type zone,
854 unsigned long node, unsigned long pfn)
855 {
856 set_page_zone(page, zone);
857 set_page_node(page, node);
858 #ifdef SECTION_IN_PAGE_FLAGS
859 set_page_section(page, pfn_to_section_nr(pfn));
860 #endif
861 }
862
863 /*
864 * Some inline functions in vmstat.h depend on page_zone()
865 */
866 #include <linux/vmstat.h>
867
868 static __always_inline void *lowmem_page_address(const struct page *page)
869 {
870 return __va(PFN_PHYS(page_to_pfn(page)));
871 }
872
873 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
874 #define HASHED_PAGE_VIRTUAL
875 #endif
876
877 #if defined(WANT_PAGE_VIRTUAL)
878 static inline void *page_address(const struct page *page)
879 {
880 return page->virtual;
881 }
882 static inline void set_page_address(struct page *page, void *address)
883 {
884 page->virtual = address;
885 }
886 #define page_address_init() do { } while(0)
887 #endif
888
889 #if defined(HASHED_PAGE_VIRTUAL)
890 void *page_address(const struct page *page);
891 void set_page_address(struct page *page, void *virtual);
892 void page_address_init(void);
893 #endif
894
895 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
896 #define page_address(page) lowmem_page_address(page)
897 #define set_page_address(page, address) do { } while(0)
898 #define page_address_init() do { } while(0)
899 #endif
900
901 /*
902 * On an anonymous page mapped into a user virtual memory area,
903 * page->mapping points to its anon_vma, not to a struct address_space;
904 * with the PAGE_MAPPING_ANON bit set to distinguish it. See rmap.h.
905 *
906 * On an anonymous page in a VM_MERGEABLE area, if CONFIG_KSM is enabled,
907 * the PAGE_MAPPING_KSM bit may be set along with the PAGE_MAPPING_ANON bit;
908 * and then page->mapping points, not to an anon_vma, but to a private
909 * structure which KSM associates with that merged page. See ksm.h.
910 *
911 * PAGE_MAPPING_KSM without PAGE_MAPPING_ANON is currently never used.
912 *
913 * Please note that, confusingly, "page_mapping" refers to the inode
914 * address_space which maps the page from disk; whereas "page_mapped"
915 * refers to user virtual address space into which the page is mapped.
916 */
917 #define PAGE_MAPPING_ANON 1
918 #define PAGE_MAPPING_KSM 2
919 #define PAGE_MAPPING_FLAGS (PAGE_MAPPING_ANON | PAGE_MAPPING_KSM)
920
921 extern struct address_space *page_mapping(struct page *page);
922
923 /* Neutral page->mapping pointer to address_space or anon_vma or other */
924 static inline void *page_rmapping(struct page *page)
925 {
926 return (void *)((unsigned long)page->mapping & ~PAGE_MAPPING_FLAGS);
927 }
928
929 extern struct address_space *__page_file_mapping(struct page *);
930
931 static inline
932 struct address_space *page_file_mapping(struct page *page)
933 {
934 if (unlikely(PageSwapCache(page)))
935 return __page_file_mapping(page);
936
937 return page->mapping;
938 }
939
940 static inline int PageAnon(struct page *page)
941 {
942 return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0;
943 }
944
945 /*
946 * Return the pagecache index of the passed page. Regular pagecache pages
947 * use ->index whereas swapcache pages use ->private
948 */
949 static inline pgoff_t page_index(struct page *page)
950 {
951 if (unlikely(PageSwapCache(page)))
952 return page_private(page);
953 return page->index;
954 }
955
956 extern pgoff_t __page_file_index(struct page *page);
957
958 /*
959 * Return the file index of the page. Regular pagecache pages use ->index
960 * whereas swapcache pages use swp_offset(->private)
961 */
962 static inline pgoff_t page_file_index(struct page *page)
963 {
964 if (unlikely(PageSwapCache(page)))
965 return __page_file_index(page);
966
967 return page->index;
968 }
969
970 /*
971 * Return true if this page is mapped into pagetables.
972 */
973 static inline int page_mapped(struct page *page)
974 {
975 return atomic_read(&(page)->_mapcount) >= 0;
976 }
977
978 /*
979 * Different kinds of faults, as returned by handle_mm_fault().
980 * Used to decide whether a process gets delivered SIGBUS or
981 * just gets major/minor fault counters bumped up.
982 */
983
984 #define VM_FAULT_MINOR 0 /* For backwards compat. Remove me quickly. */
985
986 #define VM_FAULT_OOM 0x0001
987 #define VM_FAULT_SIGBUS 0x0002
988 #define VM_FAULT_MAJOR 0x0004
989 #define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */
990 #define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */
991 #define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */
992
993 #define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */
994 #define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */
995 #define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */
996 #define VM_FAULT_FALLBACK 0x0800 /* huge page fault failed, fall back to small */
997
998 #define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */
999
1000 #define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_HWPOISON | \
1001 VM_FAULT_FALLBACK | VM_FAULT_HWPOISON_LARGE)
1002
1003 /* Encode hstate index for a hwpoisoned large page */
1004 #define VM_FAULT_SET_HINDEX(x) ((x) << 12)
1005 #define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf)
1006
1007 /*
1008 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
1009 */
1010 extern void pagefault_out_of_memory(void);
1011
1012 #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
1013
1014 /*
1015 * Flags passed to show_mem() and show_free_areas() to suppress output in
1016 * various contexts.
1017 */
1018 #define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */
1019 #define SHOW_MEM_FILTER_PAGE_COUNT (0x0002u) /* page type count */
1020
1021 extern void show_free_areas(unsigned int flags);
1022 extern bool skip_free_areas_node(unsigned int flags, int nid);
1023
1024 int shmem_zero_setup(struct vm_area_struct *);
1025
1026 extern int can_do_mlock(void);
1027 extern int user_shm_lock(size_t, struct user_struct *);
1028 extern void user_shm_unlock(size_t, struct user_struct *);
1029
1030 /*
1031 * Parameter block passed down to zap_pte_range in exceptional cases.
1032 */
1033 struct zap_details {
1034 struct vm_area_struct *nonlinear_vma; /* Check page->index if set */
1035 struct address_space *check_mapping; /* Check page->mapping if set */
1036 pgoff_t first_index; /* Lowest page->index to unmap */
1037 pgoff_t last_index; /* Highest page->index to unmap */
1038 };
1039
1040 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
1041 pte_t pte);
1042
1043 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1044 unsigned long size);
1045 void zap_page_range(struct vm_area_struct *vma, unsigned long address,
1046 unsigned long size, struct zap_details *);
1047 void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
1048 unsigned long start, unsigned long end);
1049
1050 /**
1051 * mm_walk - callbacks for walk_page_range
1052 * @pgd_entry: if set, called for each non-empty PGD (top-level) entry
1053 * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry
1054 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
1055 * this handler is required to be able to handle
1056 * pmd_trans_huge() pmds. They may simply choose to
1057 * split_huge_page() instead of handling it explicitly.
1058 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
1059 * @pte_hole: if set, called for each hole at all levels
1060 * @hugetlb_entry: if set, called for each hugetlb entry
1061 * *Caution*: The caller must hold mmap_sem() if @hugetlb_entry
1062 * is used.
1063 *
1064 * (see walk_page_range for more details)
1065 */
1066 struct mm_walk {
1067 int (*pgd_entry)(pgd_t *pgd, unsigned long addr,
1068 unsigned long next, struct mm_walk *walk);
1069 int (*pud_entry)(pud_t *pud, unsigned long addr,
1070 unsigned long next, struct mm_walk *walk);
1071 int (*pmd_entry)(pmd_t *pmd, unsigned long addr,
1072 unsigned long next, struct mm_walk *walk);
1073 int (*pte_entry)(pte_t *pte, unsigned long addr,
1074 unsigned long next, struct mm_walk *walk);
1075 int (*pte_hole)(unsigned long addr, unsigned long next,
1076 struct mm_walk *walk);
1077 int (*hugetlb_entry)(pte_t *pte, unsigned long hmask,
1078 unsigned long addr, unsigned long next,
1079 struct mm_walk *walk);
1080 struct mm_struct *mm;
1081 void *private;
1082 };
1083
1084 int walk_page_range(unsigned long addr, unsigned long end,
1085 struct mm_walk *walk);
1086 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
1087 unsigned long end, unsigned long floor, unsigned long ceiling);
1088 int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
1089 struct vm_area_struct *vma);
1090 void unmap_mapping_range(struct address_space *mapping,
1091 loff_t const holebegin, loff_t const holelen, int even_cows);
1092 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
1093 unsigned long *pfn);
1094 int follow_phys(struct vm_area_struct *vma, unsigned long address,
1095 unsigned int flags, unsigned long *prot, resource_size_t *phys);
1096 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
1097 void *buf, int len, int write);
1098
1099 static inline void unmap_shared_mapping_range(struct address_space *mapping,
1100 loff_t const holebegin, loff_t const holelen)
1101 {
1102 unmap_mapping_range(mapping, holebegin, holelen, 0);
1103 }
1104
1105 extern void truncate_pagecache(struct inode *inode, loff_t new);
1106 extern void truncate_setsize(struct inode *inode, loff_t newsize);
1107 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
1108 int truncate_inode_page(struct address_space *mapping, struct page *page);
1109 int generic_error_remove_page(struct address_space *mapping, struct page *page);
1110 int invalidate_inode_page(struct page *page);
1111
1112 #ifdef CONFIG_MMU
1113 extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
1114 unsigned long address, unsigned int flags);
1115 extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1116 unsigned long address, unsigned int fault_flags);
1117 #else
1118 static inline int handle_mm_fault(struct mm_struct *mm,
1119 struct vm_area_struct *vma, unsigned long address,
1120 unsigned int flags)
1121 {
1122 /* should never happen if there's no MMU */
1123 BUG();
1124 return VM_FAULT_SIGBUS;
1125 }
1126 static inline int fixup_user_fault(struct task_struct *tsk,
1127 struct mm_struct *mm, unsigned long address,
1128 unsigned int fault_flags)
1129 {
1130 /* should never happen if there's no MMU */
1131 BUG();
1132 return -EFAULT;
1133 }
1134 #endif
1135
1136 extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write);
1137 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1138 void *buf, int len, int write);
1139
1140 long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1141 unsigned long start, unsigned long nr_pages,
1142 unsigned int foll_flags, struct page **pages,
1143 struct vm_area_struct **vmas, int *nonblocking);
1144 long get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1145 unsigned long start, unsigned long nr_pages,
1146 int write, int force, struct page **pages,
1147 struct vm_area_struct **vmas);
1148 int get_user_pages_fast(unsigned long start, int nr_pages, int write,
1149 struct page **pages);
1150 struct kvec;
1151 int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1152 struct page **pages);
1153 int get_kernel_page(unsigned long start, int write, struct page **pages);
1154 struct page *get_dump_page(unsigned long addr);
1155
1156 extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
1157 extern void do_invalidatepage(struct page *page, unsigned int offset,
1158 unsigned int length);
1159
1160 int __set_page_dirty_nobuffers(struct page *page);
1161 int __set_page_dirty_no_writeback(struct page *page);
1162 int redirty_page_for_writepage(struct writeback_control *wbc,
1163 struct page *page);
1164 void account_page_dirtied(struct page *page, struct address_space *mapping);
1165 void account_page_writeback(struct page *page);
1166 int set_page_dirty(struct page *page);
1167 int set_page_dirty_lock(struct page *page);
1168 int clear_page_dirty_for_io(struct page *page);
1169
1170 /* Is the vma a continuation of the stack vma above it? */
1171 static inline int vma_growsdown(struct vm_area_struct *vma, unsigned long addr)
1172 {
1173 return vma && (vma->vm_end == addr) && (vma->vm_flags & VM_GROWSDOWN);
1174 }
1175
1176 static inline int stack_guard_page_start(struct vm_area_struct *vma,
1177 unsigned long addr)
1178 {
1179 return (vma->vm_flags & VM_GROWSDOWN) &&
1180 (vma->vm_start == addr) &&
1181 !vma_growsdown(vma->vm_prev, addr);
1182 }
1183
1184 /* Is the vma a continuation of the stack vma below it? */
1185 static inline int vma_growsup(struct vm_area_struct *vma, unsigned long addr)
1186 {
1187 return vma && (vma->vm_start == addr) && (vma->vm_flags & VM_GROWSUP);
1188 }
1189
1190 static inline int stack_guard_page_end(struct vm_area_struct *vma,
1191 unsigned long addr)
1192 {
1193 return (vma->vm_flags & VM_GROWSUP) &&
1194 (vma->vm_end == addr) &&
1195 !vma_growsup(vma->vm_next, addr);
1196 }
1197
1198 extern pid_t
1199 vm_is_stack(struct task_struct *task, struct vm_area_struct *vma, int in_group);
1200
1201 extern unsigned long move_page_tables(struct vm_area_struct *vma,
1202 unsigned long old_addr, struct vm_area_struct *new_vma,
1203 unsigned long new_addr, unsigned long len,
1204 bool need_rmap_locks);
1205 extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
1206 unsigned long end, pgprot_t newprot,
1207 int dirty_accountable, int prot_numa);
1208 extern int mprotect_fixup(struct vm_area_struct *vma,
1209 struct vm_area_struct **pprev, unsigned long start,
1210 unsigned long end, unsigned long newflags);
1211
1212 /*
1213 * doesn't attempt to fault and will return short.
1214 */
1215 int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1216 struct page **pages);
1217 /*
1218 * per-process(per-mm_struct) statistics.
1219 */
1220 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1221 {
1222 long val = atomic_long_read(&mm->rss_stat.count[member]);
1223
1224 #ifdef SPLIT_RSS_COUNTING
1225 /*
1226 * counter is updated in asynchronous manner and may go to minus.
1227 * But it's never be expected number for users.
1228 */
1229 if (val < 0)
1230 val = 0;
1231 #endif
1232 return (unsigned long)val;
1233 }
1234
1235 static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1236 {
1237 atomic_long_add(value, &mm->rss_stat.count[member]);
1238 }
1239
1240 static inline void inc_mm_counter(struct mm_struct *mm, int member)
1241 {
1242 atomic_long_inc(&mm->rss_stat.count[member]);
1243 }
1244
1245 static inline void dec_mm_counter(struct mm_struct *mm, int member)
1246 {
1247 atomic_long_dec(&mm->rss_stat.count[member]);
1248 }
1249
1250 static inline unsigned long get_mm_rss(struct mm_struct *mm)
1251 {
1252 return get_mm_counter(mm, MM_FILEPAGES) +
1253 get_mm_counter(mm, MM_ANONPAGES);
1254 }
1255
1256 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1257 {
1258 return max(mm->hiwater_rss, get_mm_rss(mm));
1259 }
1260
1261 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1262 {
1263 return max(mm->hiwater_vm, mm->total_vm);
1264 }
1265
1266 static inline void update_hiwater_rss(struct mm_struct *mm)
1267 {
1268 unsigned long _rss = get_mm_rss(mm);
1269
1270 if ((mm)->hiwater_rss < _rss)
1271 (mm)->hiwater_rss = _rss;
1272 }
1273
1274 static inline void update_hiwater_vm(struct mm_struct *mm)
1275 {
1276 if (mm->hiwater_vm < mm->total_vm)
1277 mm->hiwater_vm = mm->total_vm;
1278 }
1279
1280 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1281 struct mm_struct *mm)
1282 {
1283 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1284
1285 if (*maxrss < hiwater_rss)
1286 *maxrss = hiwater_rss;
1287 }
1288
1289 #if defined(SPLIT_RSS_COUNTING)
1290 void sync_mm_rss(struct mm_struct *mm);
1291 #else
1292 static inline void sync_mm_rss(struct mm_struct *mm)
1293 {
1294 }
1295 #endif
1296
1297 int vma_wants_writenotify(struct vm_area_struct *vma);
1298
1299 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1300 spinlock_t **ptl);
1301 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1302 spinlock_t **ptl)
1303 {
1304 pte_t *ptep;
1305 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
1306 return ptep;
1307 }
1308
1309 #ifdef __PAGETABLE_PUD_FOLDED
1310 static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd,
1311 unsigned long address)
1312 {
1313 return 0;
1314 }
1315 #else
1316 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
1317 #endif
1318
1319 #ifdef __PAGETABLE_PMD_FOLDED
1320 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
1321 unsigned long address)
1322 {
1323 return 0;
1324 }
1325 #else
1326 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
1327 #endif
1328
1329 int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
1330 pmd_t *pmd, unsigned long address);
1331 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
1332
1333 /*
1334 * The following ifdef needed to get the 4level-fixup.h header to work.
1335 * Remove it when 4level-fixup.h has been removed.
1336 */
1337 #if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
1338 static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
1339 {
1340 return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))?
1341 NULL: pud_offset(pgd, address);
1342 }
1343
1344 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1345 {
1346 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
1347 NULL: pmd_offset(pud, address);
1348 }
1349 #endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
1350
1351 #if USE_SPLIT_PTE_PTLOCKS
1352 #if ALLOC_SPLIT_PTLOCKS
1353 void __init ptlock_cache_init(void);
1354 extern bool ptlock_alloc(struct page *page);
1355 extern void ptlock_free(struct page *page);
1356
1357 static inline spinlock_t *ptlock_ptr(struct page *page)
1358 {
1359 return page->ptl;
1360 }
1361 #else /* ALLOC_SPLIT_PTLOCKS */
1362 static inline void ptlock_cache_init(void)
1363 {
1364 }
1365
1366 static inline bool ptlock_alloc(struct page *page)
1367 {
1368 return true;
1369 }
1370
1371 static inline void ptlock_free(struct page *page)
1372 {
1373 }
1374
1375 static inline spinlock_t *ptlock_ptr(struct page *page)
1376 {
1377 return &page->ptl;
1378 }
1379 #endif /* ALLOC_SPLIT_PTLOCKS */
1380
1381 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1382 {
1383 return ptlock_ptr(pmd_page(*pmd));
1384 }
1385
1386 static inline bool ptlock_init(struct page *page)
1387 {
1388 /*
1389 * prep_new_page() initialize page->private (and therefore page->ptl)
1390 * with 0. Make sure nobody took it in use in between.
1391 *
1392 * It can happen if arch try to use slab for page table allocation:
1393 * slab code uses page->slab_cache and page->first_page (for tail
1394 * pages), which share storage with page->ptl.
1395 */
1396 VM_BUG_ON(*(unsigned long *)&page->ptl);
1397 if (!ptlock_alloc(page))
1398 return false;
1399 spin_lock_init(ptlock_ptr(page));
1400 return true;
1401 }
1402
1403 /* Reset page->mapping so free_pages_check won't complain. */
1404 static inline void pte_lock_deinit(struct page *page)
1405 {
1406 page->mapping = NULL;
1407 ptlock_free(page);
1408 }
1409
1410 #else /* !USE_SPLIT_PTE_PTLOCKS */
1411 /*
1412 * We use mm->page_table_lock to guard all pagetable pages of the mm.
1413 */
1414 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1415 {
1416 return &mm->page_table_lock;
1417 }
1418 static inline void ptlock_cache_init(void) {}
1419 static inline bool ptlock_init(struct page *page) { return true; }
1420 static inline void pte_lock_deinit(struct page *page) {}
1421 #endif /* USE_SPLIT_PTE_PTLOCKS */
1422
1423 static inline void pgtable_init(void)
1424 {
1425 ptlock_cache_init();
1426 pgtable_cache_init();
1427 }
1428
1429 static inline bool pgtable_page_ctor(struct page *page)
1430 {
1431 inc_zone_page_state(page, NR_PAGETABLE);
1432 return ptlock_init(page);
1433 }
1434
1435 static inline void pgtable_page_dtor(struct page *page)
1436 {
1437 pte_lock_deinit(page);
1438 dec_zone_page_state(page, NR_PAGETABLE);
1439 }
1440
1441 #define pte_offset_map_lock(mm, pmd, address, ptlp) \
1442 ({ \
1443 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
1444 pte_t *__pte = pte_offset_map(pmd, address); \
1445 *(ptlp) = __ptl; \
1446 spin_lock(__ptl); \
1447 __pte; \
1448 })
1449
1450 #define pte_unmap_unlock(pte, ptl) do { \
1451 spin_unlock(ptl); \
1452 pte_unmap(pte); \
1453 } while (0)
1454
1455 #define pte_alloc_map(mm, vma, pmd, address) \
1456 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, vma, \
1457 pmd, address))? \
1458 NULL: pte_offset_map(pmd, address))
1459
1460 #define pte_alloc_map_lock(mm, pmd, address, ptlp) \
1461 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, NULL, \
1462 pmd, address))? \
1463 NULL: pte_offset_map_lock(mm, pmd, address, ptlp))
1464
1465 #define pte_alloc_kernel(pmd, address) \
1466 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
1467 NULL: pte_offset_kernel(pmd, address))
1468
1469 #if USE_SPLIT_PMD_PTLOCKS
1470
1471 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1472 {
1473 return ptlock_ptr(virt_to_page(pmd));
1474 }
1475
1476 static inline bool pgtable_pmd_page_ctor(struct page *page)
1477 {
1478 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1479 page->pmd_huge_pte = NULL;
1480 #endif
1481 return ptlock_init(page);
1482 }
1483
1484 static inline void pgtable_pmd_page_dtor(struct page *page)
1485 {
1486 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1487 VM_BUG_ON(page->pmd_huge_pte);
1488 #endif
1489 ptlock_free(page);
1490 }
1491
1492 #define pmd_huge_pte(mm, pmd) (virt_to_page(pmd)->pmd_huge_pte)
1493
1494 #else
1495
1496 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1497 {
1498 return &mm->page_table_lock;
1499 }
1500
1501 static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; }
1502 static inline void pgtable_pmd_page_dtor(struct page *page) {}
1503
1504 #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
1505
1506 #endif
1507
1508 static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
1509 {
1510 spinlock_t *ptl = pmd_lockptr(mm, pmd);
1511 spin_lock(ptl);
1512 return ptl;
1513 }
1514
1515 extern void free_area_init(unsigned long * zones_size);
1516 extern void free_area_init_node(int nid, unsigned long * zones_size,
1517 unsigned long zone_start_pfn, unsigned long *zholes_size);
1518 extern void free_initmem(void);
1519
1520 /*
1521 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
1522 * into the buddy system. The freed pages will be poisoned with pattern
1523 * "poison" if it's within range [0, UCHAR_MAX].
1524 * Return pages freed into the buddy system.
1525 */
1526 extern unsigned long free_reserved_area(void *start, void *end,
1527 int poison, char *s);
1528
1529 #ifdef CONFIG_HIGHMEM
1530 /*
1531 * Free a highmem page into the buddy system, adjusting totalhigh_pages
1532 * and totalram_pages.
1533 */
1534 extern void free_highmem_page(struct page *page);
1535 #endif
1536
1537 extern void adjust_managed_page_count(struct page *page, long count);
1538 extern void mem_init_print_info(const char *str);
1539
1540 /* Free the reserved page into the buddy system, so it gets managed. */
1541 static inline void __free_reserved_page(struct page *page)
1542 {
1543 ClearPageReserved(page);
1544 init_page_count(page);
1545 __free_page(page);
1546 }
1547
1548 static inline void free_reserved_page(struct page *page)
1549 {
1550 __free_reserved_page(page);
1551 adjust_managed_page_count(page, 1);
1552 }
1553
1554 static inline void mark_page_reserved(struct page *page)
1555 {
1556 SetPageReserved(page);
1557 adjust_managed_page_count(page, -1);
1558 }
1559
1560 /*
1561 * Default method to free all the __init memory into the buddy system.
1562 * The freed pages will be poisoned with pattern "poison" if it's within
1563 * range [0, UCHAR_MAX].
1564 * Return pages freed into the buddy system.
1565 */
1566 static inline unsigned long free_initmem_default(int poison)
1567 {
1568 extern char __init_begin[], __init_end[];
1569
1570 return free_reserved_area(&__init_begin, &__init_end,
1571 poison, "unused kernel");
1572 }
1573
1574 static inline unsigned long get_num_physpages(void)
1575 {
1576 int nid;
1577 unsigned long phys_pages = 0;
1578
1579 for_each_online_node(nid)
1580 phys_pages += node_present_pages(nid);
1581
1582 return phys_pages;
1583 }
1584
1585 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1586 /*
1587 * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its
1588 * zones, allocate the backing mem_map and account for memory holes in a more
1589 * architecture independent manner. This is a substitute for creating the
1590 * zone_sizes[] and zholes_size[] arrays and passing them to
1591 * free_area_init_node()
1592 *
1593 * An architecture is expected to register range of page frames backed by
1594 * physical memory with memblock_add[_node]() before calling
1595 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
1596 * usage, an architecture is expected to do something like
1597 *
1598 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
1599 * max_highmem_pfn};
1600 * for_each_valid_physical_page_range()
1601 * memblock_add_node(base, size, nid)
1602 * free_area_init_nodes(max_zone_pfns);
1603 *
1604 * free_bootmem_with_active_regions() calls free_bootmem_node() for each
1605 * registered physical page range. Similarly
1606 * sparse_memory_present_with_active_regions() calls memory_present() for
1607 * each range when SPARSEMEM is enabled.
1608 *
1609 * See mm/page_alloc.c for more information on each function exposed by
1610 * CONFIG_HAVE_MEMBLOCK_NODE_MAP.
1611 */
1612 extern void free_area_init_nodes(unsigned long *max_zone_pfn);
1613 unsigned long node_map_pfn_alignment(void);
1614 unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
1615 unsigned long end_pfn);
1616 extern unsigned long absent_pages_in_range(unsigned long start_pfn,
1617 unsigned long end_pfn);
1618 extern void get_pfn_range_for_nid(unsigned int nid,
1619 unsigned long *start_pfn, unsigned long *end_pfn);
1620 extern unsigned long find_min_pfn_with_active_regions(void);
1621 extern void free_bootmem_with_active_regions(int nid,
1622 unsigned long max_low_pfn);
1623 extern void sparse_memory_present_with_active_regions(int nid);
1624
1625 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
1626
1627 #if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \
1628 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
1629 static inline int __early_pfn_to_nid(unsigned long pfn)
1630 {
1631 return 0;
1632 }
1633 #else
1634 /* please see mm/page_alloc.c */
1635 extern int __meminit early_pfn_to_nid(unsigned long pfn);
1636 #ifdef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
1637 /* there is a per-arch backend function. */
1638 extern int __meminit __early_pfn_to_nid(unsigned long pfn);
1639 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
1640 #endif
1641
1642 extern void set_dma_reserve(unsigned long new_dma_reserve);
1643 extern void memmap_init_zone(unsigned long, int, unsigned long,
1644 unsigned long, enum memmap_context);
1645 extern void setup_per_zone_wmarks(void);
1646 extern int __meminit init_per_zone_wmark_min(void);
1647 extern void mem_init(void);
1648 extern void __init mmap_init(void);
1649 extern void show_mem(unsigned int flags);
1650 extern void si_meminfo(struct sysinfo * val);
1651 extern void si_meminfo_node(struct sysinfo *val, int nid);
1652
1653 extern __printf(3, 4)
1654 void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...);
1655
1656 extern void setup_per_cpu_pageset(void);
1657
1658 extern void zone_pcp_update(struct zone *zone);
1659 extern void zone_pcp_reset(struct zone *zone);
1660
1661 /* page_alloc.c */
1662 extern int min_free_kbytes;
1663
1664 /* nommu.c */
1665 extern atomic_long_t mmap_pages_allocated;
1666 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
1667
1668 /* interval_tree.c */
1669 void vma_interval_tree_insert(struct vm_area_struct *node,
1670 struct rb_root *root);
1671 void vma_interval_tree_insert_after(struct vm_area_struct *node,
1672 struct vm_area_struct *prev,
1673 struct rb_root *root);
1674 void vma_interval_tree_remove(struct vm_area_struct *node,
1675 struct rb_root *root);
1676 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root *root,
1677 unsigned long start, unsigned long last);
1678 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
1679 unsigned long start, unsigned long last);
1680
1681 #define vma_interval_tree_foreach(vma, root, start, last) \
1682 for (vma = vma_interval_tree_iter_first(root, start, last); \
1683 vma; vma = vma_interval_tree_iter_next(vma, start, last))
1684
1685 static inline void vma_nonlinear_insert(struct vm_area_struct *vma,
1686 struct list_head *list)
1687 {
1688 list_add_tail(&vma->shared.nonlinear, list);
1689 }
1690
1691 void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
1692 struct rb_root *root);
1693 void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
1694 struct rb_root *root);
1695 struct anon_vma_chain *anon_vma_interval_tree_iter_first(
1696 struct rb_root *root, unsigned long start, unsigned long last);
1697 struct anon_vma_chain *anon_vma_interval_tree_iter_next(
1698 struct anon_vma_chain *node, unsigned long start, unsigned long last);
1699 #ifdef CONFIG_DEBUG_VM_RB
1700 void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
1701 #endif
1702
1703 #define anon_vma_interval_tree_foreach(avc, root, start, last) \
1704 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
1705 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
1706
1707 /* mmap.c */
1708 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
1709 extern int vma_adjust(struct vm_area_struct *vma, unsigned long start,
1710 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert);
1711 extern struct vm_area_struct *vma_merge(struct mm_struct *,
1712 struct vm_area_struct *prev, unsigned long addr, unsigned long end,
1713 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
1714 struct mempolicy *);
1715 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
1716 extern int split_vma(struct mm_struct *,
1717 struct vm_area_struct *, unsigned long addr, int new_below);
1718 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
1719 extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
1720 struct rb_node **, struct rb_node *);
1721 extern void unlink_file_vma(struct vm_area_struct *);
1722 extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
1723 unsigned long addr, unsigned long len, pgoff_t pgoff,
1724 bool *need_rmap_locks);
1725 extern void exit_mmap(struct mm_struct *);
1726
1727 extern int mm_take_all_locks(struct mm_struct *mm);
1728 extern void mm_drop_all_locks(struct mm_struct *mm);
1729
1730 extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
1731 extern struct file *get_mm_exe_file(struct mm_struct *mm);
1732
1733 extern int may_expand_vm(struct mm_struct *mm, unsigned long npages);
1734 extern int install_special_mapping(struct mm_struct *mm,
1735 unsigned long addr, unsigned long len,
1736 unsigned long flags, struct page **pages);
1737
1738 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
1739
1740 extern unsigned long mmap_region(struct file *file, unsigned long addr,
1741 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff);
1742 extern unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
1743 unsigned long len, unsigned long prot, unsigned long flags,
1744 unsigned long pgoff, unsigned long *populate);
1745 extern int do_munmap(struct mm_struct *, unsigned long, size_t);
1746
1747 #ifdef CONFIG_MMU
1748 extern int __mm_populate(unsigned long addr, unsigned long len,
1749 int ignore_errors);
1750 static inline void mm_populate(unsigned long addr, unsigned long len)
1751 {
1752 /* Ignore errors */
1753 (void) __mm_populate(addr, len, 1);
1754 }
1755 #else
1756 static inline void mm_populate(unsigned long addr, unsigned long len) {}
1757 #endif
1758
1759 /* These take the mm semaphore themselves */
1760 extern unsigned long vm_brk(unsigned long, unsigned long);
1761 extern int vm_munmap(unsigned long, size_t);
1762 extern unsigned long vm_mmap(struct file *, unsigned long,
1763 unsigned long, unsigned long,
1764 unsigned long, unsigned long);
1765
1766 struct vm_unmapped_area_info {
1767 #define VM_UNMAPPED_AREA_TOPDOWN 1
1768 unsigned long flags;
1769 unsigned long length;
1770 unsigned long low_limit;
1771 unsigned long high_limit;
1772 unsigned long align_mask;
1773 unsigned long align_offset;
1774 };
1775
1776 extern unsigned long unmapped_area(struct vm_unmapped_area_info *info);
1777 extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info);
1778
1779 /*
1780 * Search for an unmapped address range.
1781 *
1782 * We are looking for a range that:
1783 * - does not intersect with any VMA;
1784 * - is contained within the [low_limit, high_limit) interval;
1785 * - is at least the desired size.
1786 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
1787 */
1788 static inline unsigned long
1789 vm_unmapped_area(struct vm_unmapped_area_info *info)
1790 {
1791 if (!(info->flags & VM_UNMAPPED_AREA_TOPDOWN))
1792 return unmapped_area(info);
1793 else
1794 return unmapped_area_topdown(info);
1795 }
1796
1797 /* truncate.c */
1798 extern void truncate_inode_pages(struct address_space *, loff_t);
1799 extern void truncate_inode_pages_range(struct address_space *,
1800 loff_t lstart, loff_t lend);
1801
1802 /* generic vm_area_ops exported for stackable file systems */
1803 extern int filemap_fault(struct vm_area_struct *, struct vm_fault *);
1804 extern int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf);
1805
1806 /* mm/page-writeback.c */
1807 int write_one_page(struct page *page, int wait);
1808 void task_dirty_inc(struct task_struct *tsk);
1809
1810 /* readahead.c */
1811 #define VM_MAX_READAHEAD 128 /* kbytes */
1812 #define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */
1813
1814 int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
1815 pgoff_t offset, unsigned long nr_to_read);
1816
1817 void page_cache_sync_readahead(struct address_space *mapping,
1818 struct file_ra_state *ra,
1819 struct file *filp,
1820 pgoff_t offset,
1821 unsigned long size);
1822
1823 void page_cache_async_readahead(struct address_space *mapping,
1824 struct file_ra_state *ra,
1825 struct file *filp,
1826 struct page *pg,
1827 pgoff_t offset,
1828 unsigned long size);
1829
1830 unsigned long max_sane_readahead(unsigned long nr);
1831 unsigned long ra_submit(struct file_ra_state *ra,
1832 struct address_space *mapping,
1833 struct file *filp);
1834
1835 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
1836 extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
1837
1838 /* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
1839 extern int expand_downwards(struct vm_area_struct *vma,
1840 unsigned long address);
1841 #if VM_GROWSUP
1842 extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
1843 #else
1844 #define expand_upwards(vma, address) do { } while (0)
1845 #endif
1846
1847 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
1848 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
1849 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
1850 struct vm_area_struct **pprev);
1851
1852 /* Look up the first VMA which intersects the interval start_addr..end_addr-1,
1853 NULL if none. Assume start_addr < end_addr. */
1854 static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
1855 {
1856 struct vm_area_struct * vma = find_vma(mm,start_addr);
1857
1858 if (vma && end_addr <= vma->vm_start)
1859 vma = NULL;
1860 return vma;
1861 }
1862
1863 static inline unsigned long vma_pages(struct vm_area_struct *vma)
1864 {
1865 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
1866 }
1867
1868 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */
1869 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
1870 unsigned long vm_start, unsigned long vm_end)
1871 {
1872 struct vm_area_struct *vma = find_vma(mm, vm_start);
1873
1874 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
1875 vma = NULL;
1876
1877 return vma;
1878 }
1879
1880 #ifdef CONFIG_MMU
1881 pgprot_t vm_get_page_prot(unsigned long vm_flags);
1882 #else
1883 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
1884 {
1885 return __pgprot(0);
1886 }
1887 #endif
1888
1889 #ifdef CONFIG_ARCH_USES_NUMA_PROT_NONE
1890 unsigned long change_prot_numa(struct vm_area_struct *vma,
1891 unsigned long start, unsigned long end);
1892 #endif
1893
1894 struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
1895 int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
1896 unsigned long pfn, unsigned long size, pgprot_t);
1897 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
1898 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1899 unsigned long pfn);
1900 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1901 unsigned long pfn);
1902 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
1903
1904
1905 struct page *follow_page_mask(struct vm_area_struct *vma,
1906 unsigned long address, unsigned int foll_flags,
1907 unsigned int *page_mask);
1908
1909 static inline struct page *follow_page(struct vm_area_struct *vma,
1910 unsigned long address, unsigned int foll_flags)
1911 {
1912 unsigned int unused_page_mask;
1913 return follow_page_mask(vma, address, foll_flags, &unused_page_mask);
1914 }
1915
1916 #define FOLL_WRITE 0x01 /* check pte is writable */
1917 #define FOLL_TOUCH 0x02 /* mark page accessed */
1918 #define FOLL_GET 0x04 /* do get_page on page */
1919 #define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
1920 #define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
1921 #define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO
1922 * and return without waiting upon it */
1923 #define FOLL_MLOCK 0x40 /* mark page as mlocked */
1924 #define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */
1925 #define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */
1926 #define FOLL_NUMA 0x200 /* force NUMA hinting page fault */
1927 #define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */
1928
1929 typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
1930 void *data);
1931 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
1932 unsigned long size, pte_fn_t fn, void *data);
1933
1934 #ifdef CONFIG_PROC_FS
1935 void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long);
1936 #else
1937 static inline void vm_stat_account(struct mm_struct *mm,
1938 unsigned long flags, struct file *file, long pages)
1939 {
1940 mm->total_vm += pages;
1941 }
1942 #endif /* CONFIG_PROC_FS */
1943
1944 #ifdef CONFIG_DEBUG_PAGEALLOC
1945 extern void kernel_map_pages(struct page *page, int numpages, int enable);
1946 #ifdef CONFIG_HIBERNATION
1947 extern bool kernel_page_present(struct page *page);
1948 #endif /* CONFIG_HIBERNATION */
1949 #else
1950 static inline void
1951 kernel_map_pages(struct page *page, int numpages, int enable) {}
1952 #ifdef CONFIG_HIBERNATION
1953 static inline bool kernel_page_present(struct page *page) { return true; }
1954 #endif /* CONFIG_HIBERNATION */
1955 #endif
1956
1957 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
1958 #ifdef __HAVE_ARCH_GATE_AREA
1959 int in_gate_area_no_mm(unsigned long addr);
1960 int in_gate_area(struct mm_struct *mm, unsigned long addr);
1961 #else
1962 int in_gate_area_no_mm(unsigned long addr);
1963 #define in_gate_area(mm, addr) ({(void)mm; in_gate_area_no_mm(addr);})
1964 #endif /* __HAVE_ARCH_GATE_AREA */
1965
1966 #ifdef CONFIG_SYSCTL
1967 extern int sysctl_drop_caches;
1968 int drop_caches_sysctl_handler(struct ctl_table *, int,
1969 void __user *, size_t *, loff_t *);
1970 #endif
1971
1972 unsigned long shrink_slab(struct shrink_control *shrink,
1973 unsigned long nr_pages_scanned,
1974 unsigned long lru_pages);
1975
1976 #ifndef CONFIG_MMU
1977 #define randomize_va_space 0
1978 #else
1979 extern int randomize_va_space;
1980 #endif
1981
1982 const char * arch_vma_name(struct vm_area_struct *vma);
1983 void print_vma_addr(char *prefix, unsigned long rip);
1984
1985 void sparse_mem_maps_populate_node(struct page **map_map,
1986 unsigned long pnum_begin,
1987 unsigned long pnum_end,
1988 unsigned long map_count,
1989 int nodeid);
1990
1991 struct page *sparse_mem_map_populate(unsigned long pnum, int nid);
1992 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
1993 pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node);
1994 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
1995 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
1996 void *vmemmap_alloc_block(unsigned long size, int node);
1997 void *vmemmap_alloc_block_buf(unsigned long size, int node);
1998 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
1999 int vmemmap_populate_basepages(unsigned long start, unsigned long end,
2000 int node);
2001 int vmemmap_populate(unsigned long start, unsigned long end, int node);
2002 void vmemmap_populate_print_last(void);
2003 #ifdef CONFIG_MEMORY_HOTPLUG
2004 void vmemmap_free(unsigned long start, unsigned long end);
2005 #endif
2006 void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
2007 unsigned long size);
2008
2009 enum mf_flags {
2010 MF_COUNT_INCREASED = 1 << 0,
2011 MF_ACTION_REQUIRED = 1 << 1,
2012 MF_MUST_KILL = 1 << 2,
2013 MF_SOFT_OFFLINE = 1 << 3,
2014 };
2015 extern int memory_failure(unsigned long pfn, int trapno, int flags);
2016 extern void memory_failure_queue(unsigned long pfn, int trapno, int flags);
2017 extern int unpoison_memory(unsigned long pfn);
2018 extern int sysctl_memory_failure_early_kill;
2019 extern int sysctl_memory_failure_recovery;
2020 extern void shake_page(struct page *p, int access);
2021 extern atomic_long_t num_poisoned_pages;
2022 extern int soft_offline_page(struct page *page, int flags);
2023
2024 extern void dump_page(struct page *page);
2025
2026 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
2027 extern void clear_huge_page(struct page *page,
2028 unsigned long addr,
2029 unsigned int pages_per_huge_page);
2030 extern void copy_user_huge_page(struct page *dst, struct page *src,
2031 unsigned long addr, struct vm_area_struct *vma,
2032 unsigned int pages_per_huge_page);
2033 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
2034
2035 #ifdef CONFIG_DEBUG_PAGEALLOC
2036 extern unsigned int _debug_guardpage_minorder;
2037
2038 static inline unsigned int debug_guardpage_minorder(void)
2039 {
2040 return _debug_guardpage_minorder;
2041 }
2042
2043 static inline bool page_is_guard(struct page *page)
2044 {
2045 return test_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
2046 }
2047 #else
2048 static inline unsigned int debug_guardpage_minorder(void) { return 0; }
2049 static inline bool page_is_guard(struct page *page) { return false; }
2050 #endif /* CONFIG_DEBUG_PAGEALLOC */
2051
2052 #if MAX_NUMNODES > 1
2053 void __init setup_nr_node_ids(void);
2054 #else
2055 static inline void setup_nr_node_ids(void) {}
2056 #endif
2057
2058 #endif /* __KERNEL__ */
2059 #endif /* _LINUX_MM_H */
This page took 0.098138 seconds and 5 git commands to generate.