mm: skip memory block registration for ZONE_DEVICE
[deliverable/linux.git] / include / linux / mm.h
1 #ifndef _LINUX_MM_H
2 #define _LINUX_MM_H
3
4 #include <linux/errno.h>
5
6 #ifdef __KERNEL__
7
8 #include <linux/mmdebug.h>
9 #include <linux/gfp.h>
10 #include <linux/bug.h>
11 #include <linux/list.h>
12 #include <linux/mmzone.h>
13 #include <linux/rbtree.h>
14 #include <linux/atomic.h>
15 #include <linux/debug_locks.h>
16 #include <linux/mm_types.h>
17 #include <linux/range.h>
18 #include <linux/pfn.h>
19 #include <linux/bit_spinlock.h>
20 #include <linux/shrinker.h>
21 #include <linux/resource.h>
22 #include <linux/page_ext.h>
23 #include <linux/err.h>
24
25 struct mempolicy;
26 struct anon_vma;
27 struct anon_vma_chain;
28 struct file_ra_state;
29 struct user_struct;
30 struct writeback_control;
31 struct bdi_writeback;
32
33 #ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */
34 extern unsigned long max_mapnr;
35
36 static inline void set_max_mapnr(unsigned long limit)
37 {
38 max_mapnr = limit;
39 }
40 #else
41 static inline void set_max_mapnr(unsigned long limit) { }
42 #endif
43
44 extern unsigned long totalram_pages;
45 extern void * high_memory;
46 extern int page_cluster;
47
48 #ifdef CONFIG_SYSCTL
49 extern int sysctl_legacy_va_layout;
50 #else
51 #define sysctl_legacy_va_layout 0
52 #endif
53
54 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
55 extern const int mmap_rnd_bits_min;
56 extern const int mmap_rnd_bits_max;
57 extern int mmap_rnd_bits __read_mostly;
58 #endif
59 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
60 extern const int mmap_rnd_compat_bits_min;
61 extern const int mmap_rnd_compat_bits_max;
62 extern int mmap_rnd_compat_bits __read_mostly;
63 #endif
64
65 #include <asm/page.h>
66 #include <asm/pgtable.h>
67 #include <asm/processor.h>
68
69 #ifndef __pa_symbol
70 #define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0))
71 #endif
72
73 /*
74 * To prevent common memory management code establishing
75 * a zero page mapping on a read fault.
76 * This macro should be defined within <asm/pgtable.h>.
77 * s390 does this to prevent multiplexing of hardware bits
78 * related to the physical page in case of virtualization.
79 */
80 #ifndef mm_forbids_zeropage
81 #define mm_forbids_zeropage(X) (0)
82 #endif
83
84 extern unsigned long sysctl_user_reserve_kbytes;
85 extern unsigned long sysctl_admin_reserve_kbytes;
86
87 extern int sysctl_overcommit_memory;
88 extern int sysctl_overcommit_ratio;
89 extern unsigned long sysctl_overcommit_kbytes;
90
91 extern int overcommit_ratio_handler(struct ctl_table *, int, void __user *,
92 size_t *, loff_t *);
93 extern int overcommit_kbytes_handler(struct ctl_table *, int, void __user *,
94 size_t *, loff_t *);
95
96 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
97
98 /* to align the pointer to the (next) page boundary */
99 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
100
101 /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
102 #define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)addr, PAGE_SIZE)
103
104 /*
105 * Linux kernel virtual memory manager primitives.
106 * The idea being to have a "virtual" mm in the same way
107 * we have a virtual fs - giving a cleaner interface to the
108 * mm details, and allowing different kinds of memory mappings
109 * (from shared memory to executable loading to arbitrary
110 * mmap() functions).
111 */
112
113 extern struct kmem_cache *vm_area_cachep;
114
115 #ifndef CONFIG_MMU
116 extern struct rb_root nommu_region_tree;
117 extern struct rw_semaphore nommu_region_sem;
118
119 extern unsigned int kobjsize(const void *objp);
120 #endif
121
122 /*
123 * vm_flags in vm_area_struct, see mm_types.h.
124 */
125 #define VM_NONE 0x00000000
126
127 #define VM_READ 0x00000001 /* currently active flags */
128 #define VM_WRITE 0x00000002
129 #define VM_EXEC 0x00000004
130 #define VM_SHARED 0x00000008
131
132 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
133 #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
134 #define VM_MAYWRITE 0x00000020
135 #define VM_MAYEXEC 0x00000040
136 #define VM_MAYSHARE 0x00000080
137
138 #define VM_GROWSDOWN 0x00000100 /* general info on the segment */
139 #define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */
140 #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
141 #define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
142 #define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */
143
144 #define VM_LOCKED 0x00002000
145 #define VM_IO 0x00004000 /* Memory mapped I/O or similar */
146
147 /* Used by sys_madvise() */
148 #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
149 #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
150
151 #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
152 #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
153 #define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */
154 #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
155 #define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
156 #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
157 #define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
158 #define VM_ARCH_2 0x02000000
159 #define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
160
161 #ifdef CONFIG_MEM_SOFT_DIRTY
162 # define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */
163 #else
164 # define VM_SOFTDIRTY 0
165 #endif
166
167 #define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
168 #define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
169 #define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
170 #define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
171
172 #if defined(CONFIG_X86)
173 # define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
174 #elif defined(CONFIG_PPC)
175 # define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
176 #elif defined(CONFIG_PARISC)
177 # define VM_GROWSUP VM_ARCH_1
178 #elif defined(CONFIG_METAG)
179 # define VM_GROWSUP VM_ARCH_1
180 #elif defined(CONFIG_IA64)
181 # define VM_GROWSUP VM_ARCH_1
182 #elif !defined(CONFIG_MMU)
183 # define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
184 #endif
185
186 #if defined(CONFIG_X86)
187 /* MPX specific bounds table or bounds directory */
188 # define VM_MPX VM_ARCH_2
189 #endif
190
191 #ifndef VM_GROWSUP
192 # define VM_GROWSUP VM_NONE
193 #endif
194
195 /* Bits set in the VMA until the stack is in its final location */
196 #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
197
198 #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
199 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
200 #endif
201
202 #ifdef CONFIG_STACK_GROWSUP
203 #define VM_STACK_FLAGS (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
204 #else
205 #define VM_STACK_FLAGS (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
206 #endif
207
208 /*
209 * Special vmas that are non-mergable, non-mlock()able.
210 * Note: mm/huge_memory.c VM_NO_THP depends on this definition.
211 */
212 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
213
214 /* This mask defines which mm->def_flags a process can inherit its parent */
215 #define VM_INIT_DEF_MASK VM_NOHUGEPAGE
216
217 /* This mask is used to clear all the VMA flags used by mlock */
218 #define VM_LOCKED_CLEAR_MASK (~(VM_LOCKED | VM_LOCKONFAULT))
219
220 /*
221 * mapping from the currently active vm_flags protection bits (the
222 * low four bits) to a page protection mask..
223 */
224 extern pgprot_t protection_map[16];
225
226 #define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */
227 #define FAULT_FLAG_MKWRITE 0x02 /* Fault was mkwrite of existing pte */
228 #define FAULT_FLAG_ALLOW_RETRY 0x04 /* Retry fault if blocking */
229 #define FAULT_FLAG_RETRY_NOWAIT 0x08 /* Don't drop mmap_sem and wait when retrying */
230 #define FAULT_FLAG_KILLABLE 0x10 /* The fault task is in SIGKILL killable region */
231 #define FAULT_FLAG_TRIED 0x20 /* Second try */
232 #define FAULT_FLAG_USER 0x40 /* The fault originated in userspace */
233
234 /*
235 * vm_fault is filled by the the pagefault handler and passed to the vma's
236 * ->fault function. The vma's ->fault is responsible for returning a bitmask
237 * of VM_FAULT_xxx flags that give details about how the fault was handled.
238 *
239 * MM layer fills up gfp_mask for page allocations but fault handler might
240 * alter it if its implementation requires a different allocation context.
241 *
242 * pgoff should be used in favour of virtual_address, if possible.
243 */
244 struct vm_fault {
245 unsigned int flags; /* FAULT_FLAG_xxx flags */
246 gfp_t gfp_mask; /* gfp mask to be used for allocations */
247 pgoff_t pgoff; /* Logical page offset based on vma */
248 void __user *virtual_address; /* Faulting virtual address */
249
250 struct page *cow_page; /* Handler may choose to COW */
251 struct page *page; /* ->fault handlers should return a
252 * page here, unless VM_FAULT_NOPAGE
253 * is set (which is also implied by
254 * VM_FAULT_ERROR).
255 */
256 /* for ->map_pages() only */
257 pgoff_t max_pgoff; /* map pages for offset from pgoff till
258 * max_pgoff inclusive */
259 pte_t *pte; /* pte entry associated with ->pgoff */
260 };
261
262 /*
263 * These are the virtual MM functions - opening of an area, closing and
264 * unmapping it (needed to keep files on disk up-to-date etc), pointer
265 * to the functions called when a no-page or a wp-page exception occurs.
266 */
267 struct vm_operations_struct {
268 void (*open)(struct vm_area_struct * area);
269 void (*close)(struct vm_area_struct * area);
270 int (*mremap)(struct vm_area_struct * area);
271 int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf);
272 int (*pmd_fault)(struct vm_area_struct *, unsigned long address,
273 pmd_t *, unsigned int flags);
274 void (*map_pages)(struct vm_area_struct *vma, struct vm_fault *vmf);
275
276 /* notification that a previously read-only page is about to become
277 * writable, if an error is returned it will cause a SIGBUS */
278 int (*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
279
280 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
281 int (*pfn_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
282
283 /* called by access_process_vm when get_user_pages() fails, typically
284 * for use by special VMAs that can switch between memory and hardware
285 */
286 int (*access)(struct vm_area_struct *vma, unsigned long addr,
287 void *buf, int len, int write);
288
289 /* Called by the /proc/PID/maps code to ask the vma whether it
290 * has a special name. Returning non-NULL will also cause this
291 * vma to be dumped unconditionally. */
292 const char *(*name)(struct vm_area_struct *vma);
293
294 #ifdef CONFIG_NUMA
295 /*
296 * set_policy() op must add a reference to any non-NULL @new mempolicy
297 * to hold the policy upon return. Caller should pass NULL @new to
298 * remove a policy and fall back to surrounding context--i.e. do not
299 * install a MPOL_DEFAULT policy, nor the task or system default
300 * mempolicy.
301 */
302 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
303
304 /*
305 * get_policy() op must add reference [mpol_get()] to any policy at
306 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
307 * in mm/mempolicy.c will do this automatically.
308 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
309 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
310 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
311 * must return NULL--i.e., do not "fallback" to task or system default
312 * policy.
313 */
314 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
315 unsigned long addr);
316 #endif
317 /*
318 * Called by vm_normal_page() for special PTEs to find the
319 * page for @addr. This is useful if the default behavior
320 * (using pte_page()) would not find the correct page.
321 */
322 struct page *(*find_special_page)(struct vm_area_struct *vma,
323 unsigned long addr);
324 };
325
326 struct mmu_gather;
327 struct inode;
328
329 #define page_private(page) ((page)->private)
330 #define set_page_private(page, v) ((page)->private = (v))
331
332 /*
333 * FIXME: take this include out, include page-flags.h in
334 * files which need it (119 of them)
335 */
336 #include <linux/page-flags.h>
337 #include <linux/huge_mm.h>
338
339 /*
340 * Methods to modify the page usage count.
341 *
342 * What counts for a page usage:
343 * - cache mapping (page->mapping)
344 * - private data (page->private)
345 * - page mapped in a task's page tables, each mapping
346 * is counted separately
347 *
348 * Also, many kernel routines increase the page count before a critical
349 * routine so they can be sure the page doesn't go away from under them.
350 */
351
352 /*
353 * Drop a ref, return true if the refcount fell to zero (the page has no users)
354 */
355 static inline int put_page_testzero(struct page *page)
356 {
357 VM_BUG_ON_PAGE(atomic_read(&page->_count) == 0, page);
358 return atomic_dec_and_test(&page->_count);
359 }
360
361 /*
362 * Try to grab a ref unless the page has a refcount of zero, return false if
363 * that is the case.
364 * This can be called when MMU is off so it must not access
365 * any of the virtual mappings.
366 */
367 static inline int get_page_unless_zero(struct page *page)
368 {
369 return atomic_inc_not_zero(&page->_count);
370 }
371
372 extern int page_is_ram(unsigned long pfn);
373
374 enum {
375 REGION_INTERSECTS,
376 REGION_DISJOINT,
377 REGION_MIXED,
378 };
379
380 int region_intersects(resource_size_t offset, size_t size, const char *type);
381
382 /* Support for virtually mapped pages */
383 struct page *vmalloc_to_page(const void *addr);
384 unsigned long vmalloc_to_pfn(const void *addr);
385
386 /*
387 * Determine if an address is within the vmalloc range
388 *
389 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
390 * is no special casing required.
391 */
392 static inline int is_vmalloc_addr(const void *x)
393 {
394 #ifdef CONFIG_MMU
395 unsigned long addr = (unsigned long)x;
396
397 return addr >= VMALLOC_START && addr < VMALLOC_END;
398 #else
399 return 0;
400 #endif
401 }
402 #ifdef CONFIG_MMU
403 extern int is_vmalloc_or_module_addr(const void *x);
404 #else
405 static inline int is_vmalloc_or_module_addr(const void *x)
406 {
407 return 0;
408 }
409 #endif
410
411 extern void kvfree(const void *addr);
412
413 static inline atomic_t *compound_mapcount_ptr(struct page *page)
414 {
415 return &page[1].compound_mapcount;
416 }
417
418 static inline int compound_mapcount(struct page *page)
419 {
420 if (!PageCompound(page))
421 return 0;
422 page = compound_head(page);
423 return atomic_read(compound_mapcount_ptr(page)) + 1;
424 }
425
426 /*
427 * The atomic page->_mapcount, starts from -1: so that transitions
428 * both from it and to it can be tracked, using atomic_inc_and_test
429 * and atomic_add_negative(-1).
430 */
431 static inline void page_mapcount_reset(struct page *page)
432 {
433 atomic_set(&(page)->_mapcount, -1);
434 }
435
436 int __page_mapcount(struct page *page);
437
438 static inline int page_mapcount(struct page *page)
439 {
440 VM_BUG_ON_PAGE(PageSlab(page), page);
441
442 if (unlikely(PageCompound(page)))
443 return __page_mapcount(page);
444 return atomic_read(&page->_mapcount) + 1;
445 }
446
447 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
448 int total_mapcount(struct page *page);
449 #else
450 static inline int total_mapcount(struct page *page)
451 {
452 return page_mapcount(page);
453 }
454 #endif
455
456 static inline int page_count(struct page *page)
457 {
458 return atomic_read(&compound_head(page)->_count);
459 }
460
461 static inline void get_page(struct page *page)
462 {
463 page = compound_head(page);
464 /*
465 * Getting a normal page or the head of a compound page
466 * requires to already have an elevated page->_count.
467 */
468 VM_BUG_ON_PAGE(atomic_read(&page->_count) <= 0, page);
469 atomic_inc(&page->_count);
470 }
471
472 static inline struct page *virt_to_head_page(const void *x)
473 {
474 struct page *page = virt_to_page(x);
475
476 return compound_head(page);
477 }
478
479 /*
480 * Setup the page count before being freed into the page allocator for
481 * the first time (boot or memory hotplug)
482 */
483 static inline void init_page_count(struct page *page)
484 {
485 atomic_set(&page->_count, 1);
486 }
487
488 void __put_page(struct page *page);
489
490 static inline void put_page(struct page *page)
491 {
492 page = compound_head(page);
493 if (put_page_testzero(page))
494 __put_page(page);
495 }
496
497 void put_pages_list(struct list_head *pages);
498
499 void split_page(struct page *page, unsigned int order);
500 int split_free_page(struct page *page);
501
502 /*
503 * Compound pages have a destructor function. Provide a
504 * prototype for that function and accessor functions.
505 * These are _only_ valid on the head of a compound page.
506 */
507 typedef void compound_page_dtor(struct page *);
508
509 /* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */
510 enum compound_dtor_id {
511 NULL_COMPOUND_DTOR,
512 COMPOUND_PAGE_DTOR,
513 #ifdef CONFIG_HUGETLB_PAGE
514 HUGETLB_PAGE_DTOR,
515 #endif
516 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
517 TRANSHUGE_PAGE_DTOR,
518 #endif
519 NR_COMPOUND_DTORS,
520 };
521 extern compound_page_dtor * const compound_page_dtors[];
522
523 static inline void set_compound_page_dtor(struct page *page,
524 enum compound_dtor_id compound_dtor)
525 {
526 VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page);
527 page[1].compound_dtor = compound_dtor;
528 }
529
530 static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
531 {
532 VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page);
533 return compound_page_dtors[page[1].compound_dtor];
534 }
535
536 static inline unsigned int compound_order(struct page *page)
537 {
538 if (!PageHead(page))
539 return 0;
540 return page[1].compound_order;
541 }
542
543 static inline void set_compound_order(struct page *page, unsigned int order)
544 {
545 page[1].compound_order = order;
546 }
547
548 void free_compound_page(struct page *page);
549
550 #ifdef CONFIG_MMU
551 /*
552 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
553 * servicing faults for write access. In the normal case, do always want
554 * pte_mkwrite. But get_user_pages can cause write faults for mappings
555 * that do not have writing enabled, when used by access_process_vm.
556 */
557 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
558 {
559 if (likely(vma->vm_flags & VM_WRITE))
560 pte = pte_mkwrite(pte);
561 return pte;
562 }
563
564 void do_set_pte(struct vm_area_struct *vma, unsigned long address,
565 struct page *page, pte_t *pte, bool write, bool anon);
566 #endif
567
568 /*
569 * Multiple processes may "see" the same page. E.g. for untouched
570 * mappings of /dev/null, all processes see the same page full of
571 * zeroes, and text pages of executables and shared libraries have
572 * only one copy in memory, at most, normally.
573 *
574 * For the non-reserved pages, page_count(page) denotes a reference count.
575 * page_count() == 0 means the page is free. page->lru is then used for
576 * freelist management in the buddy allocator.
577 * page_count() > 0 means the page has been allocated.
578 *
579 * Pages are allocated by the slab allocator in order to provide memory
580 * to kmalloc and kmem_cache_alloc. In this case, the management of the
581 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
582 * unless a particular usage is carefully commented. (the responsibility of
583 * freeing the kmalloc memory is the caller's, of course).
584 *
585 * A page may be used by anyone else who does a __get_free_page().
586 * In this case, page_count still tracks the references, and should only
587 * be used through the normal accessor functions. The top bits of page->flags
588 * and page->virtual store page management information, but all other fields
589 * are unused and could be used privately, carefully. The management of this
590 * page is the responsibility of the one who allocated it, and those who have
591 * subsequently been given references to it.
592 *
593 * The other pages (we may call them "pagecache pages") are completely
594 * managed by the Linux memory manager: I/O, buffers, swapping etc.
595 * The following discussion applies only to them.
596 *
597 * A pagecache page contains an opaque `private' member, which belongs to the
598 * page's address_space. Usually, this is the address of a circular list of
599 * the page's disk buffers. PG_private must be set to tell the VM to call
600 * into the filesystem to release these pages.
601 *
602 * A page may belong to an inode's memory mapping. In this case, page->mapping
603 * is the pointer to the inode, and page->index is the file offset of the page,
604 * in units of PAGE_CACHE_SIZE.
605 *
606 * If pagecache pages are not associated with an inode, they are said to be
607 * anonymous pages. These may become associated with the swapcache, and in that
608 * case PG_swapcache is set, and page->private is an offset into the swapcache.
609 *
610 * In either case (swapcache or inode backed), the pagecache itself holds one
611 * reference to the page. Setting PG_private should also increment the
612 * refcount. The each user mapping also has a reference to the page.
613 *
614 * The pagecache pages are stored in a per-mapping radix tree, which is
615 * rooted at mapping->page_tree, and indexed by offset.
616 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
617 * lists, we instead now tag pages as dirty/writeback in the radix tree.
618 *
619 * All pagecache pages may be subject to I/O:
620 * - inode pages may need to be read from disk,
621 * - inode pages which have been modified and are MAP_SHARED may need
622 * to be written back to the inode on disk,
623 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
624 * modified may need to be swapped out to swap space and (later) to be read
625 * back into memory.
626 */
627
628 /*
629 * The zone field is never updated after free_area_init_core()
630 * sets it, so none of the operations on it need to be atomic.
631 */
632
633 /* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
634 #define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
635 #define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
636 #define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
637 #define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH)
638
639 /*
640 * Define the bit shifts to access each section. For non-existent
641 * sections we define the shift as 0; that plus a 0 mask ensures
642 * the compiler will optimise away reference to them.
643 */
644 #define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
645 #define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
646 #define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
647 #define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
648
649 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
650 #ifdef NODE_NOT_IN_PAGE_FLAGS
651 #define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
652 #define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
653 SECTIONS_PGOFF : ZONES_PGOFF)
654 #else
655 #define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
656 #define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
657 NODES_PGOFF : ZONES_PGOFF)
658 #endif
659
660 #define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
661
662 #if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
663 #error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
664 #endif
665
666 #define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
667 #define NODES_MASK ((1UL << NODES_WIDTH) - 1)
668 #define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
669 #define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1)
670 #define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
671
672 static inline enum zone_type page_zonenum(const struct page *page)
673 {
674 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
675 }
676
677 #ifdef CONFIG_ZONE_DEVICE
678 static inline bool is_zone_device_page(const struct page *page)
679 {
680 return page_zonenum(page) == ZONE_DEVICE;
681 }
682 #else
683 static inline bool is_zone_device_page(const struct page *page)
684 {
685 return false;
686 }
687 #endif
688
689 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
690 #define SECTION_IN_PAGE_FLAGS
691 #endif
692
693 /*
694 * The identification function is mainly used by the buddy allocator for
695 * determining if two pages could be buddies. We are not really identifying
696 * the zone since we could be using the section number id if we do not have
697 * node id available in page flags.
698 * We only guarantee that it will return the same value for two combinable
699 * pages in a zone.
700 */
701 static inline int page_zone_id(struct page *page)
702 {
703 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
704 }
705
706 static inline int zone_to_nid(struct zone *zone)
707 {
708 #ifdef CONFIG_NUMA
709 return zone->node;
710 #else
711 return 0;
712 #endif
713 }
714
715 #ifdef NODE_NOT_IN_PAGE_FLAGS
716 extern int page_to_nid(const struct page *page);
717 #else
718 static inline int page_to_nid(const struct page *page)
719 {
720 return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
721 }
722 #endif
723
724 #ifdef CONFIG_NUMA_BALANCING
725 static inline int cpu_pid_to_cpupid(int cpu, int pid)
726 {
727 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
728 }
729
730 static inline int cpupid_to_pid(int cpupid)
731 {
732 return cpupid & LAST__PID_MASK;
733 }
734
735 static inline int cpupid_to_cpu(int cpupid)
736 {
737 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
738 }
739
740 static inline int cpupid_to_nid(int cpupid)
741 {
742 return cpu_to_node(cpupid_to_cpu(cpupid));
743 }
744
745 static inline bool cpupid_pid_unset(int cpupid)
746 {
747 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
748 }
749
750 static inline bool cpupid_cpu_unset(int cpupid)
751 {
752 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
753 }
754
755 static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
756 {
757 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
758 }
759
760 #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
761 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
762 static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
763 {
764 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
765 }
766
767 static inline int page_cpupid_last(struct page *page)
768 {
769 return page->_last_cpupid;
770 }
771 static inline void page_cpupid_reset_last(struct page *page)
772 {
773 page->_last_cpupid = -1 & LAST_CPUPID_MASK;
774 }
775 #else
776 static inline int page_cpupid_last(struct page *page)
777 {
778 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
779 }
780
781 extern int page_cpupid_xchg_last(struct page *page, int cpupid);
782
783 static inline void page_cpupid_reset_last(struct page *page)
784 {
785 int cpupid = (1 << LAST_CPUPID_SHIFT) - 1;
786
787 page->flags &= ~(LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT);
788 page->flags |= (cpupid & LAST_CPUPID_MASK) << LAST_CPUPID_PGSHIFT;
789 }
790 #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
791 #else /* !CONFIG_NUMA_BALANCING */
792 static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
793 {
794 return page_to_nid(page); /* XXX */
795 }
796
797 static inline int page_cpupid_last(struct page *page)
798 {
799 return page_to_nid(page); /* XXX */
800 }
801
802 static inline int cpupid_to_nid(int cpupid)
803 {
804 return -1;
805 }
806
807 static inline int cpupid_to_pid(int cpupid)
808 {
809 return -1;
810 }
811
812 static inline int cpupid_to_cpu(int cpupid)
813 {
814 return -1;
815 }
816
817 static inline int cpu_pid_to_cpupid(int nid, int pid)
818 {
819 return -1;
820 }
821
822 static inline bool cpupid_pid_unset(int cpupid)
823 {
824 return 1;
825 }
826
827 static inline void page_cpupid_reset_last(struct page *page)
828 {
829 }
830
831 static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
832 {
833 return false;
834 }
835 #endif /* CONFIG_NUMA_BALANCING */
836
837 static inline struct zone *page_zone(const struct page *page)
838 {
839 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
840 }
841
842 #ifdef SECTION_IN_PAGE_FLAGS
843 static inline void set_page_section(struct page *page, unsigned long section)
844 {
845 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
846 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
847 }
848
849 static inline unsigned long page_to_section(const struct page *page)
850 {
851 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
852 }
853 #endif
854
855 static inline void set_page_zone(struct page *page, enum zone_type zone)
856 {
857 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
858 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
859 }
860
861 static inline void set_page_node(struct page *page, unsigned long node)
862 {
863 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
864 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
865 }
866
867 static inline void set_page_links(struct page *page, enum zone_type zone,
868 unsigned long node, unsigned long pfn)
869 {
870 set_page_zone(page, zone);
871 set_page_node(page, node);
872 #ifdef SECTION_IN_PAGE_FLAGS
873 set_page_section(page, pfn_to_section_nr(pfn));
874 #endif
875 }
876
877 #ifdef CONFIG_MEMCG
878 static inline struct mem_cgroup *page_memcg(struct page *page)
879 {
880 return page->mem_cgroup;
881 }
882
883 static inline void set_page_memcg(struct page *page, struct mem_cgroup *memcg)
884 {
885 page->mem_cgroup = memcg;
886 }
887 #else
888 static inline struct mem_cgroup *page_memcg(struct page *page)
889 {
890 return NULL;
891 }
892
893 static inline void set_page_memcg(struct page *page, struct mem_cgroup *memcg)
894 {
895 }
896 #endif
897
898 /*
899 * Some inline functions in vmstat.h depend on page_zone()
900 */
901 #include <linux/vmstat.h>
902
903 static __always_inline void *lowmem_page_address(const struct page *page)
904 {
905 return __va(PFN_PHYS(page_to_pfn(page)));
906 }
907
908 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
909 #define HASHED_PAGE_VIRTUAL
910 #endif
911
912 #if defined(WANT_PAGE_VIRTUAL)
913 static inline void *page_address(const struct page *page)
914 {
915 return page->virtual;
916 }
917 static inline void set_page_address(struct page *page, void *address)
918 {
919 page->virtual = address;
920 }
921 #define page_address_init() do { } while(0)
922 #endif
923
924 #if defined(HASHED_PAGE_VIRTUAL)
925 void *page_address(const struct page *page);
926 void set_page_address(struct page *page, void *virtual);
927 void page_address_init(void);
928 #endif
929
930 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
931 #define page_address(page) lowmem_page_address(page)
932 #define set_page_address(page, address) do { } while(0)
933 #define page_address_init() do { } while(0)
934 #endif
935
936 extern void *page_rmapping(struct page *page);
937 extern struct anon_vma *page_anon_vma(struct page *page);
938 extern struct address_space *page_mapping(struct page *page);
939
940 extern struct address_space *__page_file_mapping(struct page *);
941
942 static inline
943 struct address_space *page_file_mapping(struct page *page)
944 {
945 if (unlikely(PageSwapCache(page)))
946 return __page_file_mapping(page);
947
948 return page->mapping;
949 }
950
951 /*
952 * Return the pagecache index of the passed page. Regular pagecache pages
953 * use ->index whereas swapcache pages use ->private
954 */
955 static inline pgoff_t page_index(struct page *page)
956 {
957 if (unlikely(PageSwapCache(page)))
958 return page_private(page);
959 return page->index;
960 }
961
962 extern pgoff_t __page_file_index(struct page *page);
963
964 /*
965 * Return the file index of the page. Regular pagecache pages use ->index
966 * whereas swapcache pages use swp_offset(->private)
967 */
968 static inline pgoff_t page_file_index(struct page *page)
969 {
970 if (unlikely(PageSwapCache(page)))
971 return __page_file_index(page);
972
973 return page->index;
974 }
975
976 /*
977 * Return true if this page is mapped into pagetables.
978 * For compound page it returns true if any subpage of compound page is mapped.
979 */
980 static inline bool page_mapped(struct page *page)
981 {
982 int i;
983 if (likely(!PageCompound(page)))
984 return atomic_read(&page->_mapcount) >= 0;
985 page = compound_head(page);
986 if (atomic_read(compound_mapcount_ptr(page)) >= 0)
987 return true;
988 for (i = 0; i < hpage_nr_pages(page); i++) {
989 if (atomic_read(&page[i]._mapcount) >= 0)
990 return true;
991 }
992 return false;
993 }
994
995 /*
996 * Return true only if the page has been allocated with
997 * ALLOC_NO_WATERMARKS and the low watermark was not
998 * met implying that the system is under some pressure.
999 */
1000 static inline bool page_is_pfmemalloc(struct page *page)
1001 {
1002 /*
1003 * Page index cannot be this large so this must be
1004 * a pfmemalloc page.
1005 */
1006 return page->index == -1UL;
1007 }
1008
1009 /*
1010 * Only to be called by the page allocator on a freshly allocated
1011 * page.
1012 */
1013 static inline void set_page_pfmemalloc(struct page *page)
1014 {
1015 page->index = -1UL;
1016 }
1017
1018 static inline void clear_page_pfmemalloc(struct page *page)
1019 {
1020 page->index = 0;
1021 }
1022
1023 /*
1024 * Different kinds of faults, as returned by handle_mm_fault().
1025 * Used to decide whether a process gets delivered SIGBUS or
1026 * just gets major/minor fault counters bumped up.
1027 */
1028
1029 #define VM_FAULT_MINOR 0 /* For backwards compat. Remove me quickly. */
1030
1031 #define VM_FAULT_OOM 0x0001
1032 #define VM_FAULT_SIGBUS 0x0002
1033 #define VM_FAULT_MAJOR 0x0004
1034 #define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */
1035 #define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */
1036 #define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */
1037 #define VM_FAULT_SIGSEGV 0x0040
1038
1039 #define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */
1040 #define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */
1041 #define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */
1042 #define VM_FAULT_FALLBACK 0x0800 /* huge page fault failed, fall back to small */
1043
1044 #define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */
1045
1046 #define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | \
1047 VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE | \
1048 VM_FAULT_FALLBACK)
1049
1050 /* Encode hstate index for a hwpoisoned large page */
1051 #define VM_FAULT_SET_HINDEX(x) ((x) << 12)
1052 #define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf)
1053
1054 /*
1055 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
1056 */
1057 extern void pagefault_out_of_memory(void);
1058
1059 #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
1060
1061 /*
1062 * Flags passed to show_mem() and show_free_areas() to suppress output in
1063 * various contexts.
1064 */
1065 #define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */
1066
1067 extern void show_free_areas(unsigned int flags);
1068 extern bool skip_free_areas_node(unsigned int flags, int nid);
1069
1070 int shmem_zero_setup(struct vm_area_struct *);
1071 #ifdef CONFIG_SHMEM
1072 bool shmem_mapping(struct address_space *mapping);
1073 #else
1074 static inline bool shmem_mapping(struct address_space *mapping)
1075 {
1076 return false;
1077 }
1078 #endif
1079
1080 extern int can_do_mlock(void);
1081 extern int user_shm_lock(size_t, struct user_struct *);
1082 extern void user_shm_unlock(size_t, struct user_struct *);
1083
1084 /*
1085 * Parameter block passed down to zap_pte_range in exceptional cases.
1086 */
1087 struct zap_details {
1088 struct address_space *check_mapping; /* Check page->mapping if set */
1089 pgoff_t first_index; /* Lowest page->index to unmap */
1090 pgoff_t last_index; /* Highest page->index to unmap */
1091 };
1092
1093 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
1094 pte_t pte);
1095
1096 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1097 unsigned long size);
1098 void zap_page_range(struct vm_area_struct *vma, unsigned long address,
1099 unsigned long size, struct zap_details *);
1100 void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
1101 unsigned long start, unsigned long end);
1102
1103 /**
1104 * mm_walk - callbacks for walk_page_range
1105 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
1106 * this handler is required to be able to handle
1107 * pmd_trans_huge() pmds. They may simply choose to
1108 * split_huge_page() instead of handling it explicitly.
1109 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
1110 * @pte_hole: if set, called for each hole at all levels
1111 * @hugetlb_entry: if set, called for each hugetlb entry
1112 * @test_walk: caller specific callback function to determine whether
1113 * we walk over the current vma or not. A positive returned
1114 * value means "do page table walk over the current vma,"
1115 * and a negative one means "abort current page table walk
1116 * right now." 0 means "skip the current vma."
1117 * @mm: mm_struct representing the target process of page table walk
1118 * @vma: vma currently walked (NULL if walking outside vmas)
1119 * @private: private data for callbacks' usage
1120 *
1121 * (see the comment on walk_page_range() for more details)
1122 */
1123 struct mm_walk {
1124 int (*pmd_entry)(pmd_t *pmd, unsigned long addr,
1125 unsigned long next, struct mm_walk *walk);
1126 int (*pte_entry)(pte_t *pte, unsigned long addr,
1127 unsigned long next, struct mm_walk *walk);
1128 int (*pte_hole)(unsigned long addr, unsigned long next,
1129 struct mm_walk *walk);
1130 int (*hugetlb_entry)(pte_t *pte, unsigned long hmask,
1131 unsigned long addr, unsigned long next,
1132 struct mm_walk *walk);
1133 int (*test_walk)(unsigned long addr, unsigned long next,
1134 struct mm_walk *walk);
1135 struct mm_struct *mm;
1136 struct vm_area_struct *vma;
1137 void *private;
1138 };
1139
1140 int walk_page_range(unsigned long addr, unsigned long end,
1141 struct mm_walk *walk);
1142 int walk_page_vma(struct vm_area_struct *vma, struct mm_walk *walk);
1143 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
1144 unsigned long end, unsigned long floor, unsigned long ceiling);
1145 int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
1146 struct vm_area_struct *vma);
1147 void unmap_mapping_range(struct address_space *mapping,
1148 loff_t const holebegin, loff_t const holelen, int even_cows);
1149 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
1150 unsigned long *pfn);
1151 int follow_phys(struct vm_area_struct *vma, unsigned long address,
1152 unsigned int flags, unsigned long *prot, resource_size_t *phys);
1153 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
1154 void *buf, int len, int write);
1155
1156 static inline void unmap_shared_mapping_range(struct address_space *mapping,
1157 loff_t const holebegin, loff_t const holelen)
1158 {
1159 unmap_mapping_range(mapping, holebegin, holelen, 0);
1160 }
1161
1162 extern void truncate_pagecache(struct inode *inode, loff_t new);
1163 extern void truncate_setsize(struct inode *inode, loff_t newsize);
1164 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
1165 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
1166 int truncate_inode_page(struct address_space *mapping, struct page *page);
1167 int generic_error_remove_page(struct address_space *mapping, struct page *page);
1168 int invalidate_inode_page(struct page *page);
1169
1170 #ifdef CONFIG_MMU
1171 extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
1172 unsigned long address, unsigned int flags);
1173 extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1174 unsigned long address, unsigned int fault_flags);
1175 #else
1176 static inline int handle_mm_fault(struct mm_struct *mm,
1177 struct vm_area_struct *vma, unsigned long address,
1178 unsigned int flags)
1179 {
1180 /* should never happen if there's no MMU */
1181 BUG();
1182 return VM_FAULT_SIGBUS;
1183 }
1184 static inline int fixup_user_fault(struct task_struct *tsk,
1185 struct mm_struct *mm, unsigned long address,
1186 unsigned int fault_flags)
1187 {
1188 /* should never happen if there's no MMU */
1189 BUG();
1190 return -EFAULT;
1191 }
1192 #endif
1193
1194 extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write);
1195 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1196 void *buf, int len, int write);
1197
1198 long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1199 unsigned long start, unsigned long nr_pages,
1200 unsigned int foll_flags, struct page **pages,
1201 struct vm_area_struct **vmas, int *nonblocking);
1202 long get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1203 unsigned long start, unsigned long nr_pages,
1204 int write, int force, struct page **pages,
1205 struct vm_area_struct **vmas);
1206 long get_user_pages_locked(struct task_struct *tsk, struct mm_struct *mm,
1207 unsigned long start, unsigned long nr_pages,
1208 int write, int force, struct page **pages,
1209 int *locked);
1210 long __get_user_pages_unlocked(struct task_struct *tsk, struct mm_struct *mm,
1211 unsigned long start, unsigned long nr_pages,
1212 int write, int force, struct page **pages,
1213 unsigned int gup_flags);
1214 long get_user_pages_unlocked(struct task_struct *tsk, struct mm_struct *mm,
1215 unsigned long start, unsigned long nr_pages,
1216 int write, int force, struct page **pages);
1217 int get_user_pages_fast(unsigned long start, int nr_pages, int write,
1218 struct page **pages);
1219
1220 /* Container for pinned pfns / pages */
1221 struct frame_vector {
1222 unsigned int nr_allocated; /* Number of frames we have space for */
1223 unsigned int nr_frames; /* Number of frames stored in ptrs array */
1224 bool got_ref; /* Did we pin pages by getting page ref? */
1225 bool is_pfns; /* Does array contain pages or pfns? */
1226 void *ptrs[0]; /* Array of pinned pfns / pages. Use
1227 * pfns_vector_pages() or pfns_vector_pfns()
1228 * for access */
1229 };
1230
1231 struct frame_vector *frame_vector_create(unsigned int nr_frames);
1232 void frame_vector_destroy(struct frame_vector *vec);
1233 int get_vaddr_frames(unsigned long start, unsigned int nr_pfns,
1234 bool write, bool force, struct frame_vector *vec);
1235 void put_vaddr_frames(struct frame_vector *vec);
1236 int frame_vector_to_pages(struct frame_vector *vec);
1237 void frame_vector_to_pfns(struct frame_vector *vec);
1238
1239 static inline unsigned int frame_vector_count(struct frame_vector *vec)
1240 {
1241 return vec->nr_frames;
1242 }
1243
1244 static inline struct page **frame_vector_pages(struct frame_vector *vec)
1245 {
1246 if (vec->is_pfns) {
1247 int err = frame_vector_to_pages(vec);
1248
1249 if (err)
1250 return ERR_PTR(err);
1251 }
1252 return (struct page **)(vec->ptrs);
1253 }
1254
1255 static inline unsigned long *frame_vector_pfns(struct frame_vector *vec)
1256 {
1257 if (!vec->is_pfns)
1258 frame_vector_to_pfns(vec);
1259 return (unsigned long *)(vec->ptrs);
1260 }
1261
1262 struct kvec;
1263 int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1264 struct page **pages);
1265 int get_kernel_page(unsigned long start, int write, struct page **pages);
1266 struct page *get_dump_page(unsigned long addr);
1267
1268 extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
1269 extern void do_invalidatepage(struct page *page, unsigned int offset,
1270 unsigned int length);
1271
1272 int __set_page_dirty_nobuffers(struct page *page);
1273 int __set_page_dirty_no_writeback(struct page *page);
1274 int redirty_page_for_writepage(struct writeback_control *wbc,
1275 struct page *page);
1276 void account_page_dirtied(struct page *page, struct address_space *mapping,
1277 struct mem_cgroup *memcg);
1278 void account_page_cleaned(struct page *page, struct address_space *mapping,
1279 struct mem_cgroup *memcg, struct bdi_writeback *wb);
1280 int set_page_dirty(struct page *page);
1281 int set_page_dirty_lock(struct page *page);
1282 void cancel_dirty_page(struct page *page);
1283 int clear_page_dirty_for_io(struct page *page);
1284
1285 int get_cmdline(struct task_struct *task, char *buffer, int buflen);
1286
1287 /* Is the vma a continuation of the stack vma above it? */
1288 static inline int vma_growsdown(struct vm_area_struct *vma, unsigned long addr)
1289 {
1290 return vma && (vma->vm_end == addr) && (vma->vm_flags & VM_GROWSDOWN);
1291 }
1292
1293 static inline bool vma_is_anonymous(struct vm_area_struct *vma)
1294 {
1295 return !vma->vm_ops;
1296 }
1297
1298 static inline int stack_guard_page_start(struct vm_area_struct *vma,
1299 unsigned long addr)
1300 {
1301 return (vma->vm_flags & VM_GROWSDOWN) &&
1302 (vma->vm_start == addr) &&
1303 !vma_growsdown(vma->vm_prev, addr);
1304 }
1305
1306 /* Is the vma a continuation of the stack vma below it? */
1307 static inline int vma_growsup(struct vm_area_struct *vma, unsigned long addr)
1308 {
1309 return vma && (vma->vm_start == addr) && (vma->vm_flags & VM_GROWSUP);
1310 }
1311
1312 static inline int stack_guard_page_end(struct vm_area_struct *vma,
1313 unsigned long addr)
1314 {
1315 return (vma->vm_flags & VM_GROWSUP) &&
1316 (vma->vm_end == addr) &&
1317 !vma_growsup(vma->vm_next, addr);
1318 }
1319
1320 extern struct task_struct *task_of_stack(struct task_struct *task,
1321 struct vm_area_struct *vma, bool in_group);
1322
1323 extern unsigned long move_page_tables(struct vm_area_struct *vma,
1324 unsigned long old_addr, struct vm_area_struct *new_vma,
1325 unsigned long new_addr, unsigned long len,
1326 bool need_rmap_locks);
1327 extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
1328 unsigned long end, pgprot_t newprot,
1329 int dirty_accountable, int prot_numa);
1330 extern int mprotect_fixup(struct vm_area_struct *vma,
1331 struct vm_area_struct **pprev, unsigned long start,
1332 unsigned long end, unsigned long newflags);
1333
1334 /*
1335 * doesn't attempt to fault and will return short.
1336 */
1337 int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1338 struct page **pages);
1339 /*
1340 * per-process(per-mm_struct) statistics.
1341 */
1342 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1343 {
1344 long val = atomic_long_read(&mm->rss_stat.count[member]);
1345
1346 #ifdef SPLIT_RSS_COUNTING
1347 /*
1348 * counter is updated in asynchronous manner and may go to minus.
1349 * But it's never be expected number for users.
1350 */
1351 if (val < 0)
1352 val = 0;
1353 #endif
1354 return (unsigned long)val;
1355 }
1356
1357 static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1358 {
1359 atomic_long_add(value, &mm->rss_stat.count[member]);
1360 }
1361
1362 static inline void inc_mm_counter(struct mm_struct *mm, int member)
1363 {
1364 atomic_long_inc(&mm->rss_stat.count[member]);
1365 }
1366
1367 static inline void dec_mm_counter(struct mm_struct *mm, int member)
1368 {
1369 atomic_long_dec(&mm->rss_stat.count[member]);
1370 }
1371
1372 /* Optimized variant when page is already known not to be PageAnon */
1373 static inline int mm_counter_file(struct page *page)
1374 {
1375 if (PageSwapBacked(page))
1376 return MM_SHMEMPAGES;
1377 return MM_FILEPAGES;
1378 }
1379
1380 static inline int mm_counter(struct page *page)
1381 {
1382 if (PageAnon(page))
1383 return MM_ANONPAGES;
1384 return mm_counter_file(page);
1385 }
1386
1387 static inline unsigned long get_mm_rss(struct mm_struct *mm)
1388 {
1389 return get_mm_counter(mm, MM_FILEPAGES) +
1390 get_mm_counter(mm, MM_ANONPAGES) +
1391 get_mm_counter(mm, MM_SHMEMPAGES);
1392 }
1393
1394 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1395 {
1396 return max(mm->hiwater_rss, get_mm_rss(mm));
1397 }
1398
1399 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1400 {
1401 return max(mm->hiwater_vm, mm->total_vm);
1402 }
1403
1404 static inline void update_hiwater_rss(struct mm_struct *mm)
1405 {
1406 unsigned long _rss = get_mm_rss(mm);
1407
1408 if ((mm)->hiwater_rss < _rss)
1409 (mm)->hiwater_rss = _rss;
1410 }
1411
1412 static inline void update_hiwater_vm(struct mm_struct *mm)
1413 {
1414 if (mm->hiwater_vm < mm->total_vm)
1415 mm->hiwater_vm = mm->total_vm;
1416 }
1417
1418 static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
1419 {
1420 mm->hiwater_rss = get_mm_rss(mm);
1421 }
1422
1423 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1424 struct mm_struct *mm)
1425 {
1426 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1427
1428 if (*maxrss < hiwater_rss)
1429 *maxrss = hiwater_rss;
1430 }
1431
1432 #if defined(SPLIT_RSS_COUNTING)
1433 void sync_mm_rss(struct mm_struct *mm);
1434 #else
1435 static inline void sync_mm_rss(struct mm_struct *mm)
1436 {
1437 }
1438 #endif
1439
1440 int vma_wants_writenotify(struct vm_area_struct *vma);
1441
1442 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1443 spinlock_t **ptl);
1444 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1445 spinlock_t **ptl)
1446 {
1447 pte_t *ptep;
1448 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
1449 return ptep;
1450 }
1451
1452 #ifdef __PAGETABLE_PUD_FOLDED
1453 static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd,
1454 unsigned long address)
1455 {
1456 return 0;
1457 }
1458 #else
1459 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
1460 #endif
1461
1462 #if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
1463 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
1464 unsigned long address)
1465 {
1466 return 0;
1467 }
1468
1469 static inline void mm_nr_pmds_init(struct mm_struct *mm) {}
1470
1471 static inline unsigned long mm_nr_pmds(struct mm_struct *mm)
1472 {
1473 return 0;
1474 }
1475
1476 static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
1477 static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
1478
1479 #else
1480 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
1481
1482 static inline void mm_nr_pmds_init(struct mm_struct *mm)
1483 {
1484 atomic_long_set(&mm->nr_pmds, 0);
1485 }
1486
1487 static inline unsigned long mm_nr_pmds(struct mm_struct *mm)
1488 {
1489 return atomic_long_read(&mm->nr_pmds);
1490 }
1491
1492 static inline void mm_inc_nr_pmds(struct mm_struct *mm)
1493 {
1494 atomic_long_inc(&mm->nr_pmds);
1495 }
1496
1497 static inline void mm_dec_nr_pmds(struct mm_struct *mm)
1498 {
1499 atomic_long_dec(&mm->nr_pmds);
1500 }
1501 #endif
1502
1503 int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
1504 pmd_t *pmd, unsigned long address);
1505 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
1506
1507 /*
1508 * The following ifdef needed to get the 4level-fixup.h header to work.
1509 * Remove it when 4level-fixup.h has been removed.
1510 */
1511 #if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
1512 static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
1513 {
1514 return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))?
1515 NULL: pud_offset(pgd, address);
1516 }
1517
1518 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1519 {
1520 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
1521 NULL: pmd_offset(pud, address);
1522 }
1523 #endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
1524
1525 #if USE_SPLIT_PTE_PTLOCKS
1526 #if ALLOC_SPLIT_PTLOCKS
1527 void __init ptlock_cache_init(void);
1528 extern bool ptlock_alloc(struct page *page);
1529 extern void ptlock_free(struct page *page);
1530
1531 static inline spinlock_t *ptlock_ptr(struct page *page)
1532 {
1533 return page->ptl;
1534 }
1535 #else /* ALLOC_SPLIT_PTLOCKS */
1536 static inline void ptlock_cache_init(void)
1537 {
1538 }
1539
1540 static inline bool ptlock_alloc(struct page *page)
1541 {
1542 return true;
1543 }
1544
1545 static inline void ptlock_free(struct page *page)
1546 {
1547 }
1548
1549 static inline spinlock_t *ptlock_ptr(struct page *page)
1550 {
1551 return &page->ptl;
1552 }
1553 #endif /* ALLOC_SPLIT_PTLOCKS */
1554
1555 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1556 {
1557 return ptlock_ptr(pmd_page(*pmd));
1558 }
1559
1560 static inline bool ptlock_init(struct page *page)
1561 {
1562 /*
1563 * prep_new_page() initialize page->private (and therefore page->ptl)
1564 * with 0. Make sure nobody took it in use in between.
1565 *
1566 * It can happen if arch try to use slab for page table allocation:
1567 * slab code uses page->slab_cache, which share storage with page->ptl.
1568 */
1569 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
1570 if (!ptlock_alloc(page))
1571 return false;
1572 spin_lock_init(ptlock_ptr(page));
1573 return true;
1574 }
1575
1576 /* Reset page->mapping so free_pages_check won't complain. */
1577 static inline void pte_lock_deinit(struct page *page)
1578 {
1579 page->mapping = NULL;
1580 ptlock_free(page);
1581 }
1582
1583 #else /* !USE_SPLIT_PTE_PTLOCKS */
1584 /*
1585 * We use mm->page_table_lock to guard all pagetable pages of the mm.
1586 */
1587 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1588 {
1589 return &mm->page_table_lock;
1590 }
1591 static inline void ptlock_cache_init(void) {}
1592 static inline bool ptlock_init(struct page *page) { return true; }
1593 static inline void pte_lock_deinit(struct page *page) {}
1594 #endif /* USE_SPLIT_PTE_PTLOCKS */
1595
1596 static inline void pgtable_init(void)
1597 {
1598 ptlock_cache_init();
1599 pgtable_cache_init();
1600 }
1601
1602 static inline bool pgtable_page_ctor(struct page *page)
1603 {
1604 if (!ptlock_init(page))
1605 return false;
1606 inc_zone_page_state(page, NR_PAGETABLE);
1607 return true;
1608 }
1609
1610 static inline void pgtable_page_dtor(struct page *page)
1611 {
1612 pte_lock_deinit(page);
1613 dec_zone_page_state(page, NR_PAGETABLE);
1614 }
1615
1616 #define pte_offset_map_lock(mm, pmd, address, ptlp) \
1617 ({ \
1618 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
1619 pte_t *__pte = pte_offset_map(pmd, address); \
1620 *(ptlp) = __ptl; \
1621 spin_lock(__ptl); \
1622 __pte; \
1623 })
1624
1625 #define pte_unmap_unlock(pte, ptl) do { \
1626 spin_unlock(ptl); \
1627 pte_unmap(pte); \
1628 } while (0)
1629
1630 #define pte_alloc_map(mm, vma, pmd, address) \
1631 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, vma, \
1632 pmd, address))? \
1633 NULL: pte_offset_map(pmd, address))
1634
1635 #define pte_alloc_map_lock(mm, pmd, address, ptlp) \
1636 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, NULL, \
1637 pmd, address))? \
1638 NULL: pte_offset_map_lock(mm, pmd, address, ptlp))
1639
1640 #define pte_alloc_kernel(pmd, address) \
1641 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
1642 NULL: pte_offset_kernel(pmd, address))
1643
1644 #if USE_SPLIT_PMD_PTLOCKS
1645
1646 static struct page *pmd_to_page(pmd_t *pmd)
1647 {
1648 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
1649 return virt_to_page((void *)((unsigned long) pmd & mask));
1650 }
1651
1652 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1653 {
1654 return ptlock_ptr(pmd_to_page(pmd));
1655 }
1656
1657 static inline bool pgtable_pmd_page_ctor(struct page *page)
1658 {
1659 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1660 page->pmd_huge_pte = NULL;
1661 #endif
1662 return ptlock_init(page);
1663 }
1664
1665 static inline void pgtable_pmd_page_dtor(struct page *page)
1666 {
1667 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1668 VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
1669 #endif
1670 ptlock_free(page);
1671 }
1672
1673 #define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte)
1674
1675 #else
1676
1677 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1678 {
1679 return &mm->page_table_lock;
1680 }
1681
1682 static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; }
1683 static inline void pgtable_pmd_page_dtor(struct page *page) {}
1684
1685 #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
1686
1687 #endif
1688
1689 static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
1690 {
1691 spinlock_t *ptl = pmd_lockptr(mm, pmd);
1692 spin_lock(ptl);
1693 return ptl;
1694 }
1695
1696 extern void free_area_init(unsigned long * zones_size);
1697 extern void free_area_init_node(int nid, unsigned long * zones_size,
1698 unsigned long zone_start_pfn, unsigned long *zholes_size);
1699 extern void free_initmem(void);
1700
1701 /*
1702 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
1703 * into the buddy system. The freed pages will be poisoned with pattern
1704 * "poison" if it's within range [0, UCHAR_MAX].
1705 * Return pages freed into the buddy system.
1706 */
1707 extern unsigned long free_reserved_area(void *start, void *end,
1708 int poison, char *s);
1709
1710 #ifdef CONFIG_HIGHMEM
1711 /*
1712 * Free a highmem page into the buddy system, adjusting totalhigh_pages
1713 * and totalram_pages.
1714 */
1715 extern void free_highmem_page(struct page *page);
1716 #endif
1717
1718 extern void adjust_managed_page_count(struct page *page, long count);
1719 extern void mem_init_print_info(const char *str);
1720
1721 extern void reserve_bootmem_region(unsigned long start, unsigned long end);
1722
1723 /* Free the reserved page into the buddy system, so it gets managed. */
1724 static inline void __free_reserved_page(struct page *page)
1725 {
1726 ClearPageReserved(page);
1727 init_page_count(page);
1728 __free_page(page);
1729 }
1730
1731 static inline void free_reserved_page(struct page *page)
1732 {
1733 __free_reserved_page(page);
1734 adjust_managed_page_count(page, 1);
1735 }
1736
1737 static inline void mark_page_reserved(struct page *page)
1738 {
1739 SetPageReserved(page);
1740 adjust_managed_page_count(page, -1);
1741 }
1742
1743 /*
1744 * Default method to free all the __init memory into the buddy system.
1745 * The freed pages will be poisoned with pattern "poison" if it's within
1746 * range [0, UCHAR_MAX].
1747 * Return pages freed into the buddy system.
1748 */
1749 static inline unsigned long free_initmem_default(int poison)
1750 {
1751 extern char __init_begin[], __init_end[];
1752
1753 return free_reserved_area(&__init_begin, &__init_end,
1754 poison, "unused kernel");
1755 }
1756
1757 static inline unsigned long get_num_physpages(void)
1758 {
1759 int nid;
1760 unsigned long phys_pages = 0;
1761
1762 for_each_online_node(nid)
1763 phys_pages += node_present_pages(nid);
1764
1765 return phys_pages;
1766 }
1767
1768 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1769 /*
1770 * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its
1771 * zones, allocate the backing mem_map and account for memory holes in a more
1772 * architecture independent manner. This is a substitute for creating the
1773 * zone_sizes[] and zholes_size[] arrays and passing them to
1774 * free_area_init_node()
1775 *
1776 * An architecture is expected to register range of page frames backed by
1777 * physical memory with memblock_add[_node]() before calling
1778 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
1779 * usage, an architecture is expected to do something like
1780 *
1781 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
1782 * max_highmem_pfn};
1783 * for_each_valid_physical_page_range()
1784 * memblock_add_node(base, size, nid)
1785 * free_area_init_nodes(max_zone_pfns);
1786 *
1787 * free_bootmem_with_active_regions() calls free_bootmem_node() for each
1788 * registered physical page range. Similarly
1789 * sparse_memory_present_with_active_regions() calls memory_present() for
1790 * each range when SPARSEMEM is enabled.
1791 *
1792 * See mm/page_alloc.c for more information on each function exposed by
1793 * CONFIG_HAVE_MEMBLOCK_NODE_MAP.
1794 */
1795 extern void free_area_init_nodes(unsigned long *max_zone_pfn);
1796 unsigned long node_map_pfn_alignment(void);
1797 unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
1798 unsigned long end_pfn);
1799 extern unsigned long absent_pages_in_range(unsigned long start_pfn,
1800 unsigned long end_pfn);
1801 extern void get_pfn_range_for_nid(unsigned int nid,
1802 unsigned long *start_pfn, unsigned long *end_pfn);
1803 extern unsigned long find_min_pfn_with_active_regions(void);
1804 extern void free_bootmem_with_active_regions(int nid,
1805 unsigned long max_low_pfn);
1806 extern void sparse_memory_present_with_active_regions(int nid);
1807
1808 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
1809
1810 #if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \
1811 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
1812 static inline int __early_pfn_to_nid(unsigned long pfn,
1813 struct mminit_pfnnid_cache *state)
1814 {
1815 return 0;
1816 }
1817 #else
1818 /* please see mm/page_alloc.c */
1819 extern int __meminit early_pfn_to_nid(unsigned long pfn);
1820 /* there is a per-arch backend function. */
1821 extern int __meminit __early_pfn_to_nid(unsigned long pfn,
1822 struct mminit_pfnnid_cache *state);
1823 #endif
1824
1825 extern void set_dma_reserve(unsigned long new_dma_reserve);
1826 extern void memmap_init_zone(unsigned long, int, unsigned long,
1827 unsigned long, enum memmap_context);
1828 extern void setup_per_zone_wmarks(void);
1829 extern int __meminit init_per_zone_wmark_min(void);
1830 extern void mem_init(void);
1831 extern void __init mmap_init(void);
1832 extern void show_mem(unsigned int flags);
1833 extern void si_meminfo(struct sysinfo * val);
1834 extern void si_meminfo_node(struct sysinfo *val, int nid);
1835
1836 extern __printf(3, 4)
1837 void warn_alloc_failed(gfp_t gfp_mask, unsigned int order,
1838 const char *fmt, ...);
1839
1840 extern void setup_per_cpu_pageset(void);
1841
1842 extern void zone_pcp_update(struct zone *zone);
1843 extern void zone_pcp_reset(struct zone *zone);
1844
1845 /* page_alloc.c */
1846 extern int min_free_kbytes;
1847
1848 /* nommu.c */
1849 extern atomic_long_t mmap_pages_allocated;
1850 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
1851
1852 /* interval_tree.c */
1853 void vma_interval_tree_insert(struct vm_area_struct *node,
1854 struct rb_root *root);
1855 void vma_interval_tree_insert_after(struct vm_area_struct *node,
1856 struct vm_area_struct *prev,
1857 struct rb_root *root);
1858 void vma_interval_tree_remove(struct vm_area_struct *node,
1859 struct rb_root *root);
1860 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root *root,
1861 unsigned long start, unsigned long last);
1862 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
1863 unsigned long start, unsigned long last);
1864
1865 #define vma_interval_tree_foreach(vma, root, start, last) \
1866 for (vma = vma_interval_tree_iter_first(root, start, last); \
1867 vma; vma = vma_interval_tree_iter_next(vma, start, last))
1868
1869 void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
1870 struct rb_root *root);
1871 void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
1872 struct rb_root *root);
1873 struct anon_vma_chain *anon_vma_interval_tree_iter_first(
1874 struct rb_root *root, unsigned long start, unsigned long last);
1875 struct anon_vma_chain *anon_vma_interval_tree_iter_next(
1876 struct anon_vma_chain *node, unsigned long start, unsigned long last);
1877 #ifdef CONFIG_DEBUG_VM_RB
1878 void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
1879 #endif
1880
1881 #define anon_vma_interval_tree_foreach(avc, root, start, last) \
1882 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
1883 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
1884
1885 /* mmap.c */
1886 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
1887 extern int vma_adjust(struct vm_area_struct *vma, unsigned long start,
1888 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert);
1889 extern struct vm_area_struct *vma_merge(struct mm_struct *,
1890 struct vm_area_struct *prev, unsigned long addr, unsigned long end,
1891 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
1892 struct mempolicy *, struct vm_userfaultfd_ctx);
1893 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
1894 extern int split_vma(struct mm_struct *,
1895 struct vm_area_struct *, unsigned long addr, int new_below);
1896 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
1897 extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
1898 struct rb_node **, struct rb_node *);
1899 extern void unlink_file_vma(struct vm_area_struct *);
1900 extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
1901 unsigned long addr, unsigned long len, pgoff_t pgoff,
1902 bool *need_rmap_locks);
1903 extern void exit_mmap(struct mm_struct *);
1904
1905 static inline int check_data_rlimit(unsigned long rlim,
1906 unsigned long new,
1907 unsigned long start,
1908 unsigned long end_data,
1909 unsigned long start_data)
1910 {
1911 if (rlim < RLIM_INFINITY) {
1912 if (((new - start) + (end_data - start_data)) > rlim)
1913 return -ENOSPC;
1914 }
1915
1916 return 0;
1917 }
1918
1919 extern int mm_take_all_locks(struct mm_struct *mm);
1920 extern void mm_drop_all_locks(struct mm_struct *mm);
1921
1922 extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
1923 extern struct file *get_mm_exe_file(struct mm_struct *mm);
1924
1925 extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
1926 extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
1927
1928 extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
1929 unsigned long addr, unsigned long len,
1930 unsigned long flags,
1931 const struct vm_special_mapping *spec);
1932 /* This is an obsolete alternative to _install_special_mapping. */
1933 extern int install_special_mapping(struct mm_struct *mm,
1934 unsigned long addr, unsigned long len,
1935 unsigned long flags, struct page **pages);
1936
1937 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
1938
1939 extern unsigned long mmap_region(struct file *file, unsigned long addr,
1940 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff);
1941 extern unsigned long do_mmap(struct file *file, unsigned long addr,
1942 unsigned long len, unsigned long prot, unsigned long flags,
1943 vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate);
1944 extern int do_munmap(struct mm_struct *, unsigned long, size_t);
1945
1946 static inline unsigned long
1947 do_mmap_pgoff(struct file *file, unsigned long addr,
1948 unsigned long len, unsigned long prot, unsigned long flags,
1949 unsigned long pgoff, unsigned long *populate)
1950 {
1951 return do_mmap(file, addr, len, prot, flags, 0, pgoff, populate);
1952 }
1953
1954 #ifdef CONFIG_MMU
1955 extern int __mm_populate(unsigned long addr, unsigned long len,
1956 int ignore_errors);
1957 static inline void mm_populate(unsigned long addr, unsigned long len)
1958 {
1959 /* Ignore errors */
1960 (void) __mm_populate(addr, len, 1);
1961 }
1962 #else
1963 static inline void mm_populate(unsigned long addr, unsigned long len) {}
1964 #endif
1965
1966 /* These take the mm semaphore themselves */
1967 extern unsigned long vm_brk(unsigned long, unsigned long);
1968 extern int vm_munmap(unsigned long, size_t);
1969 extern unsigned long vm_mmap(struct file *, unsigned long,
1970 unsigned long, unsigned long,
1971 unsigned long, unsigned long);
1972
1973 struct vm_unmapped_area_info {
1974 #define VM_UNMAPPED_AREA_TOPDOWN 1
1975 unsigned long flags;
1976 unsigned long length;
1977 unsigned long low_limit;
1978 unsigned long high_limit;
1979 unsigned long align_mask;
1980 unsigned long align_offset;
1981 };
1982
1983 extern unsigned long unmapped_area(struct vm_unmapped_area_info *info);
1984 extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info);
1985
1986 /*
1987 * Search for an unmapped address range.
1988 *
1989 * We are looking for a range that:
1990 * - does not intersect with any VMA;
1991 * - is contained within the [low_limit, high_limit) interval;
1992 * - is at least the desired size.
1993 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
1994 */
1995 static inline unsigned long
1996 vm_unmapped_area(struct vm_unmapped_area_info *info)
1997 {
1998 if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
1999 return unmapped_area_topdown(info);
2000 else
2001 return unmapped_area(info);
2002 }
2003
2004 /* truncate.c */
2005 extern void truncate_inode_pages(struct address_space *, loff_t);
2006 extern void truncate_inode_pages_range(struct address_space *,
2007 loff_t lstart, loff_t lend);
2008 extern void truncate_inode_pages_final(struct address_space *);
2009
2010 /* generic vm_area_ops exported for stackable file systems */
2011 extern int filemap_fault(struct vm_area_struct *, struct vm_fault *);
2012 extern void filemap_map_pages(struct vm_area_struct *vma, struct vm_fault *vmf);
2013 extern int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf);
2014
2015 /* mm/page-writeback.c */
2016 int write_one_page(struct page *page, int wait);
2017 void task_dirty_inc(struct task_struct *tsk);
2018
2019 /* readahead.c */
2020 #define VM_MAX_READAHEAD 128 /* kbytes */
2021 #define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */
2022
2023 int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
2024 pgoff_t offset, unsigned long nr_to_read);
2025
2026 void page_cache_sync_readahead(struct address_space *mapping,
2027 struct file_ra_state *ra,
2028 struct file *filp,
2029 pgoff_t offset,
2030 unsigned long size);
2031
2032 void page_cache_async_readahead(struct address_space *mapping,
2033 struct file_ra_state *ra,
2034 struct file *filp,
2035 struct page *pg,
2036 pgoff_t offset,
2037 unsigned long size);
2038
2039 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
2040 extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
2041
2042 /* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
2043 extern int expand_downwards(struct vm_area_struct *vma,
2044 unsigned long address);
2045 #if VM_GROWSUP
2046 extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
2047 #else
2048 #define expand_upwards(vma, address) (0)
2049 #endif
2050
2051 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
2052 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
2053 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
2054 struct vm_area_struct **pprev);
2055
2056 /* Look up the first VMA which intersects the interval start_addr..end_addr-1,
2057 NULL if none. Assume start_addr < end_addr. */
2058 static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
2059 {
2060 struct vm_area_struct * vma = find_vma(mm,start_addr);
2061
2062 if (vma && end_addr <= vma->vm_start)
2063 vma = NULL;
2064 return vma;
2065 }
2066
2067 static inline unsigned long vma_pages(struct vm_area_struct *vma)
2068 {
2069 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
2070 }
2071
2072 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */
2073 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
2074 unsigned long vm_start, unsigned long vm_end)
2075 {
2076 struct vm_area_struct *vma = find_vma(mm, vm_start);
2077
2078 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
2079 vma = NULL;
2080
2081 return vma;
2082 }
2083
2084 #ifdef CONFIG_MMU
2085 pgprot_t vm_get_page_prot(unsigned long vm_flags);
2086 void vma_set_page_prot(struct vm_area_struct *vma);
2087 #else
2088 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
2089 {
2090 return __pgprot(0);
2091 }
2092 static inline void vma_set_page_prot(struct vm_area_struct *vma)
2093 {
2094 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2095 }
2096 #endif
2097
2098 #ifdef CONFIG_NUMA_BALANCING
2099 unsigned long change_prot_numa(struct vm_area_struct *vma,
2100 unsigned long start, unsigned long end);
2101 #endif
2102
2103 struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
2104 int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
2105 unsigned long pfn, unsigned long size, pgprot_t);
2106 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
2107 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2108 unsigned long pfn);
2109 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2110 unsigned long pfn);
2111 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
2112
2113
2114 struct page *follow_page_mask(struct vm_area_struct *vma,
2115 unsigned long address, unsigned int foll_flags,
2116 unsigned int *page_mask);
2117
2118 static inline struct page *follow_page(struct vm_area_struct *vma,
2119 unsigned long address, unsigned int foll_flags)
2120 {
2121 unsigned int unused_page_mask;
2122 return follow_page_mask(vma, address, foll_flags, &unused_page_mask);
2123 }
2124
2125 #define FOLL_WRITE 0x01 /* check pte is writable */
2126 #define FOLL_TOUCH 0x02 /* mark page accessed */
2127 #define FOLL_GET 0x04 /* do get_page on page */
2128 #define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
2129 #define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
2130 #define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO
2131 * and return without waiting upon it */
2132 #define FOLL_POPULATE 0x40 /* fault in page */
2133 #define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */
2134 #define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */
2135 #define FOLL_NUMA 0x200 /* force NUMA hinting page fault */
2136 #define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */
2137 #define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */
2138 #define FOLL_MLOCK 0x1000 /* lock present pages */
2139
2140 typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
2141 void *data);
2142 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
2143 unsigned long size, pte_fn_t fn, void *data);
2144
2145
2146 #ifdef CONFIG_DEBUG_PAGEALLOC
2147 extern bool _debug_pagealloc_enabled;
2148 extern void __kernel_map_pages(struct page *page, int numpages, int enable);
2149
2150 static inline bool debug_pagealloc_enabled(void)
2151 {
2152 return _debug_pagealloc_enabled;
2153 }
2154
2155 static inline void
2156 kernel_map_pages(struct page *page, int numpages, int enable)
2157 {
2158 if (!debug_pagealloc_enabled())
2159 return;
2160
2161 __kernel_map_pages(page, numpages, enable);
2162 }
2163 #ifdef CONFIG_HIBERNATION
2164 extern bool kernel_page_present(struct page *page);
2165 #endif /* CONFIG_HIBERNATION */
2166 #else
2167 static inline void
2168 kernel_map_pages(struct page *page, int numpages, int enable) {}
2169 #ifdef CONFIG_HIBERNATION
2170 static inline bool kernel_page_present(struct page *page) { return true; }
2171 #endif /* CONFIG_HIBERNATION */
2172 #endif
2173
2174 #ifdef __HAVE_ARCH_GATE_AREA
2175 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
2176 extern int in_gate_area_no_mm(unsigned long addr);
2177 extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
2178 #else
2179 static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
2180 {
2181 return NULL;
2182 }
2183 static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
2184 static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
2185 {
2186 return 0;
2187 }
2188 #endif /* __HAVE_ARCH_GATE_AREA */
2189
2190 #ifdef CONFIG_SYSCTL
2191 extern int sysctl_drop_caches;
2192 int drop_caches_sysctl_handler(struct ctl_table *, int,
2193 void __user *, size_t *, loff_t *);
2194 #endif
2195
2196 void drop_slab(void);
2197 void drop_slab_node(int nid);
2198
2199 #ifndef CONFIG_MMU
2200 #define randomize_va_space 0
2201 #else
2202 extern int randomize_va_space;
2203 #endif
2204
2205 const char * arch_vma_name(struct vm_area_struct *vma);
2206 void print_vma_addr(char *prefix, unsigned long rip);
2207
2208 void sparse_mem_maps_populate_node(struct page **map_map,
2209 unsigned long pnum_begin,
2210 unsigned long pnum_end,
2211 unsigned long map_count,
2212 int nodeid);
2213
2214 struct page *sparse_mem_map_populate(unsigned long pnum, int nid);
2215 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
2216 pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node);
2217 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
2218 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
2219 void *vmemmap_alloc_block(unsigned long size, int node);
2220 void *vmemmap_alloc_block_buf(unsigned long size, int node);
2221 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
2222 int vmemmap_populate_basepages(unsigned long start, unsigned long end,
2223 int node);
2224 int vmemmap_populate(unsigned long start, unsigned long end, int node);
2225 void vmemmap_populate_print_last(void);
2226 #ifdef CONFIG_MEMORY_HOTPLUG
2227 void vmemmap_free(unsigned long start, unsigned long end);
2228 #endif
2229 void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
2230 unsigned long size);
2231
2232 enum mf_flags {
2233 MF_COUNT_INCREASED = 1 << 0,
2234 MF_ACTION_REQUIRED = 1 << 1,
2235 MF_MUST_KILL = 1 << 2,
2236 MF_SOFT_OFFLINE = 1 << 3,
2237 };
2238 extern int memory_failure(unsigned long pfn, int trapno, int flags);
2239 extern void memory_failure_queue(unsigned long pfn, int trapno, int flags);
2240 extern int unpoison_memory(unsigned long pfn);
2241 extern int get_hwpoison_page(struct page *page);
2242 #define put_hwpoison_page(page) put_page(page)
2243 extern int sysctl_memory_failure_early_kill;
2244 extern int sysctl_memory_failure_recovery;
2245 extern void shake_page(struct page *p, int access);
2246 extern atomic_long_t num_poisoned_pages;
2247 extern int soft_offline_page(struct page *page, int flags);
2248
2249
2250 /*
2251 * Error handlers for various types of pages.
2252 */
2253 enum mf_result {
2254 MF_IGNORED, /* Error: cannot be handled */
2255 MF_FAILED, /* Error: handling failed */
2256 MF_DELAYED, /* Will be handled later */
2257 MF_RECOVERED, /* Successfully recovered */
2258 };
2259
2260 enum mf_action_page_type {
2261 MF_MSG_KERNEL,
2262 MF_MSG_KERNEL_HIGH_ORDER,
2263 MF_MSG_SLAB,
2264 MF_MSG_DIFFERENT_COMPOUND,
2265 MF_MSG_POISONED_HUGE,
2266 MF_MSG_HUGE,
2267 MF_MSG_FREE_HUGE,
2268 MF_MSG_UNMAP_FAILED,
2269 MF_MSG_DIRTY_SWAPCACHE,
2270 MF_MSG_CLEAN_SWAPCACHE,
2271 MF_MSG_DIRTY_MLOCKED_LRU,
2272 MF_MSG_CLEAN_MLOCKED_LRU,
2273 MF_MSG_DIRTY_UNEVICTABLE_LRU,
2274 MF_MSG_CLEAN_UNEVICTABLE_LRU,
2275 MF_MSG_DIRTY_LRU,
2276 MF_MSG_CLEAN_LRU,
2277 MF_MSG_TRUNCATED_LRU,
2278 MF_MSG_BUDDY,
2279 MF_MSG_BUDDY_2ND,
2280 MF_MSG_UNKNOWN,
2281 };
2282
2283 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
2284 extern void clear_huge_page(struct page *page,
2285 unsigned long addr,
2286 unsigned int pages_per_huge_page);
2287 extern void copy_user_huge_page(struct page *dst, struct page *src,
2288 unsigned long addr, struct vm_area_struct *vma,
2289 unsigned int pages_per_huge_page);
2290 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
2291
2292 extern struct page_ext_operations debug_guardpage_ops;
2293 extern struct page_ext_operations page_poisoning_ops;
2294
2295 #ifdef CONFIG_DEBUG_PAGEALLOC
2296 extern unsigned int _debug_guardpage_minorder;
2297 extern bool _debug_guardpage_enabled;
2298
2299 static inline unsigned int debug_guardpage_minorder(void)
2300 {
2301 return _debug_guardpage_minorder;
2302 }
2303
2304 static inline bool debug_guardpage_enabled(void)
2305 {
2306 return _debug_guardpage_enabled;
2307 }
2308
2309 static inline bool page_is_guard(struct page *page)
2310 {
2311 struct page_ext *page_ext;
2312
2313 if (!debug_guardpage_enabled())
2314 return false;
2315
2316 page_ext = lookup_page_ext(page);
2317 return test_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
2318 }
2319 #else
2320 static inline unsigned int debug_guardpage_minorder(void) { return 0; }
2321 static inline bool debug_guardpage_enabled(void) { return false; }
2322 static inline bool page_is_guard(struct page *page) { return false; }
2323 #endif /* CONFIG_DEBUG_PAGEALLOC */
2324
2325 #if MAX_NUMNODES > 1
2326 void __init setup_nr_node_ids(void);
2327 #else
2328 static inline void setup_nr_node_ids(void) {}
2329 #endif
2330
2331 #endif /* __KERNEL__ */
2332 #endif /* _LINUX_MM_H */
This page took 0.078091 seconds and 6 git commands to generate.