Merge tag 'backlight-for-linus-4.4' of git://git.kernel.org/pub/scm/linux/kernel...
[deliverable/linux.git] / include / linux / mm.h
1 #ifndef _LINUX_MM_H
2 #define _LINUX_MM_H
3
4 #include <linux/errno.h>
5
6 #ifdef __KERNEL__
7
8 #include <linux/mmdebug.h>
9 #include <linux/gfp.h>
10 #include <linux/bug.h>
11 #include <linux/list.h>
12 #include <linux/mmzone.h>
13 #include <linux/rbtree.h>
14 #include <linux/atomic.h>
15 #include <linux/debug_locks.h>
16 #include <linux/mm_types.h>
17 #include <linux/range.h>
18 #include <linux/pfn.h>
19 #include <linux/bit_spinlock.h>
20 #include <linux/shrinker.h>
21 #include <linux/resource.h>
22 #include <linux/page_ext.h>
23 #include <linux/err.h>
24
25 struct mempolicy;
26 struct anon_vma;
27 struct anon_vma_chain;
28 struct file_ra_state;
29 struct user_struct;
30 struct writeback_control;
31 struct bdi_writeback;
32
33 #ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */
34 extern unsigned long max_mapnr;
35
36 static inline void set_max_mapnr(unsigned long limit)
37 {
38 max_mapnr = limit;
39 }
40 #else
41 static inline void set_max_mapnr(unsigned long limit) { }
42 #endif
43
44 extern unsigned long totalram_pages;
45 extern void * high_memory;
46 extern int page_cluster;
47
48 #ifdef CONFIG_SYSCTL
49 extern int sysctl_legacy_va_layout;
50 #else
51 #define sysctl_legacy_va_layout 0
52 #endif
53
54 #include <asm/page.h>
55 #include <asm/pgtable.h>
56 #include <asm/processor.h>
57
58 #ifndef __pa_symbol
59 #define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0))
60 #endif
61
62 /*
63 * To prevent common memory management code establishing
64 * a zero page mapping on a read fault.
65 * This macro should be defined within <asm/pgtable.h>.
66 * s390 does this to prevent multiplexing of hardware bits
67 * related to the physical page in case of virtualization.
68 */
69 #ifndef mm_forbids_zeropage
70 #define mm_forbids_zeropage(X) (0)
71 #endif
72
73 extern unsigned long sysctl_user_reserve_kbytes;
74 extern unsigned long sysctl_admin_reserve_kbytes;
75
76 extern int sysctl_overcommit_memory;
77 extern int sysctl_overcommit_ratio;
78 extern unsigned long sysctl_overcommit_kbytes;
79
80 extern int overcommit_ratio_handler(struct ctl_table *, int, void __user *,
81 size_t *, loff_t *);
82 extern int overcommit_kbytes_handler(struct ctl_table *, int, void __user *,
83 size_t *, loff_t *);
84
85 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
86
87 /* to align the pointer to the (next) page boundary */
88 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
89
90 /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
91 #define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)addr, PAGE_SIZE)
92
93 /*
94 * Linux kernel virtual memory manager primitives.
95 * The idea being to have a "virtual" mm in the same way
96 * we have a virtual fs - giving a cleaner interface to the
97 * mm details, and allowing different kinds of memory mappings
98 * (from shared memory to executable loading to arbitrary
99 * mmap() functions).
100 */
101
102 extern struct kmem_cache *vm_area_cachep;
103
104 #ifndef CONFIG_MMU
105 extern struct rb_root nommu_region_tree;
106 extern struct rw_semaphore nommu_region_sem;
107
108 extern unsigned int kobjsize(const void *objp);
109 #endif
110
111 /*
112 * vm_flags in vm_area_struct, see mm_types.h.
113 */
114 #define VM_NONE 0x00000000
115
116 #define VM_READ 0x00000001 /* currently active flags */
117 #define VM_WRITE 0x00000002
118 #define VM_EXEC 0x00000004
119 #define VM_SHARED 0x00000008
120
121 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
122 #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
123 #define VM_MAYWRITE 0x00000020
124 #define VM_MAYEXEC 0x00000040
125 #define VM_MAYSHARE 0x00000080
126
127 #define VM_GROWSDOWN 0x00000100 /* general info on the segment */
128 #define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */
129 #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
130 #define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
131 #define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */
132
133 #define VM_LOCKED 0x00002000
134 #define VM_IO 0x00004000 /* Memory mapped I/O or similar */
135
136 /* Used by sys_madvise() */
137 #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
138 #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
139
140 #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
141 #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
142 #define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */
143 #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
144 #define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
145 #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
146 #define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
147 #define VM_ARCH_2 0x02000000
148 #define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
149
150 #ifdef CONFIG_MEM_SOFT_DIRTY
151 # define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */
152 #else
153 # define VM_SOFTDIRTY 0
154 #endif
155
156 #define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
157 #define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
158 #define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
159 #define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
160
161 #if defined(CONFIG_X86)
162 # define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
163 #elif defined(CONFIG_PPC)
164 # define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
165 #elif defined(CONFIG_PARISC)
166 # define VM_GROWSUP VM_ARCH_1
167 #elif defined(CONFIG_METAG)
168 # define VM_GROWSUP VM_ARCH_1
169 #elif defined(CONFIG_IA64)
170 # define VM_GROWSUP VM_ARCH_1
171 #elif !defined(CONFIG_MMU)
172 # define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
173 #endif
174
175 #if defined(CONFIG_X86)
176 /* MPX specific bounds table or bounds directory */
177 # define VM_MPX VM_ARCH_2
178 #endif
179
180 #ifndef VM_GROWSUP
181 # define VM_GROWSUP VM_NONE
182 #endif
183
184 /* Bits set in the VMA until the stack is in its final location */
185 #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
186
187 #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
188 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
189 #endif
190
191 #ifdef CONFIG_STACK_GROWSUP
192 #define VM_STACK_FLAGS (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
193 #else
194 #define VM_STACK_FLAGS (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
195 #endif
196
197 /*
198 * Special vmas that are non-mergable, non-mlock()able.
199 * Note: mm/huge_memory.c VM_NO_THP depends on this definition.
200 */
201 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
202
203 /* This mask defines which mm->def_flags a process can inherit its parent */
204 #define VM_INIT_DEF_MASK VM_NOHUGEPAGE
205
206 /* This mask is used to clear all the VMA flags used by mlock */
207 #define VM_LOCKED_CLEAR_MASK (~(VM_LOCKED | VM_LOCKONFAULT))
208
209 /*
210 * mapping from the currently active vm_flags protection bits (the
211 * low four bits) to a page protection mask..
212 */
213 extern pgprot_t protection_map[16];
214
215 #define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */
216 #define FAULT_FLAG_MKWRITE 0x02 /* Fault was mkwrite of existing pte */
217 #define FAULT_FLAG_ALLOW_RETRY 0x04 /* Retry fault if blocking */
218 #define FAULT_FLAG_RETRY_NOWAIT 0x08 /* Don't drop mmap_sem and wait when retrying */
219 #define FAULT_FLAG_KILLABLE 0x10 /* The fault task is in SIGKILL killable region */
220 #define FAULT_FLAG_TRIED 0x20 /* Second try */
221 #define FAULT_FLAG_USER 0x40 /* The fault originated in userspace */
222
223 /*
224 * vm_fault is filled by the the pagefault handler and passed to the vma's
225 * ->fault function. The vma's ->fault is responsible for returning a bitmask
226 * of VM_FAULT_xxx flags that give details about how the fault was handled.
227 *
228 * pgoff should be used in favour of virtual_address, if possible.
229 */
230 struct vm_fault {
231 unsigned int flags; /* FAULT_FLAG_xxx flags */
232 pgoff_t pgoff; /* Logical page offset based on vma */
233 void __user *virtual_address; /* Faulting virtual address */
234
235 struct page *cow_page; /* Handler may choose to COW */
236 struct page *page; /* ->fault handlers should return a
237 * page here, unless VM_FAULT_NOPAGE
238 * is set (which is also implied by
239 * VM_FAULT_ERROR).
240 */
241 /* for ->map_pages() only */
242 pgoff_t max_pgoff; /* map pages for offset from pgoff till
243 * max_pgoff inclusive */
244 pte_t *pte; /* pte entry associated with ->pgoff */
245 };
246
247 /*
248 * These are the virtual MM functions - opening of an area, closing and
249 * unmapping it (needed to keep files on disk up-to-date etc), pointer
250 * to the functions called when a no-page or a wp-page exception occurs.
251 */
252 struct vm_operations_struct {
253 void (*open)(struct vm_area_struct * area);
254 void (*close)(struct vm_area_struct * area);
255 int (*mremap)(struct vm_area_struct * area);
256 int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf);
257 int (*pmd_fault)(struct vm_area_struct *, unsigned long address,
258 pmd_t *, unsigned int flags);
259 void (*map_pages)(struct vm_area_struct *vma, struct vm_fault *vmf);
260
261 /* notification that a previously read-only page is about to become
262 * writable, if an error is returned it will cause a SIGBUS */
263 int (*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
264
265 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
266 int (*pfn_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
267
268 /* called by access_process_vm when get_user_pages() fails, typically
269 * for use by special VMAs that can switch between memory and hardware
270 */
271 int (*access)(struct vm_area_struct *vma, unsigned long addr,
272 void *buf, int len, int write);
273
274 /* Called by the /proc/PID/maps code to ask the vma whether it
275 * has a special name. Returning non-NULL will also cause this
276 * vma to be dumped unconditionally. */
277 const char *(*name)(struct vm_area_struct *vma);
278
279 #ifdef CONFIG_NUMA
280 /*
281 * set_policy() op must add a reference to any non-NULL @new mempolicy
282 * to hold the policy upon return. Caller should pass NULL @new to
283 * remove a policy and fall back to surrounding context--i.e. do not
284 * install a MPOL_DEFAULT policy, nor the task or system default
285 * mempolicy.
286 */
287 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
288
289 /*
290 * get_policy() op must add reference [mpol_get()] to any policy at
291 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
292 * in mm/mempolicy.c will do this automatically.
293 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
294 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
295 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
296 * must return NULL--i.e., do not "fallback" to task or system default
297 * policy.
298 */
299 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
300 unsigned long addr);
301 #endif
302 /*
303 * Called by vm_normal_page() for special PTEs to find the
304 * page for @addr. This is useful if the default behavior
305 * (using pte_page()) would not find the correct page.
306 */
307 struct page *(*find_special_page)(struct vm_area_struct *vma,
308 unsigned long addr);
309 };
310
311 struct mmu_gather;
312 struct inode;
313
314 #define page_private(page) ((page)->private)
315 #define set_page_private(page, v) ((page)->private = (v))
316
317 /*
318 * FIXME: take this include out, include page-flags.h in
319 * files which need it (119 of them)
320 */
321 #include <linux/page-flags.h>
322 #include <linux/huge_mm.h>
323
324 /*
325 * Methods to modify the page usage count.
326 *
327 * What counts for a page usage:
328 * - cache mapping (page->mapping)
329 * - private data (page->private)
330 * - page mapped in a task's page tables, each mapping
331 * is counted separately
332 *
333 * Also, many kernel routines increase the page count before a critical
334 * routine so they can be sure the page doesn't go away from under them.
335 */
336
337 /*
338 * Drop a ref, return true if the refcount fell to zero (the page has no users)
339 */
340 static inline int put_page_testzero(struct page *page)
341 {
342 VM_BUG_ON_PAGE(atomic_read(&page->_count) == 0, page);
343 return atomic_dec_and_test(&page->_count);
344 }
345
346 /*
347 * Try to grab a ref unless the page has a refcount of zero, return false if
348 * that is the case.
349 * This can be called when MMU is off so it must not access
350 * any of the virtual mappings.
351 */
352 static inline int get_page_unless_zero(struct page *page)
353 {
354 return atomic_inc_not_zero(&page->_count);
355 }
356
357 extern int page_is_ram(unsigned long pfn);
358
359 enum {
360 REGION_INTERSECTS,
361 REGION_DISJOINT,
362 REGION_MIXED,
363 };
364
365 int region_intersects(resource_size_t offset, size_t size, const char *type);
366
367 /* Support for virtually mapped pages */
368 struct page *vmalloc_to_page(const void *addr);
369 unsigned long vmalloc_to_pfn(const void *addr);
370
371 /*
372 * Determine if an address is within the vmalloc range
373 *
374 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
375 * is no special casing required.
376 */
377 static inline int is_vmalloc_addr(const void *x)
378 {
379 #ifdef CONFIG_MMU
380 unsigned long addr = (unsigned long)x;
381
382 return addr >= VMALLOC_START && addr < VMALLOC_END;
383 #else
384 return 0;
385 #endif
386 }
387 #ifdef CONFIG_MMU
388 extern int is_vmalloc_or_module_addr(const void *x);
389 #else
390 static inline int is_vmalloc_or_module_addr(const void *x)
391 {
392 return 0;
393 }
394 #endif
395
396 extern void kvfree(const void *addr);
397
398 static inline void compound_lock(struct page *page)
399 {
400 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
401 VM_BUG_ON_PAGE(PageSlab(page), page);
402 bit_spin_lock(PG_compound_lock, &page->flags);
403 #endif
404 }
405
406 static inline void compound_unlock(struct page *page)
407 {
408 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
409 VM_BUG_ON_PAGE(PageSlab(page), page);
410 bit_spin_unlock(PG_compound_lock, &page->flags);
411 #endif
412 }
413
414 static inline unsigned long compound_lock_irqsave(struct page *page)
415 {
416 unsigned long uninitialized_var(flags);
417 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
418 local_irq_save(flags);
419 compound_lock(page);
420 #endif
421 return flags;
422 }
423
424 static inline void compound_unlock_irqrestore(struct page *page,
425 unsigned long flags)
426 {
427 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
428 compound_unlock(page);
429 local_irq_restore(flags);
430 #endif
431 }
432
433 static inline struct page *compound_head_by_tail(struct page *tail)
434 {
435 struct page *head = tail->first_page;
436
437 /*
438 * page->first_page may be a dangling pointer to an old
439 * compound page, so recheck that it is still a tail
440 * page before returning.
441 */
442 smp_rmb();
443 if (likely(PageTail(tail)))
444 return head;
445 return tail;
446 }
447
448 /*
449 * Since either compound page could be dismantled asynchronously in THP
450 * or we access asynchronously arbitrary positioned struct page, there
451 * would be tail flag race. To handle this race, we should call
452 * smp_rmb() before checking tail flag. compound_head_by_tail() did it.
453 */
454 static inline struct page *compound_head(struct page *page)
455 {
456 if (unlikely(PageTail(page)))
457 return compound_head_by_tail(page);
458 return page;
459 }
460
461 /*
462 * If we access compound page synchronously such as access to
463 * allocated page, there is no need to handle tail flag race, so we can
464 * check tail flag directly without any synchronization primitive.
465 */
466 static inline struct page *compound_head_fast(struct page *page)
467 {
468 if (unlikely(PageTail(page)))
469 return page->first_page;
470 return page;
471 }
472
473 /*
474 * The atomic page->_mapcount, starts from -1: so that transitions
475 * both from it and to it can be tracked, using atomic_inc_and_test
476 * and atomic_add_negative(-1).
477 */
478 static inline void page_mapcount_reset(struct page *page)
479 {
480 atomic_set(&(page)->_mapcount, -1);
481 }
482
483 static inline int page_mapcount(struct page *page)
484 {
485 VM_BUG_ON_PAGE(PageSlab(page), page);
486 return atomic_read(&page->_mapcount) + 1;
487 }
488
489 static inline int page_count(struct page *page)
490 {
491 return atomic_read(&compound_head(page)->_count);
492 }
493
494 static inline bool __compound_tail_refcounted(struct page *page)
495 {
496 return PageAnon(page) && !PageSlab(page) && !PageHeadHuge(page);
497 }
498
499 /*
500 * This takes a head page as parameter and tells if the
501 * tail page reference counting can be skipped.
502 *
503 * For this to be safe, PageSlab and PageHeadHuge must remain true on
504 * any given page where they return true here, until all tail pins
505 * have been released.
506 */
507 static inline bool compound_tail_refcounted(struct page *page)
508 {
509 VM_BUG_ON_PAGE(!PageHead(page), page);
510 return __compound_tail_refcounted(page);
511 }
512
513 static inline void get_huge_page_tail(struct page *page)
514 {
515 /*
516 * __split_huge_page_refcount() cannot run from under us.
517 */
518 VM_BUG_ON_PAGE(!PageTail(page), page);
519 VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
520 VM_BUG_ON_PAGE(atomic_read(&page->_count) != 0, page);
521 if (compound_tail_refcounted(page->first_page))
522 atomic_inc(&page->_mapcount);
523 }
524
525 extern bool __get_page_tail(struct page *page);
526
527 static inline void get_page(struct page *page)
528 {
529 if (unlikely(PageTail(page)))
530 if (likely(__get_page_tail(page)))
531 return;
532 /*
533 * Getting a normal page or the head of a compound page
534 * requires to already have an elevated page->_count.
535 */
536 VM_BUG_ON_PAGE(atomic_read(&page->_count) <= 0, page);
537 atomic_inc(&page->_count);
538 }
539
540 static inline struct page *virt_to_head_page(const void *x)
541 {
542 struct page *page = virt_to_page(x);
543
544 /*
545 * We don't need to worry about synchronization of tail flag
546 * when we call virt_to_head_page() since it is only called for
547 * already allocated page and this page won't be freed until
548 * this virt_to_head_page() is finished. So use _fast variant.
549 */
550 return compound_head_fast(page);
551 }
552
553 /*
554 * Setup the page count before being freed into the page allocator for
555 * the first time (boot or memory hotplug)
556 */
557 static inline void init_page_count(struct page *page)
558 {
559 atomic_set(&page->_count, 1);
560 }
561
562 void put_page(struct page *page);
563 void put_pages_list(struct list_head *pages);
564
565 void split_page(struct page *page, unsigned int order);
566 int split_free_page(struct page *page);
567
568 /*
569 * Compound pages have a destructor function. Provide a
570 * prototype for that function and accessor functions.
571 * These are _only_ valid on the head of a PG_compound page.
572 */
573
574 static inline void set_compound_page_dtor(struct page *page,
575 compound_page_dtor *dtor)
576 {
577 page[1].compound_dtor = dtor;
578 }
579
580 static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
581 {
582 return page[1].compound_dtor;
583 }
584
585 static inline int compound_order(struct page *page)
586 {
587 if (!PageHead(page))
588 return 0;
589 return page[1].compound_order;
590 }
591
592 static inline void set_compound_order(struct page *page, unsigned long order)
593 {
594 page[1].compound_order = order;
595 }
596
597 #ifdef CONFIG_MMU
598 /*
599 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
600 * servicing faults for write access. In the normal case, do always want
601 * pte_mkwrite. But get_user_pages can cause write faults for mappings
602 * that do not have writing enabled, when used by access_process_vm.
603 */
604 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
605 {
606 if (likely(vma->vm_flags & VM_WRITE))
607 pte = pte_mkwrite(pte);
608 return pte;
609 }
610
611 void do_set_pte(struct vm_area_struct *vma, unsigned long address,
612 struct page *page, pte_t *pte, bool write, bool anon);
613 #endif
614
615 /*
616 * Multiple processes may "see" the same page. E.g. for untouched
617 * mappings of /dev/null, all processes see the same page full of
618 * zeroes, and text pages of executables and shared libraries have
619 * only one copy in memory, at most, normally.
620 *
621 * For the non-reserved pages, page_count(page) denotes a reference count.
622 * page_count() == 0 means the page is free. page->lru is then used for
623 * freelist management in the buddy allocator.
624 * page_count() > 0 means the page has been allocated.
625 *
626 * Pages are allocated by the slab allocator in order to provide memory
627 * to kmalloc and kmem_cache_alloc. In this case, the management of the
628 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
629 * unless a particular usage is carefully commented. (the responsibility of
630 * freeing the kmalloc memory is the caller's, of course).
631 *
632 * A page may be used by anyone else who does a __get_free_page().
633 * In this case, page_count still tracks the references, and should only
634 * be used through the normal accessor functions. The top bits of page->flags
635 * and page->virtual store page management information, but all other fields
636 * are unused and could be used privately, carefully. The management of this
637 * page is the responsibility of the one who allocated it, and those who have
638 * subsequently been given references to it.
639 *
640 * The other pages (we may call them "pagecache pages") are completely
641 * managed by the Linux memory manager: I/O, buffers, swapping etc.
642 * The following discussion applies only to them.
643 *
644 * A pagecache page contains an opaque `private' member, which belongs to the
645 * page's address_space. Usually, this is the address of a circular list of
646 * the page's disk buffers. PG_private must be set to tell the VM to call
647 * into the filesystem to release these pages.
648 *
649 * A page may belong to an inode's memory mapping. In this case, page->mapping
650 * is the pointer to the inode, and page->index is the file offset of the page,
651 * in units of PAGE_CACHE_SIZE.
652 *
653 * If pagecache pages are not associated with an inode, they are said to be
654 * anonymous pages. These may become associated with the swapcache, and in that
655 * case PG_swapcache is set, and page->private is an offset into the swapcache.
656 *
657 * In either case (swapcache or inode backed), the pagecache itself holds one
658 * reference to the page. Setting PG_private should also increment the
659 * refcount. The each user mapping also has a reference to the page.
660 *
661 * The pagecache pages are stored in a per-mapping radix tree, which is
662 * rooted at mapping->page_tree, and indexed by offset.
663 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
664 * lists, we instead now tag pages as dirty/writeback in the radix tree.
665 *
666 * All pagecache pages may be subject to I/O:
667 * - inode pages may need to be read from disk,
668 * - inode pages which have been modified and are MAP_SHARED may need
669 * to be written back to the inode on disk,
670 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
671 * modified may need to be swapped out to swap space and (later) to be read
672 * back into memory.
673 */
674
675 /*
676 * The zone field is never updated after free_area_init_core()
677 * sets it, so none of the operations on it need to be atomic.
678 */
679
680 /* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
681 #define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
682 #define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
683 #define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
684 #define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH)
685
686 /*
687 * Define the bit shifts to access each section. For non-existent
688 * sections we define the shift as 0; that plus a 0 mask ensures
689 * the compiler will optimise away reference to them.
690 */
691 #define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
692 #define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
693 #define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
694 #define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
695
696 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
697 #ifdef NODE_NOT_IN_PAGE_FLAGS
698 #define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
699 #define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
700 SECTIONS_PGOFF : ZONES_PGOFF)
701 #else
702 #define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
703 #define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
704 NODES_PGOFF : ZONES_PGOFF)
705 #endif
706
707 #define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
708
709 #if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
710 #error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
711 #endif
712
713 #define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
714 #define NODES_MASK ((1UL << NODES_WIDTH) - 1)
715 #define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
716 #define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1)
717 #define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
718
719 static inline enum zone_type page_zonenum(const struct page *page)
720 {
721 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
722 }
723
724 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
725 #define SECTION_IN_PAGE_FLAGS
726 #endif
727
728 /*
729 * The identification function is mainly used by the buddy allocator for
730 * determining if two pages could be buddies. We are not really identifying
731 * the zone since we could be using the section number id if we do not have
732 * node id available in page flags.
733 * We only guarantee that it will return the same value for two combinable
734 * pages in a zone.
735 */
736 static inline int page_zone_id(struct page *page)
737 {
738 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
739 }
740
741 static inline int zone_to_nid(struct zone *zone)
742 {
743 #ifdef CONFIG_NUMA
744 return zone->node;
745 #else
746 return 0;
747 #endif
748 }
749
750 #ifdef NODE_NOT_IN_PAGE_FLAGS
751 extern int page_to_nid(const struct page *page);
752 #else
753 static inline int page_to_nid(const struct page *page)
754 {
755 return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
756 }
757 #endif
758
759 #ifdef CONFIG_NUMA_BALANCING
760 static inline int cpu_pid_to_cpupid(int cpu, int pid)
761 {
762 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
763 }
764
765 static inline int cpupid_to_pid(int cpupid)
766 {
767 return cpupid & LAST__PID_MASK;
768 }
769
770 static inline int cpupid_to_cpu(int cpupid)
771 {
772 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
773 }
774
775 static inline int cpupid_to_nid(int cpupid)
776 {
777 return cpu_to_node(cpupid_to_cpu(cpupid));
778 }
779
780 static inline bool cpupid_pid_unset(int cpupid)
781 {
782 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
783 }
784
785 static inline bool cpupid_cpu_unset(int cpupid)
786 {
787 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
788 }
789
790 static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
791 {
792 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
793 }
794
795 #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
796 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
797 static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
798 {
799 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
800 }
801
802 static inline int page_cpupid_last(struct page *page)
803 {
804 return page->_last_cpupid;
805 }
806 static inline void page_cpupid_reset_last(struct page *page)
807 {
808 page->_last_cpupid = -1 & LAST_CPUPID_MASK;
809 }
810 #else
811 static inline int page_cpupid_last(struct page *page)
812 {
813 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
814 }
815
816 extern int page_cpupid_xchg_last(struct page *page, int cpupid);
817
818 static inline void page_cpupid_reset_last(struct page *page)
819 {
820 int cpupid = (1 << LAST_CPUPID_SHIFT) - 1;
821
822 page->flags &= ~(LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT);
823 page->flags |= (cpupid & LAST_CPUPID_MASK) << LAST_CPUPID_PGSHIFT;
824 }
825 #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
826 #else /* !CONFIG_NUMA_BALANCING */
827 static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
828 {
829 return page_to_nid(page); /* XXX */
830 }
831
832 static inline int page_cpupid_last(struct page *page)
833 {
834 return page_to_nid(page); /* XXX */
835 }
836
837 static inline int cpupid_to_nid(int cpupid)
838 {
839 return -1;
840 }
841
842 static inline int cpupid_to_pid(int cpupid)
843 {
844 return -1;
845 }
846
847 static inline int cpupid_to_cpu(int cpupid)
848 {
849 return -1;
850 }
851
852 static inline int cpu_pid_to_cpupid(int nid, int pid)
853 {
854 return -1;
855 }
856
857 static inline bool cpupid_pid_unset(int cpupid)
858 {
859 return 1;
860 }
861
862 static inline void page_cpupid_reset_last(struct page *page)
863 {
864 }
865
866 static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
867 {
868 return false;
869 }
870 #endif /* CONFIG_NUMA_BALANCING */
871
872 static inline struct zone *page_zone(const struct page *page)
873 {
874 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
875 }
876
877 #ifdef SECTION_IN_PAGE_FLAGS
878 static inline void set_page_section(struct page *page, unsigned long section)
879 {
880 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
881 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
882 }
883
884 static inline unsigned long page_to_section(const struct page *page)
885 {
886 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
887 }
888 #endif
889
890 static inline void set_page_zone(struct page *page, enum zone_type zone)
891 {
892 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
893 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
894 }
895
896 static inline void set_page_node(struct page *page, unsigned long node)
897 {
898 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
899 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
900 }
901
902 static inline void set_page_links(struct page *page, enum zone_type zone,
903 unsigned long node, unsigned long pfn)
904 {
905 set_page_zone(page, zone);
906 set_page_node(page, node);
907 #ifdef SECTION_IN_PAGE_FLAGS
908 set_page_section(page, pfn_to_section_nr(pfn));
909 #endif
910 }
911
912 #ifdef CONFIG_MEMCG
913 static inline struct mem_cgroup *page_memcg(struct page *page)
914 {
915 return page->mem_cgroup;
916 }
917
918 static inline void set_page_memcg(struct page *page, struct mem_cgroup *memcg)
919 {
920 page->mem_cgroup = memcg;
921 }
922 #else
923 static inline struct mem_cgroup *page_memcg(struct page *page)
924 {
925 return NULL;
926 }
927
928 static inline void set_page_memcg(struct page *page, struct mem_cgroup *memcg)
929 {
930 }
931 #endif
932
933 /*
934 * Some inline functions in vmstat.h depend on page_zone()
935 */
936 #include <linux/vmstat.h>
937
938 static __always_inline void *lowmem_page_address(const struct page *page)
939 {
940 return __va(PFN_PHYS(page_to_pfn(page)));
941 }
942
943 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
944 #define HASHED_PAGE_VIRTUAL
945 #endif
946
947 #if defined(WANT_PAGE_VIRTUAL)
948 static inline void *page_address(const struct page *page)
949 {
950 return page->virtual;
951 }
952 static inline void set_page_address(struct page *page, void *address)
953 {
954 page->virtual = address;
955 }
956 #define page_address_init() do { } while(0)
957 #endif
958
959 #if defined(HASHED_PAGE_VIRTUAL)
960 void *page_address(const struct page *page);
961 void set_page_address(struct page *page, void *virtual);
962 void page_address_init(void);
963 #endif
964
965 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
966 #define page_address(page) lowmem_page_address(page)
967 #define set_page_address(page, address) do { } while(0)
968 #define page_address_init() do { } while(0)
969 #endif
970
971 extern void *page_rmapping(struct page *page);
972 extern struct anon_vma *page_anon_vma(struct page *page);
973 extern struct address_space *page_mapping(struct page *page);
974
975 extern struct address_space *__page_file_mapping(struct page *);
976
977 static inline
978 struct address_space *page_file_mapping(struct page *page)
979 {
980 if (unlikely(PageSwapCache(page)))
981 return __page_file_mapping(page);
982
983 return page->mapping;
984 }
985
986 /*
987 * Return the pagecache index of the passed page. Regular pagecache pages
988 * use ->index whereas swapcache pages use ->private
989 */
990 static inline pgoff_t page_index(struct page *page)
991 {
992 if (unlikely(PageSwapCache(page)))
993 return page_private(page);
994 return page->index;
995 }
996
997 extern pgoff_t __page_file_index(struct page *page);
998
999 /*
1000 * Return the file index of the page. Regular pagecache pages use ->index
1001 * whereas swapcache pages use swp_offset(->private)
1002 */
1003 static inline pgoff_t page_file_index(struct page *page)
1004 {
1005 if (unlikely(PageSwapCache(page)))
1006 return __page_file_index(page);
1007
1008 return page->index;
1009 }
1010
1011 /*
1012 * Return true if this page is mapped into pagetables.
1013 */
1014 static inline int page_mapped(struct page *page)
1015 {
1016 return atomic_read(&(page)->_mapcount) >= 0;
1017 }
1018
1019 /*
1020 * Return true only if the page has been allocated with
1021 * ALLOC_NO_WATERMARKS and the low watermark was not
1022 * met implying that the system is under some pressure.
1023 */
1024 static inline bool page_is_pfmemalloc(struct page *page)
1025 {
1026 /*
1027 * Page index cannot be this large so this must be
1028 * a pfmemalloc page.
1029 */
1030 return page->index == -1UL;
1031 }
1032
1033 /*
1034 * Only to be called by the page allocator on a freshly allocated
1035 * page.
1036 */
1037 static inline void set_page_pfmemalloc(struct page *page)
1038 {
1039 page->index = -1UL;
1040 }
1041
1042 static inline void clear_page_pfmemalloc(struct page *page)
1043 {
1044 page->index = 0;
1045 }
1046
1047 /*
1048 * Different kinds of faults, as returned by handle_mm_fault().
1049 * Used to decide whether a process gets delivered SIGBUS or
1050 * just gets major/minor fault counters bumped up.
1051 */
1052
1053 #define VM_FAULT_MINOR 0 /* For backwards compat. Remove me quickly. */
1054
1055 #define VM_FAULT_OOM 0x0001
1056 #define VM_FAULT_SIGBUS 0x0002
1057 #define VM_FAULT_MAJOR 0x0004
1058 #define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */
1059 #define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */
1060 #define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */
1061 #define VM_FAULT_SIGSEGV 0x0040
1062
1063 #define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */
1064 #define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */
1065 #define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */
1066 #define VM_FAULT_FALLBACK 0x0800 /* huge page fault failed, fall back to small */
1067
1068 #define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */
1069
1070 #define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | \
1071 VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE | \
1072 VM_FAULT_FALLBACK)
1073
1074 /* Encode hstate index for a hwpoisoned large page */
1075 #define VM_FAULT_SET_HINDEX(x) ((x) << 12)
1076 #define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf)
1077
1078 /*
1079 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
1080 */
1081 extern void pagefault_out_of_memory(void);
1082
1083 #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
1084
1085 /*
1086 * Flags passed to show_mem() and show_free_areas() to suppress output in
1087 * various contexts.
1088 */
1089 #define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */
1090
1091 extern void show_free_areas(unsigned int flags);
1092 extern bool skip_free_areas_node(unsigned int flags, int nid);
1093
1094 int shmem_zero_setup(struct vm_area_struct *);
1095 #ifdef CONFIG_SHMEM
1096 bool shmem_mapping(struct address_space *mapping);
1097 #else
1098 static inline bool shmem_mapping(struct address_space *mapping)
1099 {
1100 return false;
1101 }
1102 #endif
1103
1104 extern int can_do_mlock(void);
1105 extern int user_shm_lock(size_t, struct user_struct *);
1106 extern void user_shm_unlock(size_t, struct user_struct *);
1107
1108 /*
1109 * Parameter block passed down to zap_pte_range in exceptional cases.
1110 */
1111 struct zap_details {
1112 struct address_space *check_mapping; /* Check page->mapping if set */
1113 pgoff_t first_index; /* Lowest page->index to unmap */
1114 pgoff_t last_index; /* Highest page->index to unmap */
1115 };
1116
1117 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
1118 pte_t pte);
1119
1120 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1121 unsigned long size);
1122 void zap_page_range(struct vm_area_struct *vma, unsigned long address,
1123 unsigned long size, struct zap_details *);
1124 void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
1125 unsigned long start, unsigned long end);
1126
1127 /**
1128 * mm_walk - callbacks for walk_page_range
1129 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
1130 * this handler is required to be able to handle
1131 * pmd_trans_huge() pmds. They may simply choose to
1132 * split_huge_page() instead of handling it explicitly.
1133 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
1134 * @pte_hole: if set, called for each hole at all levels
1135 * @hugetlb_entry: if set, called for each hugetlb entry
1136 * @test_walk: caller specific callback function to determine whether
1137 * we walk over the current vma or not. A positive returned
1138 * value means "do page table walk over the current vma,"
1139 * and a negative one means "abort current page table walk
1140 * right now." 0 means "skip the current vma."
1141 * @mm: mm_struct representing the target process of page table walk
1142 * @vma: vma currently walked (NULL if walking outside vmas)
1143 * @private: private data for callbacks' usage
1144 *
1145 * (see the comment on walk_page_range() for more details)
1146 */
1147 struct mm_walk {
1148 int (*pmd_entry)(pmd_t *pmd, unsigned long addr,
1149 unsigned long next, struct mm_walk *walk);
1150 int (*pte_entry)(pte_t *pte, unsigned long addr,
1151 unsigned long next, struct mm_walk *walk);
1152 int (*pte_hole)(unsigned long addr, unsigned long next,
1153 struct mm_walk *walk);
1154 int (*hugetlb_entry)(pte_t *pte, unsigned long hmask,
1155 unsigned long addr, unsigned long next,
1156 struct mm_walk *walk);
1157 int (*test_walk)(unsigned long addr, unsigned long next,
1158 struct mm_walk *walk);
1159 struct mm_struct *mm;
1160 struct vm_area_struct *vma;
1161 void *private;
1162 };
1163
1164 int walk_page_range(unsigned long addr, unsigned long end,
1165 struct mm_walk *walk);
1166 int walk_page_vma(struct vm_area_struct *vma, struct mm_walk *walk);
1167 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
1168 unsigned long end, unsigned long floor, unsigned long ceiling);
1169 int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
1170 struct vm_area_struct *vma);
1171 void unmap_mapping_range(struct address_space *mapping,
1172 loff_t const holebegin, loff_t const holelen, int even_cows);
1173 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
1174 unsigned long *pfn);
1175 int follow_phys(struct vm_area_struct *vma, unsigned long address,
1176 unsigned int flags, unsigned long *prot, resource_size_t *phys);
1177 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
1178 void *buf, int len, int write);
1179
1180 static inline void unmap_shared_mapping_range(struct address_space *mapping,
1181 loff_t const holebegin, loff_t const holelen)
1182 {
1183 unmap_mapping_range(mapping, holebegin, holelen, 0);
1184 }
1185
1186 extern void truncate_pagecache(struct inode *inode, loff_t new);
1187 extern void truncate_setsize(struct inode *inode, loff_t newsize);
1188 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
1189 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
1190 int truncate_inode_page(struct address_space *mapping, struct page *page);
1191 int generic_error_remove_page(struct address_space *mapping, struct page *page);
1192 int invalidate_inode_page(struct page *page);
1193
1194 #ifdef CONFIG_MMU
1195 extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
1196 unsigned long address, unsigned int flags);
1197 extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1198 unsigned long address, unsigned int fault_flags);
1199 #else
1200 static inline int handle_mm_fault(struct mm_struct *mm,
1201 struct vm_area_struct *vma, unsigned long address,
1202 unsigned int flags)
1203 {
1204 /* should never happen if there's no MMU */
1205 BUG();
1206 return VM_FAULT_SIGBUS;
1207 }
1208 static inline int fixup_user_fault(struct task_struct *tsk,
1209 struct mm_struct *mm, unsigned long address,
1210 unsigned int fault_flags)
1211 {
1212 /* should never happen if there's no MMU */
1213 BUG();
1214 return -EFAULT;
1215 }
1216 #endif
1217
1218 extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write);
1219 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1220 void *buf, int len, int write);
1221
1222 long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1223 unsigned long start, unsigned long nr_pages,
1224 unsigned int foll_flags, struct page **pages,
1225 struct vm_area_struct **vmas, int *nonblocking);
1226 long get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1227 unsigned long start, unsigned long nr_pages,
1228 int write, int force, struct page **pages,
1229 struct vm_area_struct **vmas);
1230 long get_user_pages_locked(struct task_struct *tsk, struct mm_struct *mm,
1231 unsigned long start, unsigned long nr_pages,
1232 int write, int force, struct page **pages,
1233 int *locked);
1234 long __get_user_pages_unlocked(struct task_struct *tsk, struct mm_struct *mm,
1235 unsigned long start, unsigned long nr_pages,
1236 int write, int force, struct page **pages,
1237 unsigned int gup_flags);
1238 long get_user_pages_unlocked(struct task_struct *tsk, struct mm_struct *mm,
1239 unsigned long start, unsigned long nr_pages,
1240 int write, int force, struct page **pages);
1241 int get_user_pages_fast(unsigned long start, int nr_pages, int write,
1242 struct page **pages);
1243
1244 /* Container for pinned pfns / pages */
1245 struct frame_vector {
1246 unsigned int nr_allocated; /* Number of frames we have space for */
1247 unsigned int nr_frames; /* Number of frames stored in ptrs array */
1248 bool got_ref; /* Did we pin pages by getting page ref? */
1249 bool is_pfns; /* Does array contain pages or pfns? */
1250 void *ptrs[0]; /* Array of pinned pfns / pages. Use
1251 * pfns_vector_pages() or pfns_vector_pfns()
1252 * for access */
1253 };
1254
1255 struct frame_vector *frame_vector_create(unsigned int nr_frames);
1256 void frame_vector_destroy(struct frame_vector *vec);
1257 int get_vaddr_frames(unsigned long start, unsigned int nr_pfns,
1258 bool write, bool force, struct frame_vector *vec);
1259 void put_vaddr_frames(struct frame_vector *vec);
1260 int frame_vector_to_pages(struct frame_vector *vec);
1261 void frame_vector_to_pfns(struct frame_vector *vec);
1262
1263 static inline unsigned int frame_vector_count(struct frame_vector *vec)
1264 {
1265 return vec->nr_frames;
1266 }
1267
1268 static inline struct page **frame_vector_pages(struct frame_vector *vec)
1269 {
1270 if (vec->is_pfns) {
1271 int err = frame_vector_to_pages(vec);
1272
1273 if (err)
1274 return ERR_PTR(err);
1275 }
1276 return (struct page **)(vec->ptrs);
1277 }
1278
1279 static inline unsigned long *frame_vector_pfns(struct frame_vector *vec)
1280 {
1281 if (!vec->is_pfns)
1282 frame_vector_to_pfns(vec);
1283 return (unsigned long *)(vec->ptrs);
1284 }
1285
1286 struct kvec;
1287 int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1288 struct page **pages);
1289 int get_kernel_page(unsigned long start, int write, struct page **pages);
1290 struct page *get_dump_page(unsigned long addr);
1291
1292 extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
1293 extern void do_invalidatepage(struct page *page, unsigned int offset,
1294 unsigned int length);
1295
1296 int __set_page_dirty_nobuffers(struct page *page);
1297 int __set_page_dirty_no_writeback(struct page *page);
1298 int redirty_page_for_writepage(struct writeback_control *wbc,
1299 struct page *page);
1300 void account_page_dirtied(struct page *page, struct address_space *mapping,
1301 struct mem_cgroup *memcg);
1302 void account_page_cleaned(struct page *page, struct address_space *mapping,
1303 struct mem_cgroup *memcg, struct bdi_writeback *wb);
1304 int set_page_dirty(struct page *page);
1305 int set_page_dirty_lock(struct page *page);
1306 void cancel_dirty_page(struct page *page);
1307 int clear_page_dirty_for_io(struct page *page);
1308
1309 int get_cmdline(struct task_struct *task, char *buffer, int buflen);
1310
1311 /* Is the vma a continuation of the stack vma above it? */
1312 static inline int vma_growsdown(struct vm_area_struct *vma, unsigned long addr)
1313 {
1314 return vma && (vma->vm_end == addr) && (vma->vm_flags & VM_GROWSDOWN);
1315 }
1316
1317 static inline bool vma_is_anonymous(struct vm_area_struct *vma)
1318 {
1319 return !vma->vm_ops;
1320 }
1321
1322 static inline int stack_guard_page_start(struct vm_area_struct *vma,
1323 unsigned long addr)
1324 {
1325 return (vma->vm_flags & VM_GROWSDOWN) &&
1326 (vma->vm_start == addr) &&
1327 !vma_growsdown(vma->vm_prev, addr);
1328 }
1329
1330 /* Is the vma a continuation of the stack vma below it? */
1331 static inline int vma_growsup(struct vm_area_struct *vma, unsigned long addr)
1332 {
1333 return vma && (vma->vm_start == addr) && (vma->vm_flags & VM_GROWSUP);
1334 }
1335
1336 static inline int stack_guard_page_end(struct vm_area_struct *vma,
1337 unsigned long addr)
1338 {
1339 return (vma->vm_flags & VM_GROWSUP) &&
1340 (vma->vm_end == addr) &&
1341 !vma_growsup(vma->vm_next, addr);
1342 }
1343
1344 extern struct task_struct *task_of_stack(struct task_struct *task,
1345 struct vm_area_struct *vma, bool in_group);
1346
1347 extern unsigned long move_page_tables(struct vm_area_struct *vma,
1348 unsigned long old_addr, struct vm_area_struct *new_vma,
1349 unsigned long new_addr, unsigned long len,
1350 bool need_rmap_locks);
1351 extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
1352 unsigned long end, pgprot_t newprot,
1353 int dirty_accountable, int prot_numa);
1354 extern int mprotect_fixup(struct vm_area_struct *vma,
1355 struct vm_area_struct **pprev, unsigned long start,
1356 unsigned long end, unsigned long newflags);
1357
1358 /*
1359 * doesn't attempt to fault and will return short.
1360 */
1361 int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1362 struct page **pages);
1363 /*
1364 * per-process(per-mm_struct) statistics.
1365 */
1366 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1367 {
1368 long val = atomic_long_read(&mm->rss_stat.count[member]);
1369
1370 #ifdef SPLIT_RSS_COUNTING
1371 /*
1372 * counter is updated in asynchronous manner and may go to minus.
1373 * But it's never be expected number for users.
1374 */
1375 if (val < 0)
1376 val = 0;
1377 #endif
1378 return (unsigned long)val;
1379 }
1380
1381 static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1382 {
1383 atomic_long_add(value, &mm->rss_stat.count[member]);
1384 }
1385
1386 static inline void inc_mm_counter(struct mm_struct *mm, int member)
1387 {
1388 atomic_long_inc(&mm->rss_stat.count[member]);
1389 }
1390
1391 static inline void dec_mm_counter(struct mm_struct *mm, int member)
1392 {
1393 atomic_long_dec(&mm->rss_stat.count[member]);
1394 }
1395
1396 static inline unsigned long get_mm_rss(struct mm_struct *mm)
1397 {
1398 return get_mm_counter(mm, MM_FILEPAGES) +
1399 get_mm_counter(mm, MM_ANONPAGES);
1400 }
1401
1402 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1403 {
1404 return max(mm->hiwater_rss, get_mm_rss(mm));
1405 }
1406
1407 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1408 {
1409 return max(mm->hiwater_vm, mm->total_vm);
1410 }
1411
1412 static inline void update_hiwater_rss(struct mm_struct *mm)
1413 {
1414 unsigned long _rss = get_mm_rss(mm);
1415
1416 if ((mm)->hiwater_rss < _rss)
1417 (mm)->hiwater_rss = _rss;
1418 }
1419
1420 static inline void update_hiwater_vm(struct mm_struct *mm)
1421 {
1422 if (mm->hiwater_vm < mm->total_vm)
1423 mm->hiwater_vm = mm->total_vm;
1424 }
1425
1426 static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
1427 {
1428 mm->hiwater_rss = get_mm_rss(mm);
1429 }
1430
1431 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1432 struct mm_struct *mm)
1433 {
1434 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1435
1436 if (*maxrss < hiwater_rss)
1437 *maxrss = hiwater_rss;
1438 }
1439
1440 #if defined(SPLIT_RSS_COUNTING)
1441 void sync_mm_rss(struct mm_struct *mm);
1442 #else
1443 static inline void sync_mm_rss(struct mm_struct *mm)
1444 {
1445 }
1446 #endif
1447
1448 int vma_wants_writenotify(struct vm_area_struct *vma);
1449
1450 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1451 spinlock_t **ptl);
1452 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1453 spinlock_t **ptl)
1454 {
1455 pte_t *ptep;
1456 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
1457 return ptep;
1458 }
1459
1460 #ifdef __PAGETABLE_PUD_FOLDED
1461 static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd,
1462 unsigned long address)
1463 {
1464 return 0;
1465 }
1466 #else
1467 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
1468 #endif
1469
1470 #if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
1471 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
1472 unsigned long address)
1473 {
1474 return 0;
1475 }
1476
1477 static inline void mm_nr_pmds_init(struct mm_struct *mm) {}
1478
1479 static inline unsigned long mm_nr_pmds(struct mm_struct *mm)
1480 {
1481 return 0;
1482 }
1483
1484 static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
1485 static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
1486
1487 #else
1488 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
1489
1490 static inline void mm_nr_pmds_init(struct mm_struct *mm)
1491 {
1492 atomic_long_set(&mm->nr_pmds, 0);
1493 }
1494
1495 static inline unsigned long mm_nr_pmds(struct mm_struct *mm)
1496 {
1497 return atomic_long_read(&mm->nr_pmds);
1498 }
1499
1500 static inline void mm_inc_nr_pmds(struct mm_struct *mm)
1501 {
1502 atomic_long_inc(&mm->nr_pmds);
1503 }
1504
1505 static inline void mm_dec_nr_pmds(struct mm_struct *mm)
1506 {
1507 atomic_long_dec(&mm->nr_pmds);
1508 }
1509 #endif
1510
1511 int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
1512 pmd_t *pmd, unsigned long address);
1513 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
1514
1515 /*
1516 * The following ifdef needed to get the 4level-fixup.h header to work.
1517 * Remove it when 4level-fixup.h has been removed.
1518 */
1519 #if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
1520 static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
1521 {
1522 return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))?
1523 NULL: pud_offset(pgd, address);
1524 }
1525
1526 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1527 {
1528 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
1529 NULL: pmd_offset(pud, address);
1530 }
1531 #endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
1532
1533 #if USE_SPLIT_PTE_PTLOCKS
1534 #if ALLOC_SPLIT_PTLOCKS
1535 void __init ptlock_cache_init(void);
1536 extern bool ptlock_alloc(struct page *page);
1537 extern void ptlock_free(struct page *page);
1538
1539 static inline spinlock_t *ptlock_ptr(struct page *page)
1540 {
1541 return page->ptl;
1542 }
1543 #else /* ALLOC_SPLIT_PTLOCKS */
1544 static inline void ptlock_cache_init(void)
1545 {
1546 }
1547
1548 static inline bool ptlock_alloc(struct page *page)
1549 {
1550 return true;
1551 }
1552
1553 static inline void ptlock_free(struct page *page)
1554 {
1555 }
1556
1557 static inline spinlock_t *ptlock_ptr(struct page *page)
1558 {
1559 return &page->ptl;
1560 }
1561 #endif /* ALLOC_SPLIT_PTLOCKS */
1562
1563 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1564 {
1565 return ptlock_ptr(pmd_page(*pmd));
1566 }
1567
1568 static inline bool ptlock_init(struct page *page)
1569 {
1570 /*
1571 * prep_new_page() initialize page->private (and therefore page->ptl)
1572 * with 0. Make sure nobody took it in use in between.
1573 *
1574 * It can happen if arch try to use slab for page table allocation:
1575 * slab code uses page->slab_cache and page->first_page (for tail
1576 * pages), which share storage with page->ptl.
1577 */
1578 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
1579 if (!ptlock_alloc(page))
1580 return false;
1581 spin_lock_init(ptlock_ptr(page));
1582 return true;
1583 }
1584
1585 /* Reset page->mapping so free_pages_check won't complain. */
1586 static inline void pte_lock_deinit(struct page *page)
1587 {
1588 page->mapping = NULL;
1589 ptlock_free(page);
1590 }
1591
1592 #else /* !USE_SPLIT_PTE_PTLOCKS */
1593 /*
1594 * We use mm->page_table_lock to guard all pagetable pages of the mm.
1595 */
1596 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1597 {
1598 return &mm->page_table_lock;
1599 }
1600 static inline void ptlock_cache_init(void) {}
1601 static inline bool ptlock_init(struct page *page) { return true; }
1602 static inline void pte_lock_deinit(struct page *page) {}
1603 #endif /* USE_SPLIT_PTE_PTLOCKS */
1604
1605 static inline void pgtable_init(void)
1606 {
1607 ptlock_cache_init();
1608 pgtable_cache_init();
1609 }
1610
1611 static inline bool pgtable_page_ctor(struct page *page)
1612 {
1613 if (!ptlock_init(page))
1614 return false;
1615 inc_zone_page_state(page, NR_PAGETABLE);
1616 return true;
1617 }
1618
1619 static inline void pgtable_page_dtor(struct page *page)
1620 {
1621 pte_lock_deinit(page);
1622 dec_zone_page_state(page, NR_PAGETABLE);
1623 }
1624
1625 #define pte_offset_map_lock(mm, pmd, address, ptlp) \
1626 ({ \
1627 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
1628 pte_t *__pte = pte_offset_map(pmd, address); \
1629 *(ptlp) = __ptl; \
1630 spin_lock(__ptl); \
1631 __pte; \
1632 })
1633
1634 #define pte_unmap_unlock(pte, ptl) do { \
1635 spin_unlock(ptl); \
1636 pte_unmap(pte); \
1637 } while (0)
1638
1639 #define pte_alloc_map(mm, vma, pmd, address) \
1640 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, vma, \
1641 pmd, address))? \
1642 NULL: pte_offset_map(pmd, address))
1643
1644 #define pte_alloc_map_lock(mm, pmd, address, ptlp) \
1645 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, NULL, \
1646 pmd, address))? \
1647 NULL: pte_offset_map_lock(mm, pmd, address, ptlp))
1648
1649 #define pte_alloc_kernel(pmd, address) \
1650 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
1651 NULL: pte_offset_kernel(pmd, address))
1652
1653 #if USE_SPLIT_PMD_PTLOCKS
1654
1655 static struct page *pmd_to_page(pmd_t *pmd)
1656 {
1657 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
1658 return virt_to_page((void *)((unsigned long) pmd & mask));
1659 }
1660
1661 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1662 {
1663 return ptlock_ptr(pmd_to_page(pmd));
1664 }
1665
1666 static inline bool pgtable_pmd_page_ctor(struct page *page)
1667 {
1668 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1669 page->pmd_huge_pte = NULL;
1670 #endif
1671 return ptlock_init(page);
1672 }
1673
1674 static inline void pgtable_pmd_page_dtor(struct page *page)
1675 {
1676 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1677 VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
1678 #endif
1679 ptlock_free(page);
1680 }
1681
1682 #define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte)
1683
1684 #else
1685
1686 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1687 {
1688 return &mm->page_table_lock;
1689 }
1690
1691 static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; }
1692 static inline void pgtable_pmd_page_dtor(struct page *page) {}
1693
1694 #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
1695
1696 #endif
1697
1698 static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
1699 {
1700 spinlock_t *ptl = pmd_lockptr(mm, pmd);
1701 spin_lock(ptl);
1702 return ptl;
1703 }
1704
1705 extern void free_area_init(unsigned long * zones_size);
1706 extern void free_area_init_node(int nid, unsigned long * zones_size,
1707 unsigned long zone_start_pfn, unsigned long *zholes_size);
1708 extern void free_initmem(void);
1709
1710 /*
1711 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
1712 * into the buddy system. The freed pages will be poisoned with pattern
1713 * "poison" if it's within range [0, UCHAR_MAX].
1714 * Return pages freed into the buddy system.
1715 */
1716 extern unsigned long free_reserved_area(void *start, void *end,
1717 int poison, char *s);
1718
1719 #ifdef CONFIG_HIGHMEM
1720 /*
1721 * Free a highmem page into the buddy system, adjusting totalhigh_pages
1722 * and totalram_pages.
1723 */
1724 extern void free_highmem_page(struct page *page);
1725 #endif
1726
1727 extern void adjust_managed_page_count(struct page *page, long count);
1728 extern void mem_init_print_info(const char *str);
1729
1730 extern void reserve_bootmem_region(unsigned long start, unsigned long end);
1731
1732 /* Free the reserved page into the buddy system, so it gets managed. */
1733 static inline void __free_reserved_page(struct page *page)
1734 {
1735 ClearPageReserved(page);
1736 init_page_count(page);
1737 __free_page(page);
1738 }
1739
1740 static inline void free_reserved_page(struct page *page)
1741 {
1742 __free_reserved_page(page);
1743 adjust_managed_page_count(page, 1);
1744 }
1745
1746 static inline void mark_page_reserved(struct page *page)
1747 {
1748 SetPageReserved(page);
1749 adjust_managed_page_count(page, -1);
1750 }
1751
1752 /*
1753 * Default method to free all the __init memory into the buddy system.
1754 * The freed pages will be poisoned with pattern "poison" if it's within
1755 * range [0, UCHAR_MAX].
1756 * Return pages freed into the buddy system.
1757 */
1758 static inline unsigned long free_initmem_default(int poison)
1759 {
1760 extern char __init_begin[], __init_end[];
1761
1762 return free_reserved_area(&__init_begin, &__init_end,
1763 poison, "unused kernel");
1764 }
1765
1766 static inline unsigned long get_num_physpages(void)
1767 {
1768 int nid;
1769 unsigned long phys_pages = 0;
1770
1771 for_each_online_node(nid)
1772 phys_pages += node_present_pages(nid);
1773
1774 return phys_pages;
1775 }
1776
1777 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1778 /*
1779 * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its
1780 * zones, allocate the backing mem_map and account for memory holes in a more
1781 * architecture independent manner. This is a substitute for creating the
1782 * zone_sizes[] and zholes_size[] arrays and passing them to
1783 * free_area_init_node()
1784 *
1785 * An architecture is expected to register range of page frames backed by
1786 * physical memory with memblock_add[_node]() before calling
1787 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
1788 * usage, an architecture is expected to do something like
1789 *
1790 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
1791 * max_highmem_pfn};
1792 * for_each_valid_physical_page_range()
1793 * memblock_add_node(base, size, nid)
1794 * free_area_init_nodes(max_zone_pfns);
1795 *
1796 * free_bootmem_with_active_regions() calls free_bootmem_node() for each
1797 * registered physical page range. Similarly
1798 * sparse_memory_present_with_active_regions() calls memory_present() for
1799 * each range when SPARSEMEM is enabled.
1800 *
1801 * See mm/page_alloc.c for more information on each function exposed by
1802 * CONFIG_HAVE_MEMBLOCK_NODE_MAP.
1803 */
1804 extern void free_area_init_nodes(unsigned long *max_zone_pfn);
1805 unsigned long node_map_pfn_alignment(void);
1806 unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
1807 unsigned long end_pfn);
1808 extern unsigned long absent_pages_in_range(unsigned long start_pfn,
1809 unsigned long end_pfn);
1810 extern void get_pfn_range_for_nid(unsigned int nid,
1811 unsigned long *start_pfn, unsigned long *end_pfn);
1812 extern unsigned long find_min_pfn_with_active_regions(void);
1813 extern void free_bootmem_with_active_regions(int nid,
1814 unsigned long max_low_pfn);
1815 extern void sparse_memory_present_with_active_regions(int nid);
1816
1817 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
1818
1819 #if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \
1820 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
1821 static inline int __early_pfn_to_nid(unsigned long pfn,
1822 struct mminit_pfnnid_cache *state)
1823 {
1824 return 0;
1825 }
1826 #else
1827 /* please see mm/page_alloc.c */
1828 extern int __meminit early_pfn_to_nid(unsigned long pfn);
1829 /* there is a per-arch backend function. */
1830 extern int __meminit __early_pfn_to_nid(unsigned long pfn,
1831 struct mminit_pfnnid_cache *state);
1832 #endif
1833
1834 extern void set_dma_reserve(unsigned long new_dma_reserve);
1835 extern void memmap_init_zone(unsigned long, int, unsigned long,
1836 unsigned long, enum memmap_context);
1837 extern void setup_per_zone_wmarks(void);
1838 extern int __meminit init_per_zone_wmark_min(void);
1839 extern void mem_init(void);
1840 extern void __init mmap_init(void);
1841 extern void show_mem(unsigned int flags);
1842 extern void si_meminfo(struct sysinfo * val);
1843 extern void si_meminfo_node(struct sysinfo *val, int nid);
1844
1845 extern __printf(3, 4)
1846 void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...);
1847
1848 extern void setup_per_cpu_pageset(void);
1849
1850 extern void zone_pcp_update(struct zone *zone);
1851 extern void zone_pcp_reset(struct zone *zone);
1852
1853 /* page_alloc.c */
1854 extern int min_free_kbytes;
1855
1856 /* nommu.c */
1857 extern atomic_long_t mmap_pages_allocated;
1858 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
1859
1860 /* interval_tree.c */
1861 void vma_interval_tree_insert(struct vm_area_struct *node,
1862 struct rb_root *root);
1863 void vma_interval_tree_insert_after(struct vm_area_struct *node,
1864 struct vm_area_struct *prev,
1865 struct rb_root *root);
1866 void vma_interval_tree_remove(struct vm_area_struct *node,
1867 struct rb_root *root);
1868 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root *root,
1869 unsigned long start, unsigned long last);
1870 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
1871 unsigned long start, unsigned long last);
1872
1873 #define vma_interval_tree_foreach(vma, root, start, last) \
1874 for (vma = vma_interval_tree_iter_first(root, start, last); \
1875 vma; vma = vma_interval_tree_iter_next(vma, start, last))
1876
1877 void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
1878 struct rb_root *root);
1879 void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
1880 struct rb_root *root);
1881 struct anon_vma_chain *anon_vma_interval_tree_iter_first(
1882 struct rb_root *root, unsigned long start, unsigned long last);
1883 struct anon_vma_chain *anon_vma_interval_tree_iter_next(
1884 struct anon_vma_chain *node, unsigned long start, unsigned long last);
1885 #ifdef CONFIG_DEBUG_VM_RB
1886 void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
1887 #endif
1888
1889 #define anon_vma_interval_tree_foreach(avc, root, start, last) \
1890 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
1891 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
1892
1893 /* mmap.c */
1894 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
1895 extern int vma_adjust(struct vm_area_struct *vma, unsigned long start,
1896 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert);
1897 extern struct vm_area_struct *vma_merge(struct mm_struct *,
1898 struct vm_area_struct *prev, unsigned long addr, unsigned long end,
1899 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
1900 struct mempolicy *, struct vm_userfaultfd_ctx);
1901 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
1902 extern int split_vma(struct mm_struct *,
1903 struct vm_area_struct *, unsigned long addr, int new_below);
1904 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
1905 extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
1906 struct rb_node **, struct rb_node *);
1907 extern void unlink_file_vma(struct vm_area_struct *);
1908 extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
1909 unsigned long addr, unsigned long len, pgoff_t pgoff,
1910 bool *need_rmap_locks);
1911 extern void exit_mmap(struct mm_struct *);
1912
1913 static inline int check_data_rlimit(unsigned long rlim,
1914 unsigned long new,
1915 unsigned long start,
1916 unsigned long end_data,
1917 unsigned long start_data)
1918 {
1919 if (rlim < RLIM_INFINITY) {
1920 if (((new - start) + (end_data - start_data)) > rlim)
1921 return -ENOSPC;
1922 }
1923
1924 return 0;
1925 }
1926
1927 extern int mm_take_all_locks(struct mm_struct *mm);
1928 extern void mm_drop_all_locks(struct mm_struct *mm);
1929
1930 extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
1931 extern struct file *get_mm_exe_file(struct mm_struct *mm);
1932
1933 extern int may_expand_vm(struct mm_struct *mm, unsigned long npages);
1934 extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
1935 unsigned long addr, unsigned long len,
1936 unsigned long flags,
1937 const struct vm_special_mapping *spec);
1938 /* This is an obsolete alternative to _install_special_mapping. */
1939 extern int install_special_mapping(struct mm_struct *mm,
1940 unsigned long addr, unsigned long len,
1941 unsigned long flags, struct page **pages);
1942
1943 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
1944
1945 extern unsigned long mmap_region(struct file *file, unsigned long addr,
1946 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff);
1947 extern unsigned long do_mmap(struct file *file, unsigned long addr,
1948 unsigned long len, unsigned long prot, unsigned long flags,
1949 vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate);
1950 extern int do_munmap(struct mm_struct *, unsigned long, size_t);
1951
1952 static inline unsigned long
1953 do_mmap_pgoff(struct file *file, unsigned long addr,
1954 unsigned long len, unsigned long prot, unsigned long flags,
1955 unsigned long pgoff, unsigned long *populate)
1956 {
1957 return do_mmap(file, addr, len, prot, flags, 0, pgoff, populate);
1958 }
1959
1960 #ifdef CONFIG_MMU
1961 extern int __mm_populate(unsigned long addr, unsigned long len,
1962 int ignore_errors);
1963 static inline void mm_populate(unsigned long addr, unsigned long len)
1964 {
1965 /* Ignore errors */
1966 (void) __mm_populate(addr, len, 1);
1967 }
1968 #else
1969 static inline void mm_populate(unsigned long addr, unsigned long len) {}
1970 #endif
1971
1972 /* These take the mm semaphore themselves */
1973 extern unsigned long vm_brk(unsigned long, unsigned long);
1974 extern int vm_munmap(unsigned long, size_t);
1975 extern unsigned long vm_mmap(struct file *, unsigned long,
1976 unsigned long, unsigned long,
1977 unsigned long, unsigned long);
1978
1979 struct vm_unmapped_area_info {
1980 #define VM_UNMAPPED_AREA_TOPDOWN 1
1981 unsigned long flags;
1982 unsigned long length;
1983 unsigned long low_limit;
1984 unsigned long high_limit;
1985 unsigned long align_mask;
1986 unsigned long align_offset;
1987 };
1988
1989 extern unsigned long unmapped_area(struct vm_unmapped_area_info *info);
1990 extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info);
1991
1992 /*
1993 * Search for an unmapped address range.
1994 *
1995 * We are looking for a range that:
1996 * - does not intersect with any VMA;
1997 * - is contained within the [low_limit, high_limit) interval;
1998 * - is at least the desired size.
1999 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
2000 */
2001 static inline unsigned long
2002 vm_unmapped_area(struct vm_unmapped_area_info *info)
2003 {
2004 if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
2005 return unmapped_area_topdown(info);
2006 else
2007 return unmapped_area(info);
2008 }
2009
2010 /* truncate.c */
2011 extern void truncate_inode_pages(struct address_space *, loff_t);
2012 extern void truncate_inode_pages_range(struct address_space *,
2013 loff_t lstart, loff_t lend);
2014 extern void truncate_inode_pages_final(struct address_space *);
2015
2016 /* generic vm_area_ops exported for stackable file systems */
2017 extern int filemap_fault(struct vm_area_struct *, struct vm_fault *);
2018 extern void filemap_map_pages(struct vm_area_struct *vma, struct vm_fault *vmf);
2019 extern int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf);
2020
2021 /* mm/page-writeback.c */
2022 int write_one_page(struct page *page, int wait);
2023 void task_dirty_inc(struct task_struct *tsk);
2024
2025 /* readahead.c */
2026 #define VM_MAX_READAHEAD 128 /* kbytes */
2027 #define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */
2028
2029 int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
2030 pgoff_t offset, unsigned long nr_to_read);
2031
2032 void page_cache_sync_readahead(struct address_space *mapping,
2033 struct file_ra_state *ra,
2034 struct file *filp,
2035 pgoff_t offset,
2036 unsigned long size);
2037
2038 void page_cache_async_readahead(struct address_space *mapping,
2039 struct file_ra_state *ra,
2040 struct file *filp,
2041 struct page *pg,
2042 pgoff_t offset,
2043 unsigned long size);
2044
2045 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
2046 extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
2047
2048 /* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
2049 extern int expand_downwards(struct vm_area_struct *vma,
2050 unsigned long address);
2051 #if VM_GROWSUP
2052 extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
2053 #else
2054 #define expand_upwards(vma, address) (0)
2055 #endif
2056
2057 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
2058 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
2059 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
2060 struct vm_area_struct **pprev);
2061
2062 /* Look up the first VMA which intersects the interval start_addr..end_addr-1,
2063 NULL if none. Assume start_addr < end_addr. */
2064 static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
2065 {
2066 struct vm_area_struct * vma = find_vma(mm,start_addr);
2067
2068 if (vma && end_addr <= vma->vm_start)
2069 vma = NULL;
2070 return vma;
2071 }
2072
2073 static inline unsigned long vma_pages(struct vm_area_struct *vma)
2074 {
2075 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
2076 }
2077
2078 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */
2079 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
2080 unsigned long vm_start, unsigned long vm_end)
2081 {
2082 struct vm_area_struct *vma = find_vma(mm, vm_start);
2083
2084 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
2085 vma = NULL;
2086
2087 return vma;
2088 }
2089
2090 #ifdef CONFIG_MMU
2091 pgprot_t vm_get_page_prot(unsigned long vm_flags);
2092 void vma_set_page_prot(struct vm_area_struct *vma);
2093 #else
2094 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
2095 {
2096 return __pgprot(0);
2097 }
2098 static inline void vma_set_page_prot(struct vm_area_struct *vma)
2099 {
2100 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2101 }
2102 #endif
2103
2104 #ifdef CONFIG_NUMA_BALANCING
2105 unsigned long change_prot_numa(struct vm_area_struct *vma,
2106 unsigned long start, unsigned long end);
2107 #endif
2108
2109 struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
2110 int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
2111 unsigned long pfn, unsigned long size, pgprot_t);
2112 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
2113 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2114 unsigned long pfn);
2115 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2116 unsigned long pfn);
2117 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
2118
2119
2120 struct page *follow_page_mask(struct vm_area_struct *vma,
2121 unsigned long address, unsigned int foll_flags,
2122 unsigned int *page_mask);
2123
2124 static inline struct page *follow_page(struct vm_area_struct *vma,
2125 unsigned long address, unsigned int foll_flags)
2126 {
2127 unsigned int unused_page_mask;
2128 return follow_page_mask(vma, address, foll_flags, &unused_page_mask);
2129 }
2130
2131 #define FOLL_WRITE 0x01 /* check pte is writable */
2132 #define FOLL_TOUCH 0x02 /* mark page accessed */
2133 #define FOLL_GET 0x04 /* do get_page on page */
2134 #define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
2135 #define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
2136 #define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO
2137 * and return without waiting upon it */
2138 #define FOLL_POPULATE 0x40 /* fault in page */
2139 #define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */
2140 #define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */
2141 #define FOLL_NUMA 0x200 /* force NUMA hinting page fault */
2142 #define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */
2143 #define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */
2144 #define FOLL_MLOCK 0x1000 /* lock present pages */
2145
2146 typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
2147 void *data);
2148 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
2149 unsigned long size, pte_fn_t fn, void *data);
2150
2151 #ifdef CONFIG_PROC_FS
2152 void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long);
2153 #else
2154 static inline void vm_stat_account(struct mm_struct *mm,
2155 unsigned long flags, struct file *file, long pages)
2156 {
2157 mm->total_vm += pages;
2158 }
2159 #endif /* CONFIG_PROC_FS */
2160
2161 #ifdef CONFIG_DEBUG_PAGEALLOC
2162 extern bool _debug_pagealloc_enabled;
2163 extern void __kernel_map_pages(struct page *page, int numpages, int enable);
2164
2165 static inline bool debug_pagealloc_enabled(void)
2166 {
2167 return _debug_pagealloc_enabled;
2168 }
2169
2170 static inline void
2171 kernel_map_pages(struct page *page, int numpages, int enable)
2172 {
2173 if (!debug_pagealloc_enabled())
2174 return;
2175
2176 __kernel_map_pages(page, numpages, enable);
2177 }
2178 #ifdef CONFIG_HIBERNATION
2179 extern bool kernel_page_present(struct page *page);
2180 #endif /* CONFIG_HIBERNATION */
2181 #else
2182 static inline void
2183 kernel_map_pages(struct page *page, int numpages, int enable) {}
2184 #ifdef CONFIG_HIBERNATION
2185 static inline bool kernel_page_present(struct page *page) { return true; }
2186 #endif /* CONFIG_HIBERNATION */
2187 #endif
2188
2189 #ifdef __HAVE_ARCH_GATE_AREA
2190 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
2191 extern int in_gate_area_no_mm(unsigned long addr);
2192 extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
2193 #else
2194 static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
2195 {
2196 return NULL;
2197 }
2198 static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
2199 static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
2200 {
2201 return 0;
2202 }
2203 #endif /* __HAVE_ARCH_GATE_AREA */
2204
2205 #ifdef CONFIG_SYSCTL
2206 extern int sysctl_drop_caches;
2207 int drop_caches_sysctl_handler(struct ctl_table *, int,
2208 void __user *, size_t *, loff_t *);
2209 #endif
2210
2211 void drop_slab(void);
2212 void drop_slab_node(int nid);
2213
2214 #ifndef CONFIG_MMU
2215 #define randomize_va_space 0
2216 #else
2217 extern int randomize_va_space;
2218 #endif
2219
2220 const char * arch_vma_name(struct vm_area_struct *vma);
2221 void print_vma_addr(char *prefix, unsigned long rip);
2222
2223 void sparse_mem_maps_populate_node(struct page **map_map,
2224 unsigned long pnum_begin,
2225 unsigned long pnum_end,
2226 unsigned long map_count,
2227 int nodeid);
2228
2229 struct page *sparse_mem_map_populate(unsigned long pnum, int nid);
2230 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
2231 pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node);
2232 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
2233 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
2234 void *vmemmap_alloc_block(unsigned long size, int node);
2235 void *vmemmap_alloc_block_buf(unsigned long size, int node);
2236 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
2237 int vmemmap_populate_basepages(unsigned long start, unsigned long end,
2238 int node);
2239 int vmemmap_populate(unsigned long start, unsigned long end, int node);
2240 void vmemmap_populate_print_last(void);
2241 #ifdef CONFIG_MEMORY_HOTPLUG
2242 void vmemmap_free(unsigned long start, unsigned long end);
2243 #endif
2244 void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
2245 unsigned long size);
2246
2247 enum mf_flags {
2248 MF_COUNT_INCREASED = 1 << 0,
2249 MF_ACTION_REQUIRED = 1 << 1,
2250 MF_MUST_KILL = 1 << 2,
2251 MF_SOFT_OFFLINE = 1 << 3,
2252 };
2253 extern int memory_failure(unsigned long pfn, int trapno, int flags);
2254 extern void memory_failure_queue(unsigned long pfn, int trapno, int flags);
2255 extern int unpoison_memory(unsigned long pfn);
2256 extern int get_hwpoison_page(struct page *page);
2257 extern void put_hwpoison_page(struct page *page);
2258 extern int sysctl_memory_failure_early_kill;
2259 extern int sysctl_memory_failure_recovery;
2260 extern void shake_page(struct page *p, int access);
2261 extern atomic_long_t num_poisoned_pages;
2262 extern int soft_offline_page(struct page *page, int flags);
2263
2264
2265 /*
2266 * Error handlers for various types of pages.
2267 */
2268 enum mf_result {
2269 MF_IGNORED, /* Error: cannot be handled */
2270 MF_FAILED, /* Error: handling failed */
2271 MF_DELAYED, /* Will be handled later */
2272 MF_RECOVERED, /* Successfully recovered */
2273 };
2274
2275 enum mf_action_page_type {
2276 MF_MSG_KERNEL,
2277 MF_MSG_KERNEL_HIGH_ORDER,
2278 MF_MSG_SLAB,
2279 MF_MSG_DIFFERENT_COMPOUND,
2280 MF_MSG_POISONED_HUGE,
2281 MF_MSG_HUGE,
2282 MF_MSG_FREE_HUGE,
2283 MF_MSG_UNMAP_FAILED,
2284 MF_MSG_DIRTY_SWAPCACHE,
2285 MF_MSG_CLEAN_SWAPCACHE,
2286 MF_MSG_DIRTY_MLOCKED_LRU,
2287 MF_MSG_CLEAN_MLOCKED_LRU,
2288 MF_MSG_DIRTY_UNEVICTABLE_LRU,
2289 MF_MSG_CLEAN_UNEVICTABLE_LRU,
2290 MF_MSG_DIRTY_LRU,
2291 MF_MSG_CLEAN_LRU,
2292 MF_MSG_TRUNCATED_LRU,
2293 MF_MSG_BUDDY,
2294 MF_MSG_BUDDY_2ND,
2295 MF_MSG_UNKNOWN,
2296 };
2297
2298 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
2299 extern void clear_huge_page(struct page *page,
2300 unsigned long addr,
2301 unsigned int pages_per_huge_page);
2302 extern void copy_user_huge_page(struct page *dst, struct page *src,
2303 unsigned long addr, struct vm_area_struct *vma,
2304 unsigned int pages_per_huge_page);
2305 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
2306
2307 extern struct page_ext_operations debug_guardpage_ops;
2308 extern struct page_ext_operations page_poisoning_ops;
2309
2310 #ifdef CONFIG_DEBUG_PAGEALLOC
2311 extern unsigned int _debug_guardpage_minorder;
2312 extern bool _debug_guardpage_enabled;
2313
2314 static inline unsigned int debug_guardpage_minorder(void)
2315 {
2316 return _debug_guardpage_minorder;
2317 }
2318
2319 static inline bool debug_guardpage_enabled(void)
2320 {
2321 return _debug_guardpage_enabled;
2322 }
2323
2324 static inline bool page_is_guard(struct page *page)
2325 {
2326 struct page_ext *page_ext;
2327
2328 if (!debug_guardpage_enabled())
2329 return false;
2330
2331 page_ext = lookup_page_ext(page);
2332 return test_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
2333 }
2334 #else
2335 static inline unsigned int debug_guardpage_minorder(void) { return 0; }
2336 static inline bool debug_guardpage_enabled(void) { return false; }
2337 static inline bool page_is_guard(struct page *page) { return false; }
2338 #endif /* CONFIG_DEBUG_PAGEALLOC */
2339
2340 #if MAX_NUMNODES > 1
2341 void __init setup_nr_node_ids(void);
2342 #else
2343 static inline void setup_nr_node_ids(void) {}
2344 #endif
2345
2346 #endif /* __KERNEL__ */
2347 #endif /* _LINUX_MM_H */
This page took 0.11184 seconds and 6 git commands to generate.