Merge tag 'fbdev-4.7' of git://git.kernel.org/pub/scm/linux/kernel/git/tomba/linux
[deliverable/linux.git] / include / linux / mm.h
1 #ifndef _LINUX_MM_H
2 #define _LINUX_MM_H
3
4 #include <linux/errno.h>
5
6 #ifdef __KERNEL__
7
8 #include <linux/mmdebug.h>
9 #include <linux/gfp.h>
10 #include <linux/bug.h>
11 #include <linux/list.h>
12 #include <linux/mmzone.h>
13 #include <linux/rbtree.h>
14 #include <linux/atomic.h>
15 #include <linux/debug_locks.h>
16 #include <linux/mm_types.h>
17 #include <linux/range.h>
18 #include <linux/pfn.h>
19 #include <linux/percpu-refcount.h>
20 #include <linux/bit_spinlock.h>
21 #include <linux/shrinker.h>
22 #include <linux/resource.h>
23 #include <linux/page_ext.h>
24 #include <linux/err.h>
25 #include <linux/page_ref.h>
26
27 struct mempolicy;
28 struct anon_vma;
29 struct anon_vma_chain;
30 struct file_ra_state;
31 struct user_struct;
32 struct writeback_control;
33 struct bdi_writeback;
34
35 #ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */
36 extern unsigned long max_mapnr;
37
38 static inline void set_max_mapnr(unsigned long limit)
39 {
40 max_mapnr = limit;
41 }
42 #else
43 static inline void set_max_mapnr(unsigned long limit) { }
44 #endif
45
46 extern unsigned long totalram_pages;
47 extern void * high_memory;
48 extern int page_cluster;
49
50 #ifdef CONFIG_SYSCTL
51 extern int sysctl_legacy_va_layout;
52 #else
53 #define sysctl_legacy_va_layout 0
54 #endif
55
56 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
57 extern const int mmap_rnd_bits_min;
58 extern const int mmap_rnd_bits_max;
59 extern int mmap_rnd_bits __read_mostly;
60 #endif
61 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
62 extern const int mmap_rnd_compat_bits_min;
63 extern const int mmap_rnd_compat_bits_max;
64 extern int mmap_rnd_compat_bits __read_mostly;
65 #endif
66
67 #include <asm/page.h>
68 #include <asm/pgtable.h>
69 #include <asm/processor.h>
70
71 #ifndef __pa_symbol
72 #define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0))
73 #endif
74
75 #ifndef page_to_virt
76 #define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x)))
77 #endif
78
79 /*
80 * To prevent common memory management code establishing
81 * a zero page mapping on a read fault.
82 * This macro should be defined within <asm/pgtable.h>.
83 * s390 does this to prevent multiplexing of hardware bits
84 * related to the physical page in case of virtualization.
85 */
86 #ifndef mm_forbids_zeropage
87 #define mm_forbids_zeropage(X) (0)
88 #endif
89
90 /*
91 * Default maximum number of active map areas, this limits the number of vmas
92 * per mm struct. Users can overwrite this number by sysctl but there is a
93 * problem.
94 *
95 * When a program's coredump is generated as ELF format, a section is created
96 * per a vma. In ELF, the number of sections is represented in unsigned short.
97 * This means the number of sections should be smaller than 65535 at coredump.
98 * Because the kernel adds some informative sections to a image of program at
99 * generating coredump, we need some margin. The number of extra sections is
100 * 1-3 now and depends on arch. We use "5" as safe margin, here.
101 *
102 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is
103 * not a hard limit any more. Although some userspace tools can be surprised by
104 * that.
105 */
106 #define MAPCOUNT_ELF_CORE_MARGIN (5)
107 #define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
108
109 extern int sysctl_max_map_count;
110
111 extern unsigned long sysctl_user_reserve_kbytes;
112 extern unsigned long sysctl_admin_reserve_kbytes;
113
114 extern int sysctl_overcommit_memory;
115 extern int sysctl_overcommit_ratio;
116 extern unsigned long sysctl_overcommit_kbytes;
117
118 extern int overcommit_ratio_handler(struct ctl_table *, int, void __user *,
119 size_t *, loff_t *);
120 extern int overcommit_kbytes_handler(struct ctl_table *, int, void __user *,
121 size_t *, loff_t *);
122
123 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
124
125 /* to align the pointer to the (next) page boundary */
126 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
127
128 /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
129 #define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)addr, PAGE_SIZE)
130
131 /*
132 * Linux kernel virtual memory manager primitives.
133 * The idea being to have a "virtual" mm in the same way
134 * we have a virtual fs - giving a cleaner interface to the
135 * mm details, and allowing different kinds of memory mappings
136 * (from shared memory to executable loading to arbitrary
137 * mmap() functions).
138 */
139
140 extern struct kmem_cache *vm_area_cachep;
141
142 #ifndef CONFIG_MMU
143 extern struct rb_root nommu_region_tree;
144 extern struct rw_semaphore nommu_region_sem;
145
146 extern unsigned int kobjsize(const void *objp);
147 #endif
148
149 /*
150 * vm_flags in vm_area_struct, see mm_types.h.
151 * When changing, update also include/trace/events/mmflags.h
152 */
153 #define VM_NONE 0x00000000
154
155 #define VM_READ 0x00000001 /* currently active flags */
156 #define VM_WRITE 0x00000002
157 #define VM_EXEC 0x00000004
158 #define VM_SHARED 0x00000008
159
160 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
161 #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
162 #define VM_MAYWRITE 0x00000020
163 #define VM_MAYEXEC 0x00000040
164 #define VM_MAYSHARE 0x00000080
165
166 #define VM_GROWSDOWN 0x00000100 /* general info on the segment */
167 #define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */
168 #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
169 #define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
170 #define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */
171
172 #define VM_LOCKED 0x00002000
173 #define VM_IO 0x00004000 /* Memory mapped I/O or similar */
174
175 /* Used by sys_madvise() */
176 #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
177 #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
178
179 #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
180 #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
181 #define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */
182 #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
183 #define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
184 #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
185 #define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
186 #define VM_ARCH_2 0x02000000
187 #define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
188
189 #ifdef CONFIG_MEM_SOFT_DIRTY
190 # define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */
191 #else
192 # define VM_SOFTDIRTY 0
193 #endif
194
195 #define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
196 #define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
197 #define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
198 #define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
199
200 #ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
201 #define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */
202 #define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */
203 #define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */
204 #define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */
205 #define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0)
206 #define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1)
207 #define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2)
208 #define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3)
209 #endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
210
211 #if defined(CONFIG_X86)
212 # define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
213 #if defined (CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS)
214 # define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0
215 # define VM_PKEY_BIT0 VM_HIGH_ARCH_0 /* A protection key is a 4-bit value */
216 # define VM_PKEY_BIT1 VM_HIGH_ARCH_1
217 # define VM_PKEY_BIT2 VM_HIGH_ARCH_2
218 # define VM_PKEY_BIT3 VM_HIGH_ARCH_3
219 #endif
220 #elif defined(CONFIG_PPC)
221 # define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
222 #elif defined(CONFIG_PARISC)
223 # define VM_GROWSUP VM_ARCH_1
224 #elif defined(CONFIG_METAG)
225 # define VM_GROWSUP VM_ARCH_1
226 #elif defined(CONFIG_IA64)
227 # define VM_GROWSUP VM_ARCH_1
228 #elif !defined(CONFIG_MMU)
229 # define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
230 #endif
231
232 #if defined(CONFIG_X86)
233 /* MPX specific bounds table or bounds directory */
234 # define VM_MPX VM_ARCH_2
235 #endif
236
237 #ifndef VM_GROWSUP
238 # define VM_GROWSUP VM_NONE
239 #endif
240
241 /* Bits set in the VMA until the stack is in its final location */
242 #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
243
244 #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
245 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
246 #endif
247
248 #ifdef CONFIG_STACK_GROWSUP
249 #define VM_STACK VM_GROWSUP
250 #else
251 #define VM_STACK VM_GROWSDOWN
252 #endif
253
254 #define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
255
256 /*
257 * Special vmas that are non-mergable, non-mlock()able.
258 * Note: mm/huge_memory.c VM_NO_THP depends on this definition.
259 */
260 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
261
262 /* This mask defines which mm->def_flags a process can inherit its parent */
263 #define VM_INIT_DEF_MASK VM_NOHUGEPAGE
264
265 /* This mask is used to clear all the VMA flags used by mlock */
266 #define VM_LOCKED_CLEAR_MASK (~(VM_LOCKED | VM_LOCKONFAULT))
267
268 /*
269 * mapping from the currently active vm_flags protection bits (the
270 * low four bits) to a page protection mask..
271 */
272 extern pgprot_t protection_map[16];
273
274 #define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */
275 #define FAULT_FLAG_MKWRITE 0x02 /* Fault was mkwrite of existing pte */
276 #define FAULT_FLAG_ALLOW_RETRY 0x04 /* Retry fault if blocking */
277 #define FAULT_FLAG_RETRY_NOWAIT 0x08 /* Don't drop mmap_sem and wait when retrying */
278 #define FAULT_FLAG_KILLABLE 0x10 /* The fault task is in SIGKILL killable region */
279 #define FAULT_FLAG_TRIED 0x20 /* Second try */
280 #define FAULT_FLAG_USER 0x40 /* The fault originated in userspace */
281 #define FAULT_FLAG_REMOTE 0x80 /* faulting for non current tsk/mm */
282 #define FAULT_FLAG_INSTRUCTION 0x100 /* The fault was during an instruction fetch */
283
284 /*
285 * vm_fault is filled by the the pagefault handler and passed to the vma's
286 * ->fault function. The vma's ->fault is responsible for returning a bitmask
287 * of VM_FAULT_xxx flags that give details about how the fault was handled.
288 *
289 * MM layer fills up gfp_mask for page allocations but fault handler might
290 * alter it if its implementation requires a different allocation context.
291 *
292 * pgoff should be used in favour of virtual_address, if possible.
293 */
294 struct vm_fault {
295 unsigned int flags; /* FAULT_FLAG_xxx flags */
296 gfp_t gfp_mask; /* gfp mask to be used for allocations */
297 pgoff_t pgoff; /* Logical page offset based on vma */
298 void __user *virtual_address; /* Faulting virtual address */
299
300 struct page *cow_page; /* Handler may choose to COW */
301 struct page *page; /* ->fault handlers should return a
302 * page here, unless VM_FAULT_NOPAGE
303 * is set (which is also implied by
304 * VM_FAULT_ERROR).
305 */
306 /* for ->map_pages() only */
307 pgoff_t max_pgoff; /* map pages for offset from pgoff till
308 * max_pgoff inclusive */
309 pte_t *pte; /* pte entry associated with ->pgoff */
310 };
311
312 /*
313 * These are the virtual MM functions - opening of an area, closing and
314 * unmapping it (needed to keep files on disk up-to-date etc), pointer
315 * to the functions called when a no-page or a wp-page exception occurs.
316 */
317 struct vm_operations_struct {
318 void (*open)(struct vm_area_struct * area);
319 void (*close)(struct vm_area_struct * area);
320 int (*mremap)(struct vm_area_struct * area);
321 int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf);
322 int (*pmd_fault)(struct vm_area_struct *, unsigned long address,
323 pmd_t *, unsigned int flags);
324 void (*map_pages)(struct vm_area_struct *vma, struct vm_fault *vmf);
325
326 /* notification that a previously read-only page is about to become
327 * writable, if an error is returned it will cause a SIGBUS */
328 int (*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
329
330 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
331 int (*pfn_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
332
333 /* called by access_process_vm when get_user_pages() fails, typically
334 * for use by special VMAs that can switch between memory and hardware
335 */
336 int (*access)(struct vm_area_struct *vma, unsigned long addr,
337 void *buf, int len, int write);
338
339 /* Called by the /proc/PID/maps code to ask the vma whether it
340 * has a special name. Returning non-NULL will also cause this
341 * vma to be dumped unconditionally. */
342 const char *(*name)(struct vm_area_struct *vma);
343
344 #ifdef CONFIG_NUMA
345 /*
346 * set_policy() op must add a reference to any non-NULL @new mempolicy
347 * to hold the policy upon return. Caller should pass NULL @new to
348 * remove a policy and fall back to surrounding context--i.e. do not
349 * install a MPOL_DEFAULT policy, nor the task or system default
350 * mempolicy.
351 */
352 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
353
354 /*
355 * get_policy() op must add reference [mpol_get()] to any policy at
356 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
357 * in mm/mempolicy.c will do this automatically.
358 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
359 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
360 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
361 * must return NULL--i.e., do not "fallback" to task or system default
362 * policy.
363 */
364 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
365 unsigned long addr);
366 #endif
367 /*
368 * Called by vm_normal_page() for special PTEs to find the
369 * page for @addr. This is useful if the default behavior
370 * (using pte_page()) would not find the correct page.
371 */
372 struct page *(*find_special_page)(struct vm_area_struct *vma,
373 unsigned long addr);
374 };
375
376 struct mmu_gather;
377 struct inode;
378
379 #define page_private(page) ((page)->private)
380 #define set_page_private(page, v) ((page)->private = (v))
381
382 #if !defined(__HAVE_ARCH_PTE_DEVMAP) || !defined(CONFIG_TRANSPARENT_HUGEPAGE)
383 static inline int pmd_devmap(pmd_t pmd)
384 {
385 return 0;
386 }
387 #endif
388
389 /*
390 * FIXME: take this include out, include page-flags.h in
391 * files which need it (119 of them)
392 */
393 #include <linux/page-flags.h>
394 #include <linux/huge_mm.h>
395
396 /*
397 * Methods to modify the page usage count.
398 *
399 * What counts for a page usage:
400 * - cache mapping (page->mapping)
401 * - private data (page->private)
402 * - page mapped in a task's page tables, each mapping
403 * is counted separately
404 *
405 * Also, many kernel routines increase the page count before a critical
406 * routine so they can be sure the page doesn't go away from under them.
407 */
408
409 /*
410 * Drop a ref, return true if the refcount fell to zero (the page has no users)
411 */
412 static inline int put_page_testzero(struct page *page)
413 {
414 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
415 return page_ref_dec_and_test(page);
416 }
417
418 /*
419 * Try to grab a ref unless the page has a refcount of zero, return false if
420 * that is the case.
421 * This can be called when MMU is off so it must not access
422 * any of the virtual mappings.
423 */
424 static inline int get_page_unless_zero(struct page *page)
425 {
426 return page_ref_add_unless(page, 1, 0);
427 }
428
429 extern int page_is_ram(unsigned long pfn);
430
431 enum {
432 REGION_INTERSECTS,
433 REGION_DISJOINT,
434 REGION_MIXED,
435 };
436
437 int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
438 unsigned long desc);
439
440 /* Support for virtually mapped pages */
441 struct page *vmalloc_to_page(const void *addr);
442 unsigned long vmalloc_to_pfn(const void *addr);
443
444 /*
445 * Determine if an address is within the vmalloc range
446 *
447 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
448 * is no special casing required.
449 */
450 static inline bool is_vmalloc_addr(const void *x)
451 {
452 #ifdef CONFIG_MMU
453 unsigned long addr = (unsigned long)x;
454
455 return addr >= VMALLOC_START && addr < VMALLOC_END;
456 #else
457 return false;
458 #endif
459 }
460 #ifdef CONFIG_MMU
461 extern int is_vmalloc_or_module_addr(const void *x);
462 #else
463 static inline int is_vmalloc_or_module_addr(const void *x)
464 {
465 return 0;
466 }
467 #endif
468
469 extern void kvfree(const void *addr);
470
471 static inline atomic_t *compound_mapcount_ptr(struct page *page)
472 {
473 return &page[1].compound_mapcount;
474 }
475
476 static inline int compound_mapcount(struct page *page)
477 {
478 if (!PageCompound(page))
479 return 0;
480 page = compound_head(page);
481 return atomic_read(compound_mapcount_ptr(page)) + 1;
482 }
483
484 /*
485 * The atomic page->_mapcount, starts from -1: so that transitions
486 * both from it and to it can be tracked, using atomic_inc_and_test
487 * and atomic_add_negative(-1).
488 */
489 static inline void page_mapcount_reset(struct page *page)
490 {
491 atomic_set(&(page)->_mapcount, -1);
492 }
493
494 int __page_mapcount(struct page *page);
495
496 static inline int page_mapcount(struct page *page)
497 {
498 VM_BUG_ON_PAGE(PageSlab(page), page);
499
500 if (unlikely(PageCompound(page)))
501 return __page_mapcount(page);
502 return atomic_read(&page->_mapcount) + 1;
503 }
504
505 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
506 int total_mapcount(struct page *page);
507 int page_trans_huge_mapcount(struct page *page, int *total_mapcount);
508 #else
509 static inline int total_mapcount(struct page *page)
510 {
511 return page_mapcount(page);
512 }
513 static inline int page_trans_huge_mapcount(struct page *page,
514 int *total_mapcount)
515 {
516 int mapcount = page_mapcount(page);
517 if (total_mapcount)
518 *total_mapcount = mapcount;
519 return mapcount;
520 }
521 #endif
522
523 static inline struct page *virt_to_head_page(const void *x)
524 {
525 struct page *page = virt_to_page(x);
526
527 return compound_head(page);
528 }
529
530 void __put_page(struct page *page);
531
532 void put_pages_list(struct list_head *pages);
533
534 void split_page(struct page *page, unsigned int order);
535 int split_free_page(struct page *page);
536
537 /*
538 * Compound pages have a destructor function. Provide a
539 * prototype for that function and accessor functions.
540 * These are _only_ valid on the head of a compound page.
541 */
542 typedef void compound_page_dtor(struct page *);
543
544 /* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */
545 enum compound_dtor_id {
546 NULL_COMPOUND_DTOR,
547 COMPOUND_PAGE_DTOR,
548 #ifdef CONFIG_HUGETLB_PAGE
549 HUGETLB_PAGE_DTOR,
550 #endif
551 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
552 TRANSHUGE_PAGE_DTOR,
553 #endif
554 NR_COMPOUND_DTORS,
555 };
556 extern compound_page_dtor * const compound_page_dtors[];
557
558 static inline void set_compound_page_dtor(struct page *page,
559 enum compound_dtor_id compound_dtor)
560 {
561 VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page);
562 page[1].compound_dtor = compound_dtor;
563 }
564
565 static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
566 {
567 VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page);
568 return compound_page_dtors[page[1].compound_dtor];
569 }
570
571 static inline unsigned int compound_order(struct page *page)
572 {
573 if (!PageHead(page))
574 return 0;
575 return page[1].compound_order;
576 }
577
578 static inline void set_compound_order(struct page *page, unsigned int order)
579 {
580 page[1].compound_order = order;
581 }
582
583 void free_compound_page(struct page *page);
584
585 #ifdef CONFIG_MMU
586 /*
587 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
588 * servicing faults for write access. In the normal case, do always want
589 * pte_mkwrite. But get_user_pages can cause write faults for mappings
590 * that do not have writing enabled, when used by access_process_vm.
591 */
592 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
593 {
594 if (likely(vma->vm_flags & VM_WRITE))
595 pte = pte_mkwrite(pte);
596 return pte;
597 }
598
599 void do_set_pte(struct vm_area_struct *vma, unsigned long address,
600 struct page *page, pte_t *pte, bool write, bool anon);
601 #endif
602
603 /*
604 * Multiple processes may "see" the same page. E.g. for untouched
605 * mappings of /dev/null, all processes see the same page full of
606 * zeroes, and text pages of executables and shared libraries have
607 * only one copy in memory, at most, normally.
608 *
609 * For the non-reserved pages, page_count(page) denotes a reference count.
610 * page_count() == 0 means the page is free. page->lru is then used for
611 * freelist management in the buddy allocator.
612 * page_count() > 0 means the page has been allocated.
613 *
614 * Pages are allocated by the slab allocator in order to provide memory
615 * to kmalloc and kmem_cache_alloc. In this case, the management of the
616 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
617 * unless a particular usage is carefully commented. (the responsibility of
618 * freeing the kmalloc memory is the caller's, of course).
619 *
620 * A page may be used by anyone else who does a __get_free_page().
621 * In this case, page_count still tracks the references, and should only
622 * be used through the normal accessor functions. The top bits of page->flags
623 * and page->virtual store page management information, but all other fields
624 * are unused and could be used privately, carefully. The management of this
625 * page is the responsibility of the one who allocated it, and those who have
626 * subsequently been given references to it.
627 *
628 * The other pages (we may call them "pagecache pages") are completely
629 * managed by the Linux memory manager: I/O, buffers, swapping etc.
630 * The following discussion applies only to them.
631 *
632 * A pagecache page contains an opaque `private' member, which belongs to the
633 * page's address_space. Usually, this is the address of a circular list of
634 * the page's disk buffers. PG_private must be set to tell the VM to call
635 * into the filesystem to release these pages.
636 *
637 * A page may belong to an inode's memory mapping. In this case, page->mapping
638 * is the pointer to the inode, and page->index is the file offset of the page,
639 * in units of PAGE_SIZE.
640 *
641 * If pagecache pages are not associated with an inode, they are said to be
642 * anonymous pages. These may become associated with the swapcache, and in that
643 * case PG_swapcache is set, and page->private is an offset into the swapcache.
644 *
645 * In either case (swapcache or inode backed), the pagecache itself holds one
646 * reference to the page. Setting PG_private should also increment the
647 * refcount. The each user mapping also has a reference to the page.
648 *
649 * The pagecache pages are stored in a per-mapping radix tree, which is
650 * rooted at mapping->page_tree, and indexed by offset.
651 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
652 * lists, we instead now tag pages as dirty/writeback in the radix tree.
653 *
654 * All pagecache pages may be subject to I/O:
655 * - inode pages may need to be read from disk,
656 * - inode pages which have been modified and are MAP_SHARED may need
657 * to be written back to the inode on disk,
658 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
659 * modified may need to be swapped out to swap space and (later) to be read
660 * back into memory.
661 */
662
663 /*
664 * The zone field is never updated after free_area_init_core()
665 * sets it, so none of the operations on it need to be atomic.
666 */
667
668 /* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
669 #define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
670 #define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
671 #define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
672 #define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH)
673
674 /*
675 * Define the bit shifts to access each section. For non-existent
676 * sections we define the shift as 0; that plus a 0 mask ensures
677 * the compiler will optimise away reference to them.
678 */
679 #define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
680 #define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
681 #define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
682 #define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
683
684 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
685 #ifdef NODE_NOT_IN_PAGE_FLAGS
686 #define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
687 #define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
688 SECTIONS_PGOFF : ZONES_PGOFF)
689 #else
690 #define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
691 #define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
692 NODES_PGOFF : ZONES_PGOFF)
693 #endif
694
695 #define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
696
697 #if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
698 #error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
699 #endif
700
701 #define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
702 #define NODES_MASK ((1UL << NODES_WIDTH) - 1)
703 #define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
704 #define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1)
705 #define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
706
707 static inline enum zone_type page_zonenum(const struct page *page)
708 {
709 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
710 }
711
712 #ifdef CONFIG_ZONE_DEVICE
713 void get_zone_device_page(struct page *page);
714 void put_zone_device_page(struct page *page);
715 static inline bool is_zone_device_page(const struct page *page)
716 {
717 return page_zonenum(page) == ZONE_DEVICE;
718 }
719 #else
720 static inline void get_zone_device_page(struct page *page)
721 {
722 }
723 static inline void put_zone_device_page(struct page *page)
724 {
725 }
726 static inline bool is_zone_device_page(const struct page *page)
727 {
728 return false;
729 }
730 #endif
731
732 static inline void get_page(struct page *page)
733 {
734 page = compound_head(page);
735 /*
736 * Getting a normal page or the head of a compound page
737 * requires to already have an elevated page->_refcount.
738 */
739 VM_BUG_ON_PAGE(page_ref_count(page) <= 0, page);
740 page_ref_inc(page);
741
742 if (unlikely(is_zone_device_page(page)))
743 get_zone_device_page(page);
744 }
745
746 static inline void put_page(struct page *page)
747 {
748 page = compound_head(page);
749
750 if (put_page_testzero(page))
751 __put_page(page);
752
753 if (unlikely(is_zone_device_page(page)))
754 put_zone_device_page(page);
755 }
756
757 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
758 #define SECTION_IN_PAGE_FLAGS
759 #endif
760
761 /*
762 * The identification function is mainly used by the buddy allocator for
763 * determining if two pages could be buddies. We are not really identifying
764 * the zone since we could be using the section number id if we do not have
765 * node id available in page flags.
766 * We only guarantee that it will return the same value for two combinable
767 * pages in a zone.
768 */
769 static inline int page_zone_id(struct page *page)
770 {
771 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
772 }
773
774 static inline int zone_to_nid(struct zone *zone)
775 {
776 #ifdef CONFIG_NUMA
777 return zone->node;
778 #else
779 return 0;
780 #endif
781 }
782
783 #ifdef NODE_NOT_IN_PAGE_FLAGS
784 extern int page_to_nid(const struct page *page);
785 #else
786 static inline int page_to_nid(const struct page *page)
787 {
788 return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
789 }
790 #endif
791
792 #ifdef CONFIG_NUMA_BALANCING
793 static inline int cpu_pid_to_cpupid(int cpu, int pid)
794 {
795 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
796 }
797
798 static inline int cpupid_to_pid(int cpupid)
799 {
800 return cpupid & LAST__PID_MASK;
801 }
802
803 static inline int cpupid_to_cpu(int cpupid)
804 {
805 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
806 }
807
808 static inline int cpupid_to_nid(int cpupid)
809 {
810 return cpu_to_node(cpupid_to_cpu(cpupid));
811 }
812
813 static inline bool cpupid_pid_unset(int cpupid)
814 {
815 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
816 }
817
818 static inline bool cpupid_cpu_unset(int cpupid)
819 {
820 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
821 }
822
823 static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
824 {
825 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
826 }
827
828 #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
829 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
830 static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
831 {
832 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
833 }
834
835 static inline int page_cpupid_last(struct page *page)
836 {
837 return page->_last_cpupid;
838 }
839 static inline void page_cpupid_reset_last(struct page *page)
840 {
841 page->_last_cpupid = -1 & LAST_CPUPID_MASK;
842 }
843 #else
844 static inline int page_cpupid_last(struct page *page)
845 {
846 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
847 }
848
849 extern int page_cpupid_xchg_last(struct page *page, int cpupid);
850
851 static inline void page_cpupid_reset_last(struct page *page)
852 {
853 page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT;
854 }
855 #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
856 #else /* !CONFIG_NUMA_BALANCING */
857 static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
858 {
859 return page_to_nid(page); /* XXX */
860 }
861
862 static inline int page_cpupid_last(struct page *page)
863 {
864 return page_to_nid(page); /* XXX */
865 }
866
867 static inline int cpupid_to_nid(int cpupid)
868 {
869 return -1;
870 }
871
872 static inline int cpupid_to_pid(int cpupid)
873 {
874 return -1;
875 }
876
877 static inline int cpupid_to_cpu(int cpupid)
878 {
879 return -1;
880 }
881
882 static inline int cpu_pid_to_cpupid(int nid, int pid)
883 {
884 return -1;
885 }
886
887 static inline bool cpupid_pid_unset(int cpupid)
888 {
889 return 1;
890 }
891
892 static inline void page_cpupid_reset_last(struct page *page)
893 {
894 }
895
896 static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
897 {
898 return false;
899 }
900 #endif /* CONFIG_NUMA_BALANCING */
901
902 static inline struct zone *page_zone(const struct page *page)
903 {
904 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
905 }
906
907 #ifdef SECTION_IN_PAGE_FLAGS
908 static inline void set_page_section(struct page *page, unsigned long section)
909 {
910 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
911 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
912 }
913
914 static inline unsigned long page_to_section(const struct page *page)
915 {
916 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
917 }
918 #endif
919
920 static inline void set_page_zone(struct page *page, enum zone_type zone)
921 {
922 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
923 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
924 }
925
926 static inline void set_page_node(struct page *page, unsigned long node)
927 {
928 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
929 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
930 }
931
932 static inline void set_page_links(struct page *page, enum zone_type zone,
933 unsigned long node, unsigned long pfn)
934 {
935 set_page_zone(page, zone);
936 set_page_node(page, node);
937 #ifdef SECTION_IN_PAGE_FLAGS
938 set_page_section(page, pfn_to_section_nr(pfn));
939 #endif
940 }
941
942 #ifdef CONFIG_MEMCG
943 static inline struct mem_cgroup *page_memcg(struct page *page)
944 {
945 return page->mem_cgroup;
946 }
947 #else
948 static inline struct mem_cgroup *page_memcg(struct page *page)
949 {
950 return NULL;
951 }
952 #endif
953
954 /*
955 * Some inline functions in vmstat.h depend on page_zone()
956 */
957 #include <linux/vmstat.h>
958
959 static __always_inline void *lowmem_page_address(const struct page *page)
960 {
961 return page_to_virt(page);
962 }
963
964 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
965 #define HASHED_PAGE_VIRTUAL
966 #endif
967
968 #if defined(WANT_PAGE_VIRTUAL)
969 static inline void *page_address(const struct page *page)
970 {
971 return page->virtual;
972 }
973 static inline void set_page_address(struct page *page, void *address)
974 {
975 page->virtual = address;
976 }
977 #define page_address_init() do { } while(0)
978 #endif
979
980 #if defined(HASHED_PAGE_VIRTUAL)
981 void *page_address(const struct page *page);
982 void set_page_address(struct page *page, void *virtual);
983 void page_address_init(void);
984 #endif
985
986 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
987 #define page_address(page) lowmem_page_address(page)
988 #define set_page_address(page, address) do { } while(0)
989 #define page_address_init() do { } while(0)
990 #endif
991
992 extern void *page_rmapping(struct page *page);
993 extern struct anon_vma *page_anon_vma(struct page *page);
994 extern struct address_space *page_mapping(struct page *page);
995
996 extern struct address_space *__page_file_mapping(struct page *);
997
998 static inline
999 struct address_space *page_file_mapping(struct page *page)
1000 {
1001 if (unlikely(PageSwapCache(page)))
1002 return __page_file_mapping(page);
1003
1004 return page->mapping;
1005 }
1006
1007 /*
1008 * Return the pagecache index of the passed page. Regular pagecache pages
1009 * use ->index whereas swapcache pages use ->private
1010 */
1011 static inline pgoff_t page_index(struct page *page)
1012 {
1013 if (unlikely(PageSwapCache(page)))
1014 return page_private(page);
1015 return page->index;
1016 }
1017
1018 extern pgoff_t __page_file_index(struct page *page);
1019
1020 /*
1021 * Return the file index of the page. Regular pagecache pages use ->index
1022 * whereas swapcache pages use swp_offset(->private)
1023 */
1024 static inline pgoff_t page_file_index(struct page *page)
1025 {
1026 if (unlikely(PageSwapCache(page)))
1027 return __page_file_index(page);
1028
1029 return page->index;
1030 }
1031
1032 bool page_mapped(struct page *page);
1033
1034 /*
1035 * Return true only if the page has been allocated with
1036 * ALLOC_NO_WATERMARKS and the low watermark was not
1037 * met implying that the system is under some pressure.
1038 */
1039 static inline bool page_is_pfmemalloc(struct page *page)
1040 {
1041 /*
1042 * Page index cannot be this large so this must be
1043 * a pfmemalloc page.
1044 */
1045 return page->index == -1UL;
1046 }
1047
1048 /*
1049 * Only to be called by the page allocator on a freshly allocated
1050 * page.
1051 */
1052 static inline void set_page_pfmemalloc(struct page *page)
1053 {
1054 page->index = -1UL;
1055 }
1056
1057 static inline void clear_page_pfmemalloc(struct page *page)
1058 {
1059 page->index = 0;
1060 }
1061
1062 /*
1063 * Different kinds of faults, as returned by handle_mm_fault().
1064 * Used to decide whether a process gets delivered SIGBUS or
1065 * just gets major/minor fault counters bumped up.
1066 */
1067
1068 #define VM_FAULT_OOM 0x0001
1069 #define VM_FAULT_SIGBUS 0x0002
1070 #define VM_FAULT_MAJOR 0x0004
1071 #define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */
1072 #define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */
1073 #define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */
1074 #define VM_FAULT_SIGSEGV 0x0040
1075
1076 #define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */
1077 #define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */
1078 #define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */
1079 #define VM_FAULT_FALLBACK 0x0800 /* huge page fault failed, fall back to small */
1080
1081 #define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */
1082
1083 #define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | \
1084 VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE | \
1085 VM_FAULT_FALLBACK)
1086
1087 /* Encode hstate index for a hwpoisoned large page */
1088 #define VM_FAULT_SET_HINDEX(x) ((x) << 12)
1089 #define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf)
1090
1091 /*
1092 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
1093 */
1094 extern void pagefault_out_of_memory(void);
1095
1096 #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
1097
1098 /*
1099 * Flags passed to show_mem() and show_free_areas() to suppress output in
1100 * various contexts.
1101 */
1102 #define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */
1103
1104 extern void show_free_areas(unsigned int flags);
1105 extern bool skip_free_areas_node(unsigned int flags, int nid);
1106
1107 int shmem_zero_setup(struct vm_area_struct *);
1108 #ifdef CONFIG_SHMEM
1109 bool shmem_mapping(struct address_space *mapping);
1110 #else
1111 static inline bool shmem_mapping(struct address_space *mapping)
1112 {
1113 return false;
1114 }
1115 #endif
1116
1117 extern bool can_do_mlock(void);
1118 extern int user_shm_lock(size_t, struct user_struct *);
1119 extern void user_shm_unlock(size_t, struct user_struct *);
1120
1121 /*
1122 * Parameter block passed down to zap_pte_range in exceptional cases.
1123 */
1124 struct zap_details {
1125 struct address_space *check_mapping; /* Check page->mapping if set */
1126 pgoff_t first_index; /* Lowest page->index to unmap */
1127 pgoff_t last_index; /* Highest page->index to unmap */
1128 bool ignore_dirty; /* Ignore dirty pages */
1129 bool check_swap_entries; /* Check also swap entries */
1130 };
1131
1132 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
1133 pte_t pte);
1134 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
1135 pmd_t pmd);
1136
1137 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1138 unsigned long size);
1139 void zap_page_range(struct vm_area_struct *vma, unsigned long address,
1140 unsigned long size, struct zap_details *);
1141 void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
1142 unsigned long start, unsigned long end);
1143
1144 /**
1145 * mm_walk - callbacks for walk_page_range
1146 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
1147 * this handler is required to be able to handle
1148 * pmd_trans_huge() pmds. They may simply choose to
1149 * split_huge_page() instead of handling it explicitly.
1150 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
1151 * @pte_hole: if set, called for each hole at all levels
1152 * @hugetlb_entry: if set, called for each hugetlb entry
1153 * @test_walk: caller specific callback function to determine whether
1154 * we walk over the current vma or not. A positive returned
1155 * value means "do page table walk over the current vma,"
1156 * and a negative one means "abort current page table walk
1157 * right now." 0 means "skip the current vma."
1158 * @mm: mm_struct representing the target process of page table walk
1159 * @vma: vma currently walked (NULL if walking outside vmas)
1160 * @private: private data for callbacks' usage
1161 *
1162 * (see the comment on walk_page_range() for more details)
1163 */
1164 struct mm_walk {
1165 int (*pmd_entry)(pmd_t *pmd, unsigned long addr,
1166 unsigned long next, struct mm_walk *walk);
1167 int (*pte_entry)(pte_t *pte, unsigned long addr,
1168 unsigned long next, struct mm_walk *walk);
1169 int (*pte_hole)(unsigned long addr, unsigned long next,
1170 struct mm_walk *walk);
1171 int (*hugetlb_entry)(pte_t *pte, unsigned long hmask,
1172 unsigned long addr, unsigned long next,
1173 struct mm_walk *walk);
1174 int (*test_walk)(unsigned long addr, unsigned long next,
1175 struct mm_walk *walk);
1176 struct mm_struct *mm;
1177 struct vm_area_struct *vma;
1178 void *private;
1179 };
1180
1181 int walk_page_range(unsigned long addr, unsigned long end,
1182 struct mm_walk *walk);
1183 int walk_page_vma(struct vm_area_struct *vma, struct mm_walk *walk);
1184 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
1185 unsigned long end, unsigned long floor, unsigned long ceiling);
1186 int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
1187 struct vm_area_struct *vma);
1188 void unmap_mapping_range(struct address_space *mapping,
1189 loff_t const holebegin, loff_t const holelen, int even_cows);
1190 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
1191 unsigned long *pfn);
1192 int follow_phys(struct vm_area_struct *vma, unsigned long address,
1193 unsigned int flags, unsigned long *prot, resource_size_t *phys);
1194 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
1195 void *buf, int len, int write);
1196
1197 static inline void unmap_shared_mapping_range(struct address_space *mapping,
1198 loff_t const holebegin, loff_t const holelen)
1199 {
1200 unmap_mapping_range(mapping, holebegin, holelen, 0);
1201 }
1202
1203 extern void truncate_pagecache(struct inode *inode, loff_t new);
1204 extern void truncate_setsize(struct inode *inode, loff_t newsize);
1205 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
1206 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
1207 int truncate_inode_page(struct address_space *mapping, struct page *page);
1208 int generic_error_remove_page(struct address_space *mapping, struct page *page);
1209 int invalidate_inode_page(struct page *page);
1210
1211 #ifdef CONFIG_MMU
1212 extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
1213 unsigned long address, unsigned int flags);
1214 extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1215 unsigned long address, unsigned int fault_flags,
1216 bool *unlocked);
1217 #else
1218 static inline int handle_mm_fault(struct mm_struct *mm,
1219 struct vm_area_struct *vma, unsigned long address,
1220 unsigned int flags)
1221 {
1222 /* should never happen if there's no MMU */
1223 BUG();
1224 return VM_FAULT_SIGBUS;
1225 }
1226 static inline int fixup_user_fault(struct task_struct *tsk,
1227 struct mm_struct *mm, unsigned long address,
1228 unsigned int fault_flags, bool *unlocked)
1229 {
1230 /* should never happen if there's no MMU */
1231 BUG();
1232 return -EFAULT;
1233 }
1234 #endif
1235
1236 extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write);
1237 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1238 void *buf, int len, int write);
1239
1240 long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1241 unsigned long start, unsigned long nr_pages,
1242 unsigned int foll_flags, struct page **pages,
1243 struct vm_area_struct **vmas, int *nonblocking);
1244 long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm,
1245 unsigned long start, unsigned long nr_pages,
1246 int write, int force, struct page **pages,
1247 struct vm_area_struct **vmas);
1248 long get_user_pages(unsigned long start, unsigned long nr_pages,
1249 int write, int force, struct page **pages,
1250 struct vm_area_struct **vmas);
1251 long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
1252 int write, int force, struct page **pages, int *locked);
1253 long __get_user_pages_unlocked(struct task_struct *tsk, struct mm_struct *mm,
1254 unsigned long start, unsigned long nr_pages,
1255 int write, int force, struct page **pages,
1256 unsigned int gup_flags);
1257 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
1258 int write, int force, struct page **pages);
1259 int get_user_pages_fast(unsigned long start, int nr_pages, int write,
1260 struct page **pages);
1261
1262 /* Container for pinned pfns / pages */
1263 struct frame_vector {
1264 unsigned int nr_allocated; /* Number of frames we have space for */
1265 unsigned int nr_frames; /* Number of frames stored in ptrs array */
1266 bool got_ref; /* Did we pin pages by getting page ref? */
1267 bool is_pfns; /* Does array contain pages or pfns? */
1268 void *ptrs[0]; /* Array of pinned pfns / pages. Use
1269 * pfns_vector_pages() or pfns_vector_pfns()
1270 * for access */
1271 };
1272
1273 struct frame_vector *frame_vector_create(unsigned int nr_frames);
1274 void frame_vector_destroy(struct frame_vector *vec);
1275 int get_vaddr_frames(unsigned long start, unsigned int nr_pfns,
1276 bool write, bool force, struct frame_vector *vec);
1277 void put_vaddr_frames(struct frame_vector *vec);
1278 int frame_vector_to_pages(struct frame_vector *vec);
1279 void frame_vector_to_pfns(struct frame_vector *vec);
1280
1281 static inline unsigned int frame_vector_count(struct frame_vector *vec)
1282 {
1283 return vec->nr_frames;
1284 }
1285
1286 static inline struct page **frame_vector_pages(struct frame_vector *vec)
1287 {
1288 if (vec->is_pfns) {
1289 int err = frame_vector_to_pages(vec);
1290
1291 if (err)
1292 return ERR_PTR(err);
1293 }
1294 return (struct page **)(vec->ptrs);
1295 }
1296
1297 static inline unsigned long *frame_vector_pfns(struct frame_vector *vec)
1298 {
1299 if (!vec->is_pfns)
1300 frame_vector_to_pfns(vec);
1301 return (unsigned long *)(vec->ptrs);
1302 }
1303
1304 struct kvec;
1305 int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1306 struct page **pages);
1307 int get_kernel_page(unsigned long start, int write, struct page **pages);
1308 struct page *get_dump_page(unsigned long addr);
1309
1310 extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
1311 extern void do_invalidatepage(struct page *page, unsigned int offset,
1312 unsigned int length);
1313
1314 int __set_page_dirty_nobuffers(struct page *page);
1315 int __set_page_dirty_no_writeback(struct page *page);
1316 int redirty_page_for_writepage(struct writeback_control *wbc,
1317 struct page *page);
1318 void account_page_dirtied(struct page *page, struct address_space *mapping);
1319 void account_page_cleaned(struct page *page, struct address_space *mapping,
1320 struct bdi_writeback *wb);
1321 int set_page_dirty(struct page *page);
1322 int set_page_dirty_lock(struct page *page);
1323 void cancel_dirty_page(struct page *page);
1324 int clear_page_dirty_for_io(struct page *page);
1325
1326 int get_cmdline(struct task_struct *task, char *buffer, int buflen);
1327
1328 /* Is the vma a continuation of the stack vma above it? */
1329 static inline int vma_growsdown(struct vm_area_struct *vma, unsigned long addr)
1330 {
1331 return vma && (vma->vm_end == addr) && (vma->vm_flags & VM_GROWSDOWN);
1332 }
1333
1334 static inline bool vma_is_anonymous(struct vm_area_struct *vma)
1335 {
1336 return !vma->vm_ops;
1337 }
1338
1339 static inline int stack_guard_page_start(struct vm_area_struct *vma,
1340 unsigned long addr)
1341 {
1342 return (vma->vm_flags & VM_GROWSDOWN) &&
1343 (vma->vm_start == addr) &&
1344 !vma_growsdown(vma->vm_prev, addr);
1345 }
1346
1347 /* Is the vma a continuation of the stack vma below it? */
1348 static inline int vma_growsup(struct vm_area_struct *vma, unsigned long addr)
1349 {
1350 return vma && (vma->vm_start == addr) && (vma->vm_flags & VM_GROWSUP);
1351 }
1352
1353 static inline int stack_guard_page_end(struct vm_area_struct *vma,
1354 unsigned long addr)
1355 {
1356 return (vma->vm_flags & VM_GROWSUP) &&
1357 (vma->vm_end == addr) &&
1358 !vma_growsup(vma->vm_next, addr);
1359 }
1360
1361 int vma_is_stack_for_task(struct vm_area_struct *vma, struct task_struct *t);
1362
1363 extern unsigned long move_page_tables(struct vm_area_struct *vma,
1364 unsigned long old_addr, struct vm_area_struct *new_vma,
1365 unsigned long new_addr, unsigned long len,
1366 bool need_rmap_locks);
1367 extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
1368 unsigned long end, pgprot_t newprot,
1369 int dirty_accountable, int prot_numa);
1370 extern int mprotect_fixup(struct vm_area_struct *vma,
1371 struct vm_area_struct **pprev, unsigned long start,
1372 unsigned long end, unsigned long newflags);
1373
1374 /*
1375 * doesn't attempt to fault and will return short.
1376 */
1377 int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1378 struct page **pages);
1379 /*
1380 * per-process(per-mm_struct) statistics.
1381 */
1382 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1383 {
1384 long val = atomic_long_read(&mm->rss_stat.count[member]);
1385
1386 #ifdef SPLIT_RSS_COUNTING
1387 /*
1388 * counter is updated in asynchronous manner and may go to minus.
1389 * But it's never be expected number for users.
1390 */
1391 if (val < 0)
1392 val = 0;
1393 #endif
1394 return (unsigned long)val;
1395 }
1396
1397 static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1398 {
1399 atomic_long_add(value, &mm->rss_stat.count[member]);
1400 }
1401
1402 static inline void inc_mm_counter(struct mm_struct *mm, int member)
1403 {
1404 atomic_long_inc(&mm->rss_stat.count[member]);
1405 }
1406
1407 static inline void dec_mm_counter(struct mm_struct *mm, int member)
1408 {
1409 atomic_long_dec(&mm->rss_stat.count[member]);
1410 }
1411
1412 /* Optimized variant when page is already known not to be PageAnon */
1413 static inline int mm_counter_file(struct page *page)
1414 {
1415 if (PageSwapBacked(page))
1416 return MM_SHMEMPAGES;
1417 return MM_FILEPAGES;
1418 }
1419
1420 static inline int mm_counter(struct page *page)
1421 {
1422 if (PageAnon(page))
1423 return MM_ANONPAGES;
1424 return mm_counter_file(page);
1425 }
1426
1427 static inline unsigned long get_mm_rss(struct mm_struct *mm)
1428 {
1429 return get_mm_counter(mm, MM_FILEPAGES) +
1430 get_mm_counter(mm, MM_ANONPAGES) +
1431 get_mm_counter(mm, MM_SHMEMPAGES);
1432 }
1433
1434 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1435 {
1436 return max(mm->hiwater_rss, get_mm_rss(mm));
1437 }
1438
1439 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1440 {
1441 return max(mm->hiwater_vm, mm->total_vm);
1442 }
1443
1444 static inline void update_hiwater_rss(struct mm_struct *mm)
1445 {
1446 unsigned long _rss = get_mm_rss(mm);
1447
1448 if ((mm)->hiwater_rss < _rss)
1449 (mm)->hiwater_rss = _rss;
1450 }
1451
1452 static inline void update_hiwater_vm(struct mm_struct *mm)
1453 {
1454 if (mm->hiwater_vm < mm->total_vm)
1455 mm->hiwater_vm = mm->total_vm;
1456 }
1457
1458 static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
1459 {
1460 mm->hiwater_rss = get_mm_rss(mm);
1461 }
1462
1463 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1464 struct mm_struct *mm)
1465 {
1466 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1467
1468 if (*maxrss < hiwater_rss)
1469 *maxrss = hiwater_rss;
1470 }
1471
1472 #if defined(SPLIT_RSS_COUNTING)
1473 void sync_mm_rss(struct mm_struct *mm);
1474 #else
1475 static inline void sync_mm_rss(struct mm_struct *mm)
1476 {
1477 }
1478 #endif
1479
1480 #ifndef __HAVE_ARCH_PTE_DEVMAP
1481 static inline int pte_devmap(pte_t pte)
1482 {
1483 return 0;
1484 }
1485 #endif
1486
1487 int vma_wants_writenotify(struct vm_area_struct *vma);
1488
1489 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1490 spinlock_t **ptl);
1491 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1492 spinlock_t **ptl)
1493 {
1494 pte_t *ptep;
1495 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
1496 return ptep;
1497 }
1498
1499 #ifdef __PAGETABLE_PUD_FOLDED
1500 static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd,
1501 unsigned long address)
1502 {
1503 return 0;
1504 }
1505 #else
1506 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
1507 #endif
1508
1509 #if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
1510 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
1511 unsigned long address)
1512 {
1513 return 0;
1514 }
1515
1516 static inline void mm_nr_pmds_init(struct mm_struct *mm) {}
1517
1518 static inline unsigned long mm_nr_pmds(struct mm_struct *mm)
1519 {
1520 return 0;
1521 }
1522
1523 static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
1524 static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
1525
1526 #else
1527 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
1528
1529 static inline void mm_nr_pmds_init(struct mm_struct *mm)
1530 {
1531 atomic_long_set(&mm->nr_pmds, 0);
1532 }
1533
1534 static inline unsigned long mm_nr_pmds(struct mm_struct *mm)
1535 {
1536 return atomic_long_read(&mm->nr_pmds);
1537 }
1538
1539 static inline void mm_inc_nr_pmds(struct mm_struct *mm)
1540 {
1541 atomic_long_inc(&mm->nr_pmds);
1542 }
1543
1544 static inline void mm_dec_nr_pmds(struct mm_struct *mm)
1545 {
1546 atomic_long_dec(&mm->nr_pmds);
1547 }
1548 #endif
1549
1550 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address);
1551 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
1552
1553 /*
1554 * The following ifdef needed to get the 4level-fixup.h header to work.
1555 * Remove it when 4level-fixup.h has been removed.
1556 */
1557 #if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
1558 static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
1559 {
1560 return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))?
1561 NULL: pud_offset(pgd, address);
1562 }
1563
1564 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1565 {
1566 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
1567 NULL: pmd_offset(pud, address);
1568 }
1569 #endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
1570
1571 #if USE_SPLIT_PTE_PTLOCKS
1572 #if ALLOC_SPLIT_PTLOCKS
1573 void __init ptlock_cache_init(void);
1574 extern bool ptlock_alloc(struct page *page);
1575 extern void ptlock_free(struct page *page);
1576
1577 static inline spinlock_t *ptlock_ptr(struct page *page)
1578 {
1579 return page->ptl;
1580 }
1581 #else /* ALLOC_SPLIT_PTLOCKS */
1582 static inline void ptlock_cache_init(void)
1583 {
1584 }
1585
1586 static inline bool ptlock_alloc(struct page *page)
1587 {
1588 return true;
1589 }
1590
1591 static inline void ptlock_free(struct page *page)
1592 {
1593 }
1594
1595 static inline spinlock_t *ptlock_ptr(struct page *page)
1596 {
1597 return &page->ptl;
1598 }
1599 #endif /* ALLOC_SPLIT_PTLOCKS */
1600
1601 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1602 {
1603 return ptlock_ptr(pmd_page(*pmd));
1604 }
1605
1606 static inline bool ptlock_init(struct page *page)
1607 {
1608 /*
1609 * prep_new_page() initialize page->private (and therefore page->ptl)
1610 * with 0. Make sure nobody took it in use in between.
1611 *
1612 * It can happen if arch try to use slab for page table allocation:
1613 * slab code uses page->slab_cache, which share storage with page->ptl.
1614 */
1615 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
1616 if (!ptlock_alloc(page))
1617 return false;
1618 spin_lock_init(ptlock_ptr(page));
1619 return true;
1620 }
1621
1622 /* Reset page->mapping so free_pages_check won't complain. */
1623 static inline void pte_lock_deinit(struct page *page)
1624 {
1625 page->mapping = NULL;
1626 ptlock_free(page);
1627 }
1628
1629 #else /* !USE_SPLIT_PTE_PTLOCKS */
1630 /*
1631 * We use mm->page_table_lock to guard all pagetable pages of the mm.
1632 */
1633 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1634 {
1635 return &mm->page_table_lock;
1636 }
1637 static inline void ptlock_cache_init(void) {}
1638 static inline bool ptlock_init(struct page *page) { return true; }
1639 static inline void pte_lock_deinit(struct page *page) {}
1640 #endif /* USE_SPLIT_PTE_PTLOCKS */
1641
1642 static inline void pgtable_init(void)
1643 {
1644 ptlock_cache_init();
1645 pgtable_cache_init();
1646 }
1647
1648 static inline bool pgtable_page_ctor(struct page *page)
1649 {
1650 if (!ptlock_init(page))
1651 return false;
1652 inc_zone_page_state(page, NR_PAGETABLE);
1653 return true;
1654 }
1655
1656 static inline void pgtable_page_dtor(struct page *page)
1657 {
1658 pte_lock_deinit(page);
1659 dec_zone_page_state(page, NR_PAGETABLE);
1660 }
1661
1662 #define pte_offset_map_lock(mm, pmd, address, ptlp) \
1663 ({ \
1664 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
1665 pte_t *__pte = pte_offset_map(pmd, address); \
1666 *(ptlp) = __ptl; \
1667 spin_lock(__ptl); \
1668 __pte; \
1669 })
1670
1671 #define pte_unmap_unlock(pte, ptl) do { \
1672 spin_unlock(ptl); \
1673 pte_unmap(pte); \
1674 } while (0)
1675
1676 #define pte_alloc(mm, pmd, address) \
1677 (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd, address))
1678
1679 #define pte_alloc_map(mm, pmd, address) \
1680 (pte_alloc(mm, pmd, address) ? NULL : pte_offset_map(pmd, address))
1681
1682 #define pte_alloc_map_lock(mm, pmd, address, ptlp) \
1683 (pte_alloc(mm, pmd, address) ? \
1684 NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
1685
1686 #define pte_alloc_kernel(pmd, address) \
1687 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
1688 NULL: pte_offset_kernel(pmd, address))
1689
1690 #if USE_SPLIT_PMD_PTLOCKS
1691
1692 static struct page *pmd_to_page(pmd_t *pmd)
1693 {
1694 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
1695 return virt_to_page((void *)((unsigned long) pmd & mask));
1696 }
1697
1698 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1699 {
1700 return ptlock_ptr(pmd_to_page(pmd));
1701 }
1702
1703 static inline bool pgtable_pmd_page_ctor(struct page *page)
1704 {
1705 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1706 page->pmd_huge_pte = NULL;
1707 #endif
1708 return ptlock_init(page);
1709 }
1710
1711 static inline void pgtable_pmd_page_dtor(struct page *page)
1712 {
1713 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1714 VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
1715 #endif
1716 ptlock_free(page);
1717 }
1718
1719 #define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte)
1720
1721 #else
1722
1723 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1724 {
1725 return &mm->page_table_lock;
1726 }
1727
1728 static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; }
1729 static inline void pgtable_pmd_page_dtor(struct page *page) {}
1730
1731 #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
1732
1733 #endif
1734
1735 static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
1736 {
1737 spinlock_t *ptl = pmd_lockptr(mm, pmd);
1738 spin_lock(ptl);
1739 return ptl;
1740 }
1741
1742 extern void free_area_init(unsigned long * zones_size);
1743 extern void free_area_init_node(int nid, unsigned long * zones_size,
1744 unsigned long zone_start_pfn, unsigned long *zholes_size);
1745 extern void free_initmem(void);
1746
1747 /*
1748 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
1749 * into the buddy system. The freed pages will be poisoned with pattern
1750 * "poison" if it's within range [0, UCHAR_MAX].
1751 * Return pages freed into the buddy system.
1752 */
1753 extern unsigned long free_reserved_area(void *start, void *end,
1754 int poison, char *s);
1755
1756 #ifdef CONFIG_HIGHMEM
1757 /*
1758 * Free a highmem page into the buddy system, adjusting totalhigh_pages
1759 * and totalram_pages.
1760 */
1761 extern void free_highmem_page(struct page *page);
1762 #endif
1763
1764 extern void adjust_managed_page_count(struct page *page, long count);
1765 extern void mem_init_print_info(const char *str);
1766
1767 extern void reserve_bootmem_region(unsigned long start, unsigned long end);
1768
1769 /* Free the reserved page into the buddy system, so it gets managed. */
1770 static inline void __free_reserved_page(struct page *page)
1771 {
1772 ClearPageReserved(page);
1773 init_page_count(page);
1774 __free_page(page);
1775 }
1776
1777 static inline void free_reserved_page(struct page *page)
1778 {
1779 __free_reserved_page(page);
1780 adjust_managed_page_count(page, 1);
1781 }
1782
1783 static inline void mark_page_reserved(struct page *page)
1784 {
1785 SetPageReserved(page);
1786 adjust_managed_page_count(page, -1);
1787 }
1788
1789 /*
1790 * Default method to free all the __init memory into the buddy system.
1791 * The freed pages will be poisoned with pattern "poison" if it's within
1792 * range [0, UCHAR_MAX].
1793 * Return pages freed into the buddy system.
1794 */
1795 static inline unsigned long free_initmem_default(int poison)
1796 {
1797 extern char __init_begin[], __init_end[];
1798
1799 return free_reserved_area(&__init_begin, &__init_end,
1800 poison, "unused kernel");
1801 }
1802
1803 static inline unsigned long get_num_physpages(void)
1804 {
1805 int nid;
1806 unsigned long phys_pages = 0;
1807
1808 for_each_online_node(nid)
1809 phys_pages += node_present_pages(nid);
1810
1811 return phys_pages;
1812 }
1813
1814 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1815 /*
1816 * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its
1817 * zones, allocate the backing mem_map and account for memory holes in a more
1818 * architecture independent manner. This is a substitute for creating the
1819 * zone_sizes[] and zholes_size[] arrays and passing them to
1820 * free_area_init_node()
1821 *
1822 * An architecture is expected to register range of page frames backed by
1823 * physical memory with memblock_add[_node]() before calling
1824 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
1825 * usage, an architecture is expected to do something like
1826 *
1827 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
1828 * max_highmem_pfn};
1829 * for_each_valid_physical_page_range()
1830 * memblock_add_node(base, size, nid)
1831 * free_area_init_nodes(max_zone_pfns);
1832 *
1833 * free_bootmem_with_active_regions() calls free_bootmem_node() for each
1834 * registered physical page range. Similarly
1835 * sparse_memory_present_with_active_regions() calls memory_present() for
1836 * each range when SPARSEMEM is enabled.
1837 *
1838 * See mm/page_alloc.c for more information on each function exposed by
1839 * CONFIG_HAVE_MEMBLOCK_NODE_MAP.
1840 */
1841 extern void free_area_init_nodes(unsigned long *max_zone_pfn);
1842 unsigned long node_map_pfn_alignment(void);
1843 unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
1844 unsigned long end_pfn);
1845 extern unsigned long absent_pages_in_range(unsigned long start_pfn,
1846 unsigned long end_pfn);
1847 extern void get_pfn_range_for_nid(unsigned int nid,
1848 unsigned long *start_pfn, unsigned long *end_pfn);
1849 extern unsigned long find_min_pfn_with_active_regions(void);
1850 extern void free_bootmem_with_active_regions(int nid,
1851 unsigned long max_low_pfn);
1852 extern void sparse_memory_present_with_active_regions(int nid);
1853
1854 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
1855
1856 #if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \
1857 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
1858 static inline int __early_pfn_to_nid(unsigned long pfn,
1859 struct mminit_pfnnid_cache *state)
1860 {
1861 return 0;
1862 }
1863 #else
1864 /* please see mm/page_alloc.c */
1865 extern int __meminit early_pfn_to_nid(unsigned long pfn);
1866 /* there is a per-arch backend function. */
1867 extern int __meminit __early_pfn_to_nid(unsigned long pfn,
1868 struct mminit_pfnnid_cache *state);
1869 #endif
1870
1871 extern void set_dma_reserve(unsigned long new_dma_reserve);
1872 extern void memmap_init_zone(unsigned long, int, unsigned long,
1873 unsigned long, enum memmap_context);
1874 extern void setup_per_zone_wmarks(void);
1875 extern int __meminit init_per_zone_wmark_min(void);
1876 extern void mem_init(void);
1877 extern void __init mmap_init(void);
1878 extern void show_mem(unsigned int flags);
1879 extern long si_mem_available(void);
1880 extern void si_meminfo(struct sysinfo * val);
1881 extern void si_meminfo_node(struct sysinfo *val, int nid);
1882
1883 extern __printf(3, 4)
1884 void warn_alloc_failed(gfp_t gfp_mask, unsigned int order,
1885 const char *fmt, ...);
1886
1887 extern void setup_per_cpu_pageset(void);
1888
1889 extern void zone_pcp_update(struct zone *zone);
1890 extern void zone_pcp_reset(struct zone *zone);
1891
1892 /* page_alloc.c */
1893 extern int min_free_kbytes;
1894 extern int watermark_scale_factor;
1895
1896 /* nommu.c */
1897 extern atomic_long_t mmap_pages_allocated;
1898 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
1899
1900 /* interval_tree.c */
1901 void vma_interval_tree_insert(struct vm_area_struct *node,
1902 struct rb_root *root);
1903 void vma_interval_tree_insert_after(struct vm_area_struct *node,
1904 struct vm_area_struct *prev,
1905 struct rb_root *root);
1906 void vma_interval_tree_remove(struct vm_area_struct *node,
1907 struct rb_root *root);
1908 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root *root,
1909 unsigned long start, unsigned long last);
1910 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
1911 unsigned long start, unsigned long last);
1912
1913 #define vma_interval_tree_foreach(vma, root, start, last) \
1914 for (vma = vma_interval_tree_iter_first(root, start, last); \
1915 vma; vma = vma_interval_tree_iter_next(vma, start, last))
1916
1917 void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
1918 struct rb_root *root);
1919 void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
1920 struct rb_root *root);
1921 struct anon_vma_chain *anon_vma_interval_tree_iter_first(
1922 struct rb_root *root, unsigned long start, unsigned long last);
1923 struct anon_vma_chain *anon_vma_interval_tree_iter_next(
1924 struct anon_vma_chain *node, unsigned long start, unsigned long last);
1925 #ifdef CONFIG_DEBUG_VM_RB
1926 void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
1927 #endif
1928
1929 #define anon_vma_interval_tree_foreach(avc, root, start, last) \
1930 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
1931 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
1932
1933 /* mmap.c */
1934 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
1935 extern int vma_adjust(struct vm_area_struct *vma, unsigned long start,
1936 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert);
1937 extern struct vm_area_struct *vma_merge(struct mm_struct *,
1938 struct vm_area_struct *prev, unsigned long addr, unsigned long end,
1939 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
1940 struct mempolicy *, struct vm_userfaultfd_ctx);
1941 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
1942 extern int split_vma(struct mm_struct *,
1943 struct vm_area_struct *, unsigned long addr, int new_below);
1944 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
1945 extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
1946 struct rb_node **, struct rb_node *);
1947 extern void unlink_file_vma(struct vm_area_struct *);
1948 extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
1949 unsigned long addr, unsigned long len, pgoff_t pgoff,
1950 bool *need_rmap_locks);
1951 extern void exit_mmap(struct mm_struct *);
1952
1953 static inline int check_data_rlimit(unsigned long rlim,
1954 unsigned long new,
1955 unsigned long start,
1956 unsigned long end_data,
1957 unsigned long start_data)
1958 {
1959 if (rlim < RLIM_INFINITY) {
1960 if (((new - start) + (end_data - start_data)) > rlim)
1961 return -ENOSPC;
1962 }
1963
1964 return 0;
1965 }
1966
1967 extern int mm_take_all_locks(struct mm_struct *mm);
1968 extern void mm_drop_all_locks(struct mm_struct *mm);
1969
1970 extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
1971 extern struct file *get_mm_exe_file(struct mm_struct *mm);
1972
1973 extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
1974 extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
1975
1976 extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
1977 unsigned long addr, unsigned long len,
1978 unsigned long flags,
1979 const struct vm_special_mapping *spec);
1980 /* This is an obsolete alternative to _install_special_mapping. */
1981 extern int install_special_mapping(struct mm_struct *mm,
1982 unsigned long addr, unsigned long len,
1983 unsigned long flags, struct page **pages);
1984
1985 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
1986
1987 extern unsigned long mmap_region(struct file *file, unsigned long addr,
1988 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff);
1989 extern unsigned long do_mmap(struct file *file, unsigned long addr,
1990 unsigned long len, unsigned long prot, unsigned long flags,
1991 vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate);
1992 extern int do_munmap(struct mm_struct *, unsigned long, size_t);
1993
1994 static inline unsigned long
1995 do_mmap_pgoff(struct file *file, unsigned long addr,
1996 unsigned long len, unsigned long prot, unsigned long flags,
1997 unsigned long pgoff, unsigned long *populate)
1998 {
1999 return do_mmap(file, addr, len, prot, flags, 0, pgoff, populate);
2000 }
2001
2002 #ifdef CONFIG_MMU
2003 extern int __mm_populate(unsigned long addr, unsigned long len,
2004 int ignore_errors);
2005 static inline void mm_populate(unsigned long addr, unsigned long len)
2006 {
2007 /* Ignore errors */
2008 (void) __mm_populate(addr, len, 1);
2009 }
2010 #else
2011 static inline void mm_populate(unsigned long addr, unsigned long len) {}
2012 #endif
2013
2014 /* These take the mm semaphore themselves */
2015 extern unsigned long vm_brk(unsigned long, unsigned long);
2016 extern int vm_munmap(unsigned long, size_t);
2017 extern unsigned long vm_mmap(struct file *, unsigned long,
2018 unsigned long, unsigned long,
2019 unsigned long, unsigned long);
2020
2021 struct vm_unmapped_area_info {
2022 #define VM_UNMAPPED_AREA_TOPDOWN 1
2023 unsigned long flags;
2024 unsigned long length;
2025 unsigned long low_limit;
2026 unsigned long high_limit;
2027 unsigned long align_mask;
2028 unsigned long align_offset;
2029 };
2030
2031 extern unsigned long unmapped_area(struct vm_unmapped_area_info *info);
2032 extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info);
2033
2034 /*
2035 * Search for an unmapped address range.
2036 *
2037 * We are looking for a range that:
2038 * - does not intersect with any VMA;
2039 * - is contained within the [low_limit, high_limit) interval;
2040 * - is at least the desired size.
2041 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
2042 */
2043 static inline unsigned long
2044 vm_unmapped_area(struct vm_unmapped_area_info *info)
2045 {
2046 if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
2047 return unmapped_area_topdown(info);
2048 else
2049 return unmapped_area(info);
2050 }
2051
2052 /* truncate.c */
2053 extern void truncate_inode_pages(struct address_space *, loff_t);
2054 extern void truncate_inode_pages_range(struct address_space *,
2055 loff_t lstart, loff_t lend);
2056 extern void truncate_inode_pages_final(struct address_space *);
2057
2058 /* generic vm_area_ops exported for stackable file systems */
2059 extern int filemap_fault(struct vm_area_struct *, struct vm_fault *);
2060 extern void filemap_map_pages(struct vm_area_struct *vma, struct vm_fault *vmf);
2061 extern int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf);
2062
2063 /* mm/page-writeback.c */
2064 int write_one_page(struct page *page, int wait);
2065 void task_dirty_inc(struct task_struct *tsk);
2066
2067 /* readahead.c */
2068 #define VM_MAX_READAHEAD 128 /* kbytes */
2069 #define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */
2070
2071 int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
2072 pgoff_t offset, unsigned long nr_to_read);
2073
2074 void page_cache_sync_readahead(struct address_space *mapping,
2075 struct file_ra_state *ra,
2076 struct file *filp,
2077 pgoff_t offset,
2078 unsigned long size);
2079
2080 void page_cache_async_readahead(struct address_space *mapping,
2081 struct file_ra_state *ra,
2082 struct file *filp,
2083 struct page *pg,
2084 pgoff_t offset,
2085 unsigned long size);
2086
2087 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
2088 extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
2089
2090 /* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
2091 extern int expand_downwards(struct vm_area_struct *vma,
2092 unsigned long address);
2093 #if VM_GROWSUP
2094 extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
2095 #else
2096 #define expand_upwards(vma, address) (0)
2097 #endif
2098
2099 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
2100 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
2101 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
2102 struct vm_area_struct **pprev);
2103
2104 /* Look up the first VMA which intersects the interval start_addr..end_addr-1,
2105 NULL if none. Assume start_addr < end_addr. */
2106 static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
2107 {
2108 struct vm_area_struct * vma = find_vma(mm,start_addr);
2109
2110 if (vma && end_addr <= vma->vm_start)
2111 vma = NULL;
2112 return vma;
2113 }
2114
2115 static inline unsigned long vma_pages(struct vm_area_struct *vma)
2116 {
2117 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
2118 }
2119
2120 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */
2121 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
2122 unsigned long vm_start, unsigned long vm_end)
2123 {
2124 struct vm_area_struct *vma = find_vma(mm, vm_start);
2125
2126 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
2127 vma = NULL;
2128
2129 return vma;
2130 }
2131
2132 #ifdef CONFIG_MMU
2133 pgprot_t vm_get_page_prot(unsigned long vm_flags);
2134 void vma_set_page_prot(struct vm_area_struct *vma);
2135 #else
2136 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
2137 {
2138 return __pgprot(0);
2139 }
2140 static inline void vma_set_page_prot(struct vm_area_struct *vma)
2141 {
2142 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2143 }
2144 #endif
2145
2146 #ifdef CONFIG_NUMA_BALANCING
2147 unsigned long change_prot_numa(struct vm_area_struct *vma,
2148 unsigned long start, unsigned long end);
2149 #endif
2150
2151 struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
2152 int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
2153 unsigned long pfn, unsigned long size, pgprot_t);
2154 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
2155 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2156 unsigned long pfn);
2157 int vm_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2158 unsigned long pfn, pgprot_t pgprot);
2159 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2160 pfn_t pfn);
2161 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
2162
2163
2164 struct page *follow_page_mask(struct vm_area_struct *vma,
2165 unsigned long address, unsigned int foll_flags,
2166 unsigned int *page_mask);
2167
2168 static inline struct page *follow_page(struct vm_area_struct *vma,
2169 unsigned long address, unsigned int foll_flags)
2170 {
2171 unsigned int unused_page_mask;
2172 return follow_page_mask(vma, address, foll_flags, &unused_page_mask);
2173 }
2174
2175 #define FOLL_WRITE 0x01 /* check pte is writable */
2176 #define FOLL_TOUCH 0x02 /* mark page accessed */
2177 #define FOLL_GET 0x04 /* do get_page on page */
2178 #define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
2179 #define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
2180 #define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO
2181 * and return without waiting upon it */
2182 #define FOLL_POPULATE 0x40 /* fault in page */
2183 #define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */
2184 #define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */
2185 #define FOLL_NUMA 0x200 /* force NUMA hinting page fault */
2186 #define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */
2187 #define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */
2188 #define FOLL_MLOCK 0x1000 /* lock present pages */
2189 #define FOLL_REMOTE 0x2000 /* we are working on non-current tsk/mm */
2190
2191 typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
2192 void *data);
2193 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
2194 unsigned long size, pte_fn_t fn, void *data);
2195
2196
2197 #ifdef CONFIG_PAGE_POISONING
2198 extern bool page_poisoning_enabled(void);
2199 extern void kernel_poison_pages(struct page *page, int numpages, int enable);
2200 extern bool page_is_poisoned(struct page *page);
2201 #else
2202 static inline bool page_poisoning_enabled(void) { return false; }
2203 static inline void kernel_poison_pages(struct page *page, int numpages,
2204 int enable) { }
2205 static inline bool page_is_poisoned(struct page *page) { return false; }
2206 #endif
2207
2208 #ifdef CONFIG_DEBUG_PAGEALLOC
2209 extern bool _debug_pagealloc_enabled;
2210 extern void __kernel_map_pages(struct page *page, int numpages, int enable);
2211
2212 static inline bool debug_pagealloc_enabled(void)
2213 {
2214 return _debug_pagealloc_enabled;
2215 }
2216
2217 static inline void
2218 kernel_map_pages(struct page *page, int numpages, int enable)
2219 {
2220 if (!debug_pagealloc_enabled())
2221 return;
2222
2223 __kernel_map_pages(page, numpages, enable);
2224 }
2225 #ifdef CONFIG_HIBERNATION
2226 extern bool kernel_page_present(struct page *page);
2227 #endif /* CONFIG_HIBERNATION */
2228 #else /* CONFIG_DEBUG_PAGEALLOC */
2229 static inline void
2230 kernel_map_pages(struct page *page, int numpages, int enable) {}
2231 #ifdef CONFIG_HIBERNATION
2232 static inline bool kernel_page_present(struct page *page) { return true; }
2233 #endif /* CONFIG_HIBERNATION */
2234 static inline bool debug_pagealloc_enabled(void)
2235 {
2236 return false;
2237 }
2238 #endif /* CONFIG_DEBUG_PAGEALLOC */
2239
2240 #ifdef __HAVE_ARCH_GATE_AREA
2241 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
2242 extern int in_gate_area_no_mm(unsigned long addr);
2243 extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
2244 #else
2245 static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
2246 {
2247 return NULL;
2248 }
2249 static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
2250 static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
2251 {
2252 return 0;
2253 }
2254 #endif /* __HAVE_ARCH_GATE_AREA */
2255
2256 #ifdef CONFIG_SYSCTL
2257 extern int sysctl_drop_caches;
2258 int drop_caches_sysctl_handler(struct ctl_table *, int,
2259 void __user *, size_t *, loff_t *);
2260 #endif
2261
2262 void drop_slab(void);
2263 void drop_slab_node(int nid);
2264
2265 #ifndef CONFIG_MMU
2266 #define randomize_va_space 0
2267 #else
2268 extern int randomize_va_space;
2269 #endif
2270
2271 const char * arch_vma_name(struct vm_area_struct *vma);
2272 void print_vma_addr(char *prefix, unsigned long rip);
2273
2274 void sparse_mem_maps_populate_node(struct page **map_map,
2275 unsigned long pnum_begin,
2276 unsigned long pnum_end,
2277 unsigned long map_count,
2278 int nodeid);
2279
2280 struct page *sparse_mem_map_populate(unsigned long pnum, int nid);
2281 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
2282 pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node);
2283 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
2284 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
2285 void *vmemmap_alloc_block(unsigned long size, int node);
2286 struct vmem_altmap;
2287 void *__vmemmap_alloc_block_buf(unsigned long size, int node,
2288 struct vmem_altmap *altmap);
2289 static inline void *vmemmap_alloc_block_buf(unsigned long size, int node)
2290 {
2291 return __vmemmap_alloc_block_buf(size, node, NULL);
2292 }
2293
2294 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
2295 int vmemmap_populate_basepages(unsigned long start, unsigned long end,
2296 int node);
2297 int vmemmap_populate(unsigned long start, unsigned long end, int node);
2298 void vmemmap_populate_print_last(void);
2299 #ifdef CONFIG_MEMORY_HOTPLUG
2300 void vmemmap_free(unsigned long start, unsigned long end);
2301 #endif
2302 void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
2303 unsigned long size);
2304
2305 enum mf_flags {
2306 MF_COUNT_INCREASED = 1 << 0,
2307 MF_ACTION_REQUIRED = 1 << 1,
2308 MF_MUST_KILL = 1 << 2,
2309 MF_SOFT_OFFLINE = 1 << 3,
2310 };
2311 extern int memory_failure(unsigned long pfn, int trapno, int flags);
2312 extern void memory_failure_queue(unsigned long pfn, int trapno, int flags);
2313 extern int unpoison_memory(unsigned long pfn);
2314 extern int get_hwpoison_page(struct page *page);
2315 #define put_hwpoison_page(page) put_page(page)
2316 extern int sysctl_memory_failure_early_kill;
2317 extern int sysctl_memory_failure_recovery;
2318 extern void shake_page(struct page *p, int access);
2319 extern atomic_long_t num_poisoned_pages;
2320 extern int soft_offline_page(struct page *page, int flags);
2321
2322
2323 /*
2324 * Error handlers for various types of pages.
2325 */
2326 enum mf_result {
2327 MF_IGNORED, /* Error: cannot be handled */
2328 MF_FAILED, /* Error: handling failed */
2329 MF_DELAYED, /* Will be handled later */
2330 MF_RECOVERED, /* Successfully recovered */
2331 };
2332
2333 enum mf_action_page_type {
2334 MF_MSG_KERNEL,
2335 MF_MSG_KERNEL_HIGH_ORDER,
2336 MF_MSG_SLAB,
2337 MF_MSG_DIFFERENT_COMPOUND,
2338 MF_MSG_POISONED_HUGE,
2339 MF_MSG_HUGE,
2340 MF_MSG_FREE_HUGE,
2341 MF_MSG_UNMAP_FAILED,
2342 MF_MSG_DIRTY_SWAPCACHE,
2343 MF_MSG_CLEAN_SWAPCACHE,
2344 MF_MSG_DIRTY_MLOCKED_LRU,
2345 MF_MSG_CLEAN_MLOCKED_LRU,
2346 MF_MSG_DIRTY_UNEVICTABLE_LRU,
2347 MF_MSG_CLEAN_UNEVICTABLE_LRU,
2348 MF_MSG_DIRTY_LRU,
2349 MF_MSG_CLEAN_LRU,
2350 MF_MSG_TRUNCATED_LRU,
2351 MF_MSG_BUDDY,
2352 MF_MSG_BUDDY_2ND,
2353 MF_MSG_UNKNOWN,
2354 };
2355
2356 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
2357 extern void clear_huge_page(struct page *page,
2358 unsigned long addr,
2359 unsigned int pages_per_huge_page);
2360 extern void copy_user_huge_page(struct page *dst, struct page *src,
2361 unsigned long addr, struct vm_area_struct *vma,
2362 unsigned int pages_per_huge_page);
2363 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
2364
2365 extern struct page_ext_operations debug_guardpage_ops;
2366 extern struct page_ext_operations page_poisoning_ops;
2367
2368 #ifdef CONFIG_DEBUG_PAGEALLOC
2369 extern unsigned int _debug_guardpage_minorder;
2370 extern bool _debug_guardpage_enabled;
2371
2372 static inline unsigned int debug_guardpage_minorder(void)
2373 {
2374 return _debug_guardpage_minorder;
2375 }
2376
2377 static inline bool debug_guardpage_enabled(void)
2378 {
2379 return _debug_guardpage_enabled;
2380 }
2381
2382 static inline bool page_is_guard(struct page *page)
2383 {
2384 struct page_ext *page_ext;
2385
2386 if (!debug_guardpage_enabled())
2387 return false;
2388
2389 page_ext = lookup_page_ext(page);
2390 return test_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
2391 }
2392 #else
2393 static inline unsigned int debug_guardpage_minorder(void) { return 0; }
2394 static inline bool debug_guardpage_enabled(void) { return false; }
2395 static inline bool page_is_guard(struct page *page) { return false; }
2396 #endif /* CONFIG_DEBUG_PAGEALLOC */
2397
2398 #if MAX_NUMNODES > 1
2399 void __init setup_nr_node_ids(void);
2400 #else
2401 static inline void setup_nr_node_ids(void) {}
2402 #endif
2403
2404 #endif /* __KERNEL__ */
2405 #endif /* _LINUX_MM_H */
This page took 0.085178 seconds and 6 git commands to generate.