mm, dax: dax-pmd vs thp-pmd vs hugetlbfs-pmd
[deliverable/linux.git] / include / linux / mm.h
1 #ifndef _LINUX_MM_H
2 #define _LINUX_MM_H
3
4 #include <linux/errno.h>
5
6 #ifdef __KERNEL__
7
8 #include <linux/mmdebug.h>
9 #include <linux/gfp.h>
10 #include <linux/bug.h>
11 #include <linux/list.h>
12 #include <linux/mmzone.h>
13 #include <linux/rbtree.h>
14 #include <linux/atomic.h>
15 #include <linux/debug_locks.h>
16 #include <linux/mm_types.h>
17 #include <linux/range.h>
18 #include <linux/pfn.h>
19 #include <linux/bit_spinlock.h>
20 #include <linux/shrinker.h>
21 #include <linux/resource.h>
22 #include <linux/page_ext.h>
23 #include <linux/err.h>
24
25 struct mempolicy;
26 struct anon_vma;
27 struct anon_vma_chain;
28 struct file_ra_state;
29 struct user_struct;
30 struct writeback_control;
31 struct bdi_writeback;
32
33 #ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */
34 extern unsigned long max_mapnr;
35
36 static inline void set_max_mapnr(unsigned long limit)
37 {
38 max_mapnr = limit;
39 }
40 #else
41 static inline void set_max_mapnr(unsigned long limit) { }
42 #endif
43
44 extern unsigned long totalram_pages;
45 extern void * high_memory;
46 extern int page_cluster;
47
48 #ifdef CONFIG_SYSCTL
49 extern int sysctl_legacy_va_layout;
50 #else
51 #define sysctl_legacy_va_layout 0
52 #endif
53
54 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
55 extern const int mmap_rnd_bits_min;
56 extern const int mmap_rnd_bits_max;
57 extern int mmap_rnd_bits __read_mostly;
58 #endif
59 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
60 extern const int mmap_rnd_compat_bits_min;
61 extern const int mmap_rnd_compat_bits_max;
62 extern int mmap_rnd_compat_bits __read_mostly;
63 #endif
64
65 #include <asm/page.h>
66 #include <asm/pgtable.h>
67 #include <asm/processor.h>
68
69 #ifndef __pa_symbol
70 #define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0))
71 #endif
72
73 /*
74 * To prevent common memory management code establishing
75 * a zero page mapping on a read fault.
76 * This macro should be defined within <asm/pgtable.h>.
77 * s390 does this to prevent multiplexing of hardware bits
78 * related to the physical page in case of virtualization.
79 */
80 #ifndef mm_forbids_zeropage
81 #define mm_forbids_zeropage(X) (0)
82 #endif
83
84 extern unsigned long sysctl_user_reserve_kbytes;
85 extern unsigned long sysctl_admin_reserve_kbytes;
86
87 extern int sysctl_overcommit_memory;
88 extern int sysctl_overcommit_ratio;
89 extern unsigned long sysctl_overcommit_kbytes;
90
91 extern int overcommit_ratio_handler(struct ctl_table *, int, void __user *,
92 size_t *, loff_t *);
93 extern int overcommit_kbytes_handler(struct ctl_table *, int, void __user *,
94 size_t *, loff_t *);
95
96 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
97
98 /* to align the pointer to the (next) page boundary */
99 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
100
101 /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
102 #define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)addr, PAGE_SIZE)
103
104 /*
105 * Linux kernel virtual memory manager primitives.
106 * The idea being to have a "virtual" mm in the same way
107 * we have a virtual fs - giving a cleaner interface to the
108 * mm details, and allowing different kinds of memory mappings
109 * (from shared memory to executable loading to arbitrary
110 * mmap() functions).
111 */
112
113 extern struct kmem_cache *vm_area_cachep;
114
115 #ifndef CONFIG_MMU
116 extern struct rb_root nommu_region_tree;
117 extern struct rw_semaphore nommu_region_sem;
118
119 extern unsigned int kobjsize(const void *objp);
120 #endif
121
122 /*
123 * vm_flags in vm_area_struct, see mm_types.h.
124 */
125 #define VM_NONE 0x00000000
126
127 #define VM_READ 0x00000001 /* currently active flags */
128 #define VM_WRITE 0x00000002
129 #define VM_EXEC 0x00000004
130 #define VM_SHARED 0x00000008
131
132 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
133 #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
134 #define VM_MAYWRITE 0x00000020
135 #define VM_MAYEXEC 0x00000040
136 #define VM_MAYSHARE 0x00000080
137
138 #define VM_GROWSDOWN 0x00000100 /* general info on the segment */
139 #define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */
140 #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
141 #define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
142 #define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */
143
144 #define VM_LOCKED 0x00002000
145 #define VM_IO 0x00004000 /* Memory mapped I/O or similar */
146
147 /* Used by sys_madvise() */
148 #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
149 #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
150
151 #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
152 #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
153 #define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */
154 #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
155 #define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
156 #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
157 #define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
158 #define VM_ARCH_2 0x02000000
159 #define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
160
161 #ifdef CONFIG_MEM_SOFT_DIRTY
162 # define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */
163 #else
164 # define VM_SOFTDIRTY 0
165 #endif
166
167 #define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
168 #define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
169 #define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
170 #define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
171
172 #if defined(CONFIG_X86)
173 # define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
174 #elif defined(CONFIG_PPC)
175 # define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
176 #elif defined(CONFIG_PARISC)
177 # define VM_GROWSUP VM_ARCH_1
178 #elif defined(CONFIG_METAG)
179 # define VM_GROWSUP VM_ARCH_1
180 #elif defined(CONFIG_IA64)
181 # define VM_GROWSUP VM_ARCH_1
182 #elif !defined(CONFIG_MMU)
183 # define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
184 #endif
185
186 #if defined(CONFIG_X86)
187 /* MPX specific bounds table or bounds directory */
188 # define VM_MPX VM_ARCH_2
189 #endif
190
191 #ifndef VM_GROWSUP
192 # define VM_GROWSUP VM_NONE
193 #endif
194
195 /* Bits set in the VMA until the stack is in its final location */
196 #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
197
198 #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
199 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
200 #endif
201
202 #ifdef CONFIG_STACK_GROWSUP
203 #define VM_STACK_FLAGS (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
204 #else
205 #define VM_STACK_FLAGS (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
206 #endif
207
208 /*
209 * Special vmas that are non-mergable, non-mlock()able.
210 * Note: mm/huge_memory.c VM_NO_THP depends on this definition.
211 */
212 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
213
214 /* This mask defines which mm->def_flags a process can inherit its parent */
215 #define VM_INIT_DEF_MASK VM_NOHUGEPAGE
216
217 /* This mask is used to clear all the VMA flags used by mlock */
218 #define VM_LOCKED_CLEAR_MASK (~(VM_LOCKED | VM_LOCKONFAULT))
219
220 /*
221 * mapping from the currently active vm_flags protection bits (the
222 * low four bits) to a page protection mask..
223 */
224 extern pgprot_t protection_map[16];
225
226 #define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */
227 #define FAULT_FLAG_MKWRITE 0x02 /* Fault was mkwrite of existing pte */
228 #define FAULT_FLAG_ALLOW_RETRY 0x04 /* Retry fault if blocking */
229 #define FAULT_FLAG_RETRY_NOWAIT 0x08 /* Don't drop mmap_sem and wait when retrying */
230 #define FAULT_FLAG_KILLABLE 0x10 /* The fault task is in SIGKILL killable region */
231 #define FAULT_FLAG_TRIED 0x20 /* Second try */
232 #define FAULT_FLAG_USER 0x40 /* The fault originated in userspace */
233
234 /*
235 * vm_fault is filled by the the pagefault handler and passed to the vma's
236 * ->fault function. The vma's ->fault is responsible for returning a bitmask
237 * of VM_FAULT_xxx flags that give details about how the fault was handled.
238 *
239 * MM layer fills up gfp_mask for page allocations but fault handler might
240 * alter it if its implementation requires a different allocation context.
241 *
242 * pgoff should be used in favour of virtual_address, if possible.
243 */
244 struct vm_fault {
245 unsigned int flags; /* FAULT_FLAG_xxx flags */
246 gfp_t gfp_mask; /* gfp mask to be used for allocations */
247 pgoff_t pgoff; /* Logical page offset based on vma */
248 void __user *virtual_address; /* Faulting virtual address */
249
250 struct page *cow_page; /* Handler may choose to COW */
251 struct page *page; /* ->fault handlers should return a
252 * page here, unless VM_FAULT_NOPAGE
253 * is set (which is also implied by
254 * VM_FAULT_ERROR).
255 */
256 /* for ->map_pages() only */
257 pgoff_t max_pgoff; /* map pages for offset from pgoff till
258 * max_pgoff inclusive */
259 pte_t *pte; /* pte entry associated with ->pgoff */
260 };
261
262 /*
263 * These are the virtual MM functions - opening of an area, closing and
264 * unmapping it (needed to keep files on disk up-to-date etc), pointer
265 * to the functions called when a no-page or a wp-page exception occurs.
266 */
267 struct vm_operations_struct {
268 void (*open)(struct vm_area_struct * area);
269 void (*close)(struct vm_area_struct * area);
270 int (*mremap)(struct vm_area_struct * area);
271 int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf);
272 int (*pmd_fault)(struct vm_area_struct *, unsigned long address,
273 pmd_t *, unsigned int flags);
274 void (*map_pages)(struct vm_area_struct *vma, struct vm_fault *vmf);
275
276 /* notification that a previously read-only page is about to become
277 * writable, if an error is returned it will cause a SIGBUS */
278 int (*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
279
280 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
281 int (*pfn_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
282
283 /* called by access_process_vm when get_user_pages() fails, typically
284 * for use by special VMAs that can switch between memory and hardware
285 */
286 int (*access)(struct vm_area_struct *vma, unsigned long addr,
287 void *buf, int len, int write);
288
289 /* Called by the /proc/PID/maps code to ask the vma whether it
290 * has a special name. Returning non-NULL will also cause this
291 * vma to be dumped unconditionally. */
292 const char *(*name)(struct vm_area_struct *vma);
293
294 #ifdef CONFIG_NUMA
295 /*
296 * set_policy() op must add a reference to any non-NULL @new mempolicy
297 * to hold the policy upon return. Caller should pass NULL @new to
298 * remove a policy and fall back to surrounding context--i.e. do not
299 * install a MPOL_DEFAULT policy, nor the task or system default
300 * mempolicy.
301 */
302 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
303
304 /*
305 * get_policy() op must add reference [mpol_get()] to any policy at
306 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
307 * in mm/mempolicy.c will do this automatically.
308 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
309 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
310 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
311 * must return NULL--i.e., do not "fallback" to task or system default
312 * policy.
313 */
314 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
315 unsigned long addr);
316 #endif
317 /*
318 * Called by vm_normal_page() for special PTEs to find the
319 * page for @addr. This is useful if the default behavior
320 * (using pte_page()) would not find the correct page.
321 */
322 struct page *(*find_special_page)(struct vm_area_struct *vma,
323 unsigned long addr);
324 };
325
326 struct mmu_gather;
327 struct inode;
328
329 #define page_private(page) ((page)->private)
330 #define set_page_private(page, v) ((page)->private = (v))
331
332 #if !defined(__HAVE_ARCH_PTE_DEVMAP) || !defined(CONFIG_TRANSPARENT_HUGEPAGE)
333 static inline int pmd_devmap(pmd_t pmd)
334 {
335 return 0;
336 }
337 #endif
338
339 /*
340 * FIXME: take this include out, include page-flags.h in
341 * files which need it (119 of them)
342 */
343 #include <linux/page-flags.h>
344 #include <linux/huge_mm.h>
345
346 /*
347 * Methods to modify the page usage count.
348 *
349 * What counts for a page usage:
350 * - cache mapping (page->mapping)
351 * - private data (page->private)
352 * - page mapped in a task's page tables, each mapping
353 * is counted separately
354 *
355 * Also, many kernel routines increase the page count before a critical
356 * routine so they can be sure the page doesn't go away from under them.
357 */
358
359 /*
360 * Drop a ref, return true if the refcount fell to zero (the page has no users)
361 */
362 static inline int put_page_testzero(struct page *page)
363 {
364 VM_BUG_ON_PAGE(atomic_read(&page->_count) == 0, page);
365 return atomic_dec_and_test(&page->_count);
366 }
367
368 /*
369 * Try to grab a ref unless the page has a refcount of zero, return false if
370 * that is the case.
371 * This can be called when MMU is off so it must not access
372 * any of the virtual mappings.
373 */
374 static inline int get_page_unless_zero(struct page *page)
375 {
376 return atomic_inc_not_zero(&page->_count);
377 }
378
379 extern int page_is_ram(unsigned long pfn);
380
381 enum {
382 REGION_INTERSECTS,
383 REGION_DISJOINT,
384 REGION_MIXED,
385 };
386
387 int region_intersects(resource_size_t offset, size_t size, const char *type);
388
389 /* Support for virtually mapped pages */
390 struct page *vmalloc_to_page(const void *addr);
391 unsigned long vmalloc_to_pfn(const void *addr);
392
393 /*
394 * Determine if an address is within the vmalloc range
395 *
396 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
397 * is no special casing required.
398 */
399 static inline int is_vmalloc_addr(const void *x)
400 {
401 #ifdef CONFIG_MMU
402 unsigned long addr = (unsigned long)x;
403
404 return addr >= VMALLOC_START && addr < VMALLOC_END;
405 #else
406 return 0;
407 #endif
408 }
409 #ifdef CONFIG_MMU
410 extern int is_vmalloc_or_module_addr(const void *x);
411 #else
412 static inline int is_vmalloc_or_module_addr(const void *x)
413 {
414 return 0;
415 }
416 #endif
417
418 extern void kvfree(const void *addr);
419
420 static inline atomic_t *compound_mapcount_ptr(struct page *page)
421 {
422 return &page[1].compound_mapcount;
423 }
424
425 static inline int compound_mapcount(struct page *page)
426 {
427 if (!PageCompound(page))
428 return 0;
429 page = compound_head(page);
430 return atomic_read(compound_mapcount_ptr(page)) + 1;
431 }
432
433 /*
434 * The atomic page->_mapcount, starts from -1: so that transitions
435 * both from it and to it can be tracked, using atomic_inc_and_test
436 * and atomic_add_negative(-1).
437 */
438 static inline void page_mapcount_reset(struct page *page)
439 {
440 atomic_set(&(page)->_mapcount, -1);
441 }
442
443 int __page_mapcount(struct page *page);
444
445 static inline int page_mapcount(struct page *page)
446 {
447 VM_BUG_ON_PAGE(PageSlab(page), page);
448
449 if (unlikely(PageCompound(page)))
450 return __page_mapcount(page);
451 return atomic_read(&page->_mapcount) + 1;
452 }
453
454 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
455 int total_mapcount(struct page *page);
456 #else
457 static inline int total_mapcount(struct page *page)
458 {
459 return page_mapcount(page);
460 }
461 #endif
462
463 static inline int page_count(struct page *page)
464 {
465 return atomic_read(&compound_head(page)->_count);
466 }
467
468 static inline void get_page(struct page *page)
469 {
470 page = compound_head(page);
471 /*
472 * Getting a normal page or the head of a compound page
473 * requires to already have an elevated page->_count.
474 */
475 VM_BUG_ON_PAGE(atomic_read(&page->_count) <= 0, page);
476 atomic_inc(&page->_count);
477 }
478
479 static inline struct page *virt_to_head_page(const void *x)
480 {
481 struct page *page = virt_to_page(x);
482
483 return compound_head(page);
484 }
485
486 /*
487 * Setup the page count before being freed into the page allocator for
488 * the first time (boot or memory hotplug)
489 */
490 static inline void init_page_count(struct page *page)
491 {
492 atomic_set(&page->_count, 1);
493 }
494
495 void __put_page(struct page *page);
496
497 static inline void put_page(struct page *page)
498 {
499 page = compound_head(page);
500 if (put_page_testzero(page))
501 __put_page(page);
502 }
503
504 void put_pages_list(struct list_head *pages);
505
506 void split_page(struct page *page, unsigned int order);
507 int split_free_page(struct page *page);
508
509 /*
510 * Compound pages have a destructor function. Provide a
511 * prototype for that function and accessor functions.
512 * These are _only_ valid on the head of a compound page.
513 */
514 typedef void compound_page_dtor(struct page *);
515
516 /* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */
517 enum compound_dtor_id {
518 NULL_COMPOUND_DTOR,
519 COMPOUND_PAGE_DTOR,
520 #ifdef CONFIG_HUGETLB_PAGE
521 HUGETLB_PAGE_DTOR,
522 #endif
523 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
524 TRANSHUGE_PAGE_DTOR,
525 #endif
526 NR_COMPOUND_DTORS,
527 };
528 extern compound_page_dtor * const compound_page_dtors[];
529
530 static inline void set_compound_page_dtor(struct page *page,
531 enum compound_dtor_id compound_dtor)
532 {
533 VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page);
534 page[1].compound_dtor = compound_dtor;
535 }
536
537 static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
538 {
539 VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page);
540 return compound_page_dtors[page[1].compound_dtor];
541 }
542
543 static inline unsigned int compound_order(struct page *page)
544 {
545 if (!PageHead(page))
546 return 0;
547 return page[1].compound_order;
548 }
549
550 static inline void set_compound_order(struct page *page, unsigned int order)
551 {
552 page[1].compound_order = order;
553 }
554
555 void free_compound_page(struct page *page);
556
557 #ifdef CONFIG_MMU
558 /*
559 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
560 * servicing faults for write access. In the normal case, do always want
561 * pte_mkwrite. But get_user_pages can cause write faults for mappings
562 * that do not have writing enabled, when used by access_process_vm.
563 */
564 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
565 {
566 if (likely(vma->vm_flags & VM_WRITE))
567 pte = pte_mkwrite(pte);
568 return pte;
569 }
570
571 void do_set_pte(struct vm_area_struct *vma, unsigned long address,
572 struct page *page, pte_t *pte, bool write, bool anon);
573 #endif
574
575 /*
576 * Multiple processes may "see" the same page. E.g. for untouched
577 * mappings of /dev/null, all processes see the same page full of
578 * zeroes, and text pages of executables and shared libraries have
579 * only one copy in memory, at most, normally.
580 *
581 * For the non-reserved pages, page_count(page) denotes a reference count.
582 * page_count() == 0 means the page is free. page->lru is then used for
583 * freelist management in the buddy allocator.
584 * page_count() > 0 means the page has been allocated.
585 *
586 * Pages are allocated by the slab allocator in order to provide memory
587 * to kmalloc and kmem_cache_alloc. In this case, the management of the
588 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
589 * unless a particular usage is carefully commented. (the responsibility of
590 * freeing the kmalloc memory is the caller's, of course).
591 *
592 * A page may be used by anyone else who does a __get_free_page().
593 * In this case, page_count still tracks the references, and should only
594 * be used through the normal accessor functions. The top bits of page->flags
595 * and page->virtual store page management information, but all other fields
596 * are unused and could be used privately, carefully. The management of this
597 * page is the responsibility of the one who allocated it, and those who have
598 * subsequently been given references to it.
599 *
600 * The other pages (we may call them "pagecache pages") are completely
601 * managed by the Linux memory manager: I/O, buffers, swapping etc.
602 * The following discussion applies only to them.
603 *
604 * A pagecache page contains an opaque `private' member, which belongs to the
605 * page's address_space. Usually, this is the address of a circular list of
606 * the page's disk buffers. PG_private must be set to tell the VM to call
607 * into the filesystem to release these pages.
608 *
609 * A page may belong to an inode's memory mapping. In this case, page->mapping
610 * is the pointer to the inode, and page->index is the file offset of the page,
611 * in units of PAGE_CACHE_SIZE.
612 *
613 * If pagecache pages are not associated with an inode, they are said to be
614 * anonymous pages. These may become associated with the swapcache, and in that
615 * case PG_swapcache is set, and page->private is an offset into the swapcache.
616 *
617 * In either case (swapcache or inode backed), the pagecache itself holds one
618 * reference to the page. Setting PG_private should also increment the
619 * refcount. The each user mapping also has a reference to the page.
620 *
621 * The pagecache pages are stored in a per-mapping radix tree, which is
622 * rooted at mapping->page_tree, and indexed by offset.
623 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
624 * lists, we instead now tag pages as dirty/writeback in the radix tree.
625 *
626 * All pagecache pages may be subject to I/O:
627 * - inode pages may need to be read from disk,
628 * - inode pages which have been modified and are MAP_SHARED may need
629 * to be written back to the inode on disk,
630 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
631 * modified may need to be swapped out to swap space and (later) to be read
632 * back into memory.
633 */
634
635 /*
636 * The zone field is never updated after free_area_init_core()
637 * sets it, so none of the operations on it need to be atomic.
638 */
639
640 /* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
641 #define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
642 #define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
643 #define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
644 #define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH)
645
646 /*
647 * Define the bit shifts to access each section. For non-existent
648 * sections we define the shift as 0; that plus a 0 mask ensures
649 * the compiler will optimise away reference to them.
650 */
651 #define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
652 #define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
653 #define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
654 #define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
655
656 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
657 #ifdef NODE_NOT_IN_PAGE_FLAGS
658 #define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
659 #define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
660 SECTIONS_PGOFF : ZONES_PGOFF)
661 #else
662 #define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
663 #define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
664 NODES_PGOFF : ZONES_PGOFF)
665 #endif
666
667 #define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
668
669 #if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
670 #error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
671 #endif
672
673 #define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
674 #define NODES_MASK ((1UL << NODES_WIDTH) - 1)
675 #define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
676 #define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1)
677 #define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
678
679 static inline enum zone_type page_zonenum(const struct page *page)
680 {
681 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
682 }
683
684 #ifdef CONFIG_ZONE_DEVICE
685 static inline bool is_zone_device_page(const struct page *page)
686 {
687 return page_zonenum(page) == ZONE_DEVICE;
688 }
689 #else
690 static inline bool is_zone_device_page(const struct page *page)
691 {
692 return false;
693 }
694 #endif
695
696 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
697 #define SECTION_IN_PAGE_FLAGS
698 #endif
699
700 /*
701 * The identification function is mainly used by the buddy allocator for
702 * determining if two pages could be buddies. We are not really identifying
703 * the zone since we could be using the section number id if we do not have
704 * node id available in page flags.
705 * We only guarantee that it will return the same value for two combinable
706 * pages in a zone.
707 */
708 static inline int page_zone_id(struct page *page)
709 {
710 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
711 }
712
713 static inline int zone_to_nid(struct zone *zone)
714 {
715 #ifdef CONFIG_NUMA
716 return zone->node;
717 #else
718 return 0;
719 #endif
720 }
721
722 #ifdef NODE_NOT_IN_PAGE_FLAGS
723 extern int page_to_nid(const struct page *page);
724 #else
725 static inline int page_to_nid(const struct page *page)
726 {
727 return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
728 }
729 #endif
730
731 #ifdef CONFIG_NUMA_BALANCING
732 static inline int cpu_pid_to_cpupid(int cpu, int pid)
733 {
734 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
735 }
736
737 static inline int cpupid_to_pid(int cpupid)
738 {
739 return cpupid & LAST__PID_MASK;
740 }
741
742 static inline int cpupid_to_cpu(int cpupid)
743 {
744 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
745 }
746
747 static inline int cpupid_to_nid(int cpupid)
748 {
749 return cpu_to_node(cpupid_to_cpu(cpupid));
750 }
751
752 static inline bool cpupid_pid_unset(int cpupid)
753 {
754 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
755 }
756
757 static inline bool cpupid_cpu_unset(int cpupid)
758 {
759 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
760 }
761
762 static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
763 {
764 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
765 }
766
767 #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
768 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
769 static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
770 {
771 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
772 }
773
774 static inline int page_cpupid_last(struct page *page)
775 {
776 return page->_last_cpupid;
777 }
778 static inline void page_cpupid_reset_last(struct page *page)
779 {
780 page->_last_cpupid = -1 & LAST_CPUPID_MASK;
781 }
782 #else
783 static inline int page_cpupid_last(struct page *page)
784 {
785 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
786 }
787
788 extern int page_cpupid_xchg_last(struct page *page, int cpupid);
789
790 static inline void page_cpupid_reset_last(struct page *page)
791 {
792 int cpupid = (1 << LAST_CPUPID_SHIFT) - 1;
793
794 page->flags &= ~(LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT);
795 page->flags |= (cpupid & LAST_CPUPID_MASK) << LAST_CPUPID_PGSHIFT;
796 }
797 #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
798 #else /* !CONFIG_NUMA_BALANCING */
799 static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
800 {
801 return page_to_nid(page); /* XXX */
802 }
803
804 static inline int page_cpupid_last(struct page *page)
805 {
806 return page_to_nid(page); /* XXX */
807 }
808
809 static inline int cpupid_to_nid(int cpupid)
810 {
811 return -1;
812 }
813
814 static inline int cpupid_to_pid(int cpupid)
815 {
816 return -1;
817 }
818
819 static inline int cpupid_to_cpu(int cpupid)
820 {
821 return -1;
822 }
823
824 static inline int cpu_pid_to_cpupid(int nid, int pid)
825 {
826 return -1;
827 }
828
829 static inline bool cpupid_pid_unset(int cpupid)
830 {
831 return 1;
832 }
833
834 static inline void page_cpupid_reset_last(struct page *page)
835 {
836 }
837
838 static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
839 {
840 return false;
841 }
842 #endif /* CONFIG_NUMA_BALANCING */
843
844 static inline struct zone *page_zone(const struct page *page)
845 {
846 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
847 }
848
849 #ifdef SECTION_IN_PAGE_FLAGS
850 static inline void set_page_section(struct page *page, unsigned long section)
851 {
852 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
853 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
854 }
855
856 static inline unsigned long page_to_section(const struct page *page)
857 {
858 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
859 }
860 #endif
861
862 static inline void set_page_zone(struct page *page, enum zone_type zone)
863 {
864 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
865 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
866 }
867
868 static inline void set_page_node(struct page *page, unsigned long node)
869 {
870 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
871 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
872 }
873
874 static inline void set_page_links(struct page *page, enum zone_type zone,
875 unsigned long node, unsigned long pfn)
876 {
877 set_page_zone(page, zone);
878 set_page_node(page, node);
879 #ifdef SECTION_IN_PAGE_FLAGS
880 set_page_section(page, pfn_to_section_nr(pfn));
881 #endif
882 }
883
884 #ifdef CONFIG_MEMCG
885 static inline struct mem_cgroup *page_memcg(struct page *page)
886 {
887 return page->mem_cgroup;
888 }
889
890 static inline void set_page_memcg(struct page *page, struct mem_cgroup *memcg)
891 {
892 page->mem_cgroup = memcg;
893 }
894 #else
895 static inline struct mem_cgroup *page_memcg(struct page *page)
896 {
897 return NULL;
898 }
899
900 static inline void set_page_memcg(struct page *page, struct mem_cgroup *memcg)
901 {
902 }
903 #endif
904
905 /*
906 * Some inline functions in vmstat.h depend on page_zone()
907 */
908 #include <linux/vmstat.h>
909
910 static __always_inline void *lowmem_page_address(const struct page *page)
911 {
912 return __va(PFN_PHYS(page_to_pfn(page)));
913 }
914
915 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
916 #define HASHED_PAGE_VIRTUAL
917 #endif
918
919 #if defined(WANT_PAGE_VIRTUAL)
920 static inline void *page_address(const struct page *page)
921 {
922 return page->virtual;
923 }
924 static inline void set_page_address(struct page *page, void *address)
925 {
926 page->virtual = address;
927 }
928 #define page_address_init() do { } while(0)
929 #endif
930
931 #if defined(HASHED_PAGE_VIRTUAL)
932 void *page_address(const struct page *page);
933 void set_page_address(struct page *page, void *virtual);
934 void page_address_init(void);
935 #endif
936
937 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
938 #define page_address(page) lowmem_page_address(page)
939 #define set_page_address(page, address) do { } while(0)
940 #define page_address_init() do { } while(0)
941 #endif
942
943 extern void *page_rmapping(struct page *page);
944 extern struct anon_vma *page_anon_vma(struct page *page);
945 extern struct address_space *page_mapping(struct page *page);
946
947 extern struct address_space *__page_file_mapping(struct page *);
948
949 static inline
950 struct address_space *page_file_mapping(struct page *page)
951 {
952 if (unlikely(PageSwapCache(page)))
953 return __page_file_mapping(page);
954
955 return page->mapping;
956 }
957
958 /*
959 * Return the pagecache index of the passed page. Regular pagecache pages
960 * use ->index whereas swapcache pages use ->private
961 */
962 static inline pgoff_t page_index(struct page *page)
963 {
964 if (unlikely(PageSwapCache(page)))
965 return page_private(page);
966 return page->index;
967 }
968
969 extern pgoff_t __page_file_index(struct page *page);
970
971 /*
972 * Return the file index of the page. Regular pagecache pages use ->index
973 * whereas swapcache pages use swp_offset(->private)
974 */
975 static inline pgoff_t page_file_index(struct page *page)
976 {
977 if (unlikely(PageSwapCache(page)))
978 return __page_file_index(page);
979
980 return page->index;
981 }
982
983 /*
984 * Return true if this page is mapped into pagetables.
985 * For compound page it returns true if any subpage of compound page is mapped.
986 */
987 static inline bool page_mapped(struct page *page)
988 {
989 int i;
990 if (likely(!PageCompound(page)))
991 return atomic_read(&page->_mapcount) >= 0;
992 page = compound_head(page);
993 if (atomic_read(compound_mapcount_ptr(page)) >= 0)
994 return true;
995 for (i = 0; i < hpage_nr_pages(page); i++) {
996 if (atomic_read(&page[i]._mapcount) >= 0)
997 return true;
998 }
999 return false;
1000 }
1001
1002 /*
1003 * Return true only if the page has been allocated with
1004 * ALLOC_NO_WATERMARKS and the low watermark was not
1005 * met implying that the system is under some pressure.
1006 */
1007 static inline bool page_is_pfmemalloc(struct page *page)
1008 {
1009 /*
1010 * Page index cannot be this large so this must be
1011 * a pfmemalloc page.
1012 */
1013 return page->index == -1UL;
1014 }
1015
1016 /*
1017 * Only to be called by the page allocator on a freshly allocated
1018 * page.
1019 */
1020 static inline void set_page_pfmemalloc(struct page *page)
1021 {
1022 page->index = -1UL;
1023 }
1024
1025 static inline void clear_page_pfmemalloc(struct page *page)
1026 {
1027 page->index = 0;
1028 }
1029
1030 /*
1031 * Different kinds of faults, as returned by handle_mm_fault().
1032 * Used to decide whether a process gets delivered SIGBUS or
1033 * just gets major/minor fault counters bumped up.
1034 */
1035
1036 #define VM_FAULT_MINOR 0 /* For backwards compat. Remove me quickly. */
1037
1038 #define VM_FAULT_OOM 0x0001
1039 #define VM_FAULT_SIGBUS 0x0002
1040 #define VM_FAULT_MAJOR 0x0004
1041 #define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */
1042 #define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */
1043 #define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */
1044 #define VM_FAULT_SIGSEGV 0x0040
1045
1046 #define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */
1047 #define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */
1048 #define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */
1049 #define VM_FAULT_FALLBACK 0x0800 /* huge page fault failed, fall back to small */
1050
1051 #define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */
1052
1053 #define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | \
1054 VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE | \
1055 VM_FAULT_FALLBACK)
1056
1057 /* Encode hstate index for a hwpoisoned large page */
1058 #define VM_FAULT_SET_HINDEX(x) ((x) << 12)
1059 #define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf)
1060
1061 /*
1062 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
1063 */
1064 extern void pagefault_out_of_memory(void);
1065
1066 #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
1067
1068 /*
1069 * Flags passed to show_mem() and show_free_areas() to suppress output in
1070 * various contexts.
1071 */
1072 #define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */
1073
1074 extern void show_free_areas(unsigned int flags);
1075 extern bool skip_free_areas_node(unsigned int flags, int nid);
1076
1077 int shmem_zero_setup(struct vm_area_struct *);
1078 #ifdef CONFIG_SHMEM
1079 bool shmem_mapping(struct address_space *mapping);
1080 #else
1081 static inline bool shmem_mapping(struct address_space *mapping)
1082 {
1083 return false;
1084 }
1085 #endif
1086
1087 extern int can_do_mlock(void);
1088 extern int user_shm_lock(size_t, struct user_struct *);
1089 extern void user_shm_unlock(size_t, struct user_struct *);
1090
1091 /*
1092 * Parameter block passed down to zap_pte_range in exceptional cases.
1093 */
1094 struct zap_details {
1095 struct address_space *check_mapping; /* Check page->mapping if set */
1096 pgoff_t first_index; /* Lowest page->index to unmap */
1097 pgoff_t last_index; /* Highest page->index to unmap */
1098 };
1099
1100 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
1101 pte_t pte);
1102
1103 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1104 unsigned long size);
1105 void zap_page_range(struct vm_area_struct *vma, unsigned long address,
1106 unsigned long size, struct zap_details *);
1107 void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
1108 unsigned long start, unsigned long end);
1109
1110 /**
1111 * mm_walk - callbacks for walk_page_range
1112 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
1113 * this handler is required to be able to handle
1114 * pmd_trans_huge() pmds. They may simply choose to
1115 * split_huge_page() instead of handling it explicitly.
1116 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
1117 * @pte_hole: if set, called for each hole at all levels
1118 * @hugetlb_entry: if set, called for each hugetlb entry
1119 * @test_walk: caller specific callback function to determine whether
1120 * we walk over the current vma or not. A positive returned
1121 * value means "do page table walk over the current vma,"
1122 * and a negative one means "abort current page table walk
1123 * right now." 0 means "skip the current vma."
1124 * @mm: mm_struct representing the target process of page table walk
1125 * @vma: vma currently walked (NULL if walking outside vmas)
1126 * @private: private data for callbacks' usage
1127 *
1128 * (see the comment on walk_page_range() for more details)
1129 */
1130 struct mm_walk {
1131 int (*pmd_entry)(pmd_t *pmd, unsigned long addr,
1132 unsigned long next, struct mm_walk *walk);
1133 int (*pte_entry)(pte_t *pte, unsigned long addr,
1134 unsigned long next, struct mm_walk *walk);
1135 int (*pte_hole)(unsigned long addr, unsigned long next,
1136 struct mm_walk *walk);
1137 int (*hugetlb_entry)(pte_t *pte, unsigned long hmask,
1138 unsigned long addr, unsigned long next,
1139 struct mm_walk *walk);
1140 int (*test_walk)(unsigned long addr, unsigned long next,
1141 struct mm_walk *walk);
1142 struct mm_struct *mm;
1143 struct vm_area_struct *vma;
1144 void *private;
1145 };
1146
1147 int walk_page_range(unsigned long addr, unsigned long end,
1148 struct mm_walk *walk);
1149 int walk_page_vma(struct vm_area_struct *vma, struct mm_walk *walk);
1150 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
1151 unsigned long end, unsigned long floor, unsigned long ceiling);
1152 int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
1153 struct vm_area_struct *vma);
1154 void unmap_mapping_range(struct address_space *mapping,
1155 loff_t const holebegin, loff_t const holelen, int even_cows);
1156 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
1157 unsigned long *pfn);
1158 int follow_phys(struct vm_area_struct *vma, unsigned long address,
1159 unsigned int flags, unsigned long *prot, resource_size_t *phys);
1160 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
1161 void *buf, int len, int write);
1162
1163 static inline void unmap_shared_mapping_range(struct address_space *mapping,
1164 loff_t const holebegin, loff_t const holelen)
1165 {
1166 unmap_mapping_range(mapping, holebegin, holelen, 0);
1167 }
1168
1169 extern void truncate_pagecache(struct inode *inode, loff_t new);
1170 extern void truncate_setsize(struct inode *inode, loff_t newsize);
1171 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
1172 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
1173 int truncate_inode_page(struct address_space *mapping, struct page *page);
1174 int generic_error_remove_page(struct address_space *mapping, struct page *page);
1175 int invalidate_inode_page(struct page *page);
1176
1177 #ifdef CONFIG_MMU
1178 extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
1179 unsigned long address, unsigned int flags);
1180 extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1181 unsigned long address, unsigned int fault_flags);
1182 #else
1183 static inline int handle_mm_fault(struct mm_struct *mm,
1184 struct vm_area_struct *vma, unsigned long address,
1185 unsigned int flags)
1186 {
1187 /* should never happen if there's no MMU */
1188 BUG();
1189 return VM_FAULT_SIGBUS;
1190 }
1191 static inline int fixup_user_fault(struct task_struct *tsk,
1192 struct mm_struct *mm, unsigned long address,
1193 unsigned int fault_flags)
1194 {
1195 /* should never happen if there's no MMU */
1196 BUG();
1197 return -EFAULT;
1198 }
1199 #endif
1200
1201 extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write);
1202 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1203 void *buf, int len, int write);
1204
1205 long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1206 unsigned long start, unsigned long nr_pages,
1207 unsigned int foll_flags, struct page **pages,
1208 struct vm_area_struct **vmas, int *nonblocking);
1209 long get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1210 unsigned long start, unsigned long nr_pages,
1211 int write, int force, struct page **pages,
1212 struct vm_area_struct **vmas);
1213 long get_user_pages_locked(struct task_struct *tsk, struct mm_struct *mm,
1214 unsigned long start, unsigned long nr_pages,
1215 int write, int force, struct page **pages,
1216 int *locked);
1217 long __get_user_pages_unlocked(struct task_struct *tsk, struct mm_struct *mm,
1218 unsigned long start, unsigned long nr_pages,
1219 int write, int force, struct page **pages,
1220 unsigned int gup_flags);
1221 long get_user_pages_unlocked(struct task_struct *tsk, struct mm_struct *mm,
1222 unsigned long start, unsigned long nr_pages,
1223 int write, int force, struct page **pages);
1224 int get_user_pages_fast(unsigned long start, int nr_pages, int write,
1225 struct page **pages);
1226
1227 /* Container for pinned pfns / pages */
1228 struct frame_vector {
1229 unsigned int nr_allocated; /* Number of frames we have space for */
1230 unsigned int nr_frames; /* Number of frames stored in ptrs array */
1231 bool got_ref; /* Did we pin pages by getting page ref? */
1232 bool is_pfns; /* Does array contain pages or pfns? */
1233 void *ptrs[0]; /* Array of pinned pfns / pages. Use
1234 * pfns_vector_pages() or pfns_vector_pfns()
1235 * for access */
1236 };
1237
1238 struct frame_vector *frame_vector_create(unsigned int nr_frames);
1239 void frame_vector_destroy(struct frame_vector *vec);
1240 int get_vaddr_frames(unsigned long start, unsigned int nr_pfns,
1241 bool write, bool force, struct frame_vector *vec);
1242 void put_vaddr_frames(struct frame_vector *vec);
1243 int frame_vector_to_pages(struct frame_vector *vec);
1244 void frame_vector_to_pfns(struct frame_vector *vec);
1245
1246 static inline unsigned int frame_vector_count(struct frame_vector *vec)
1247 {
1248 return vec->nr_frames;
1249 }
1250
1251 static inline struct page **frame_vector_pages(struct frame_vector *vec)
1252 {
1253 if (vec->is_pfns) {
1254 int err = frame_vector_to_pages(vec);
1255
1256 if (err)
1257 return ERR_PTR(err);
1258 }
1259 return (struct page **)(vec->ptrs);
1260 }
1261
1262 static inline unsigned long *frame_vector_pfns(struct frame_vector *vec)
1263 {
1264 if (!vec->is_pfns)
1265 frame_vector_to_pfns(vec);
1266 return (unsigned long *)(vec->ptrs);
1267 }
1268
1269 struct kvec;
1270 int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1271 struct page **pages);
1272 int get_kernel_page(unsigned long start, int write, struct page **pages);
1273 struct page *get_dump_page(unsigned long addr);
1274
1275 extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
1276 extern void do_invalidatepage(struct page *page, unsigned int offset,
1277 unsigned int length);
1278
1279 int __set_page_dirty_nobuffers(struct page *page);
1280 int __set_page_dirty_no_writeback(struct page *page);
1281 int redirty_page_for_writepage(struct writeback_control *wbc,
1282 struct page *page);
1283 void account_page_dirtied(struct page *page, struct address_space *mapping,
1284 struct mem_cgroup *memcg);
1285 void account_page_cleaned(struct page *page, struct address_space *mapping,
1286 struct mem_cgroup *memcg, struct bdi_writeback *wb);
1287 int set_page_dirty(struct page *page);
1288 int set_page_dirty_lock(struct page *page);
1289 void cancel_dirty_page(struct page *page);
1290 int clear_page_dirty_for_io(struct page *page);
1291
1292 int get_cmdline(struct task_struct *task, char *buffer, int buflen);
1293
1294 /* Is the vma a continuation of the stack vma above it? */
1295 static inline int vma_growsdown(struct vm_area_struct *vma, unsigned long addr)
1296 {
1297 return vma && (vma->vm_end == addr) && (vma->vm_flags & VM_GROWSDOWN);
1298 }
1299
1300 static inline bool vma_is_anonymous(struct vm_area_struct *vma)
1301 {
1302 return !vma->vm_ops;
1303 }
1304
1305 static inline int stack_guard_page_start(struct vm_area_struct *vma,
1306 unsigned long addr)
1307 {
1308 return (vma->vm_flags & VM_GROWSDOWN) &&
1309 (vma->vm_start == addr) &&
1310 !vma_growsdown(vma->vm_prev, addr);
1311 }
1312
1313 /* Is the vma a continuation of the stack vma below it? */
1314 static inline int vma_growsup(struct vm_area_struct *vma, unsigned long addr)
1315 {
1316 return vma && (vma->vm_start == addr) && (vma->vm_flags & VM_GROWSUP);
1317 }
1318
1319 static inline int stack_guard_page_end(struct vm_area_struct *vma,
1320 unsigned long addr)
1321 {
1322 return (vma->vm_flags & VM_GROWSUP) &&
1323 (vma->vm_end == addr) &&
1324 !vma_growsup(vma->vm_next, addr);
1325 }
1326
1327 extern struct task_struct *task_of_stack(struct task_struct *task,
1328 struct vm_area_struct *vma, bool in_group);
1329
1330 extern unsigned long move_page_tables(struct vm_area_struct *vma,
1331 unsigned long old_addr, struct vm_area_struct *new_vma,
1332 unsigned long new_addr, unsigned long len,
1333 bool need_rmap_locks);
1334 extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
1335 unsigned long end, pgprot_t newprot,
1336 int dirty_accountable, int prot_numa);
1337 extern int mprotect_fixup(struct vm_area_struct *vma,
1338 struct vm_area_struct **pprev, unsigned long start,
1339 unsigned long end, unsigned long newflags);
1340
1341 /*
1342 * doesn't attempt to fault and will return short.
1343 */
1344 int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1345 struct page **pages);
1346 /*
1347 * per-process(per-mm_struct) statistics.
1348 */
1349 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1350 {
1351 long val = atomic_long_read(&mm->rss_stat.count[member]);
1352
1353 #ifdef SPLIT_RSS_COUNTING
1354 /*
1355 * counter is updated in asynchronous manner and may go to minus.
1356 * But it's never be expected number for users.
1357 */
1358 if (val < 0)
1359 val = 0;
1360 #endif
1361 return (unsigned long)val;
1362 }
1363
1364 static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1365 {
1366 atomic_long_add(value, &mm->rss_stat.count[member]);
1367 }
1368
1369 static inline void inc_mm_counter(struct mm_struct *mm, int member)
1370 {
1371 atomic_long_inc(&mm->rss_stat.count[member]);
1372 }
1373
1374 static inline void dec_mm_counter(struct mm_struct *mm, int member)
1375 {
1376 atomic_long_dec(&mm->rss_stat.count[member]);
1377 }
1378
1379 /* Optimized variant when page is already known not to be PageAnon */
1380 static inline int mm_counter_file(struct page *page)
1381 {
1382 if (PageSwapBacked(page))
1383 return MM_SHMEMPAGES;
1384 return MM_FILEPAGES;
1385 }
1386
1387 static inline int mm_counter(struct page *page)
1388 {
1389 if (PageAnon(page))
1390 return MM_ANONPAGES;
1391 return mm_counter_file(page);
1392 }
1393
1394 static inline unsigned long get_mm_rss(struct mm_struct *mm)
1395 {
1396 return get_mm_counter(mm, MM_FILEPAGES) +
1397 get_mm_counter(mm, MM_ANONPAGES) +
1398 get_mm_counter(mm, MM_SHMEMPAGES);
1399 }
1400
1401 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1402 {
1403 return max(mm->hiwater_rss, get_mm_rss(mm));
1404 }
1405
1406 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1407 {
1408 return max(mm->hiwater_vm, mm->total_vm);
1409 }
1410
1411 static inline void update_hiwater_rss(struct mm_struct *mm)
1412 {
1413 unsigned long _rss = get_mm_rss(mm);
1414
1415 if ((mm)->hiwater_rss < _rss)
1416 (mm)->hiwater_rss = _rss;
1417 }
1418
1419 static inline void update_hiwater_vm(struct mm_struct *mm)
1420 {
1421 if (mm->hiwater_vm < mm->total_vm)
1422 mm->hiwater_vm = mm->total_vm;
1423 }
1424
1425 static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
1426 {
1427 mm->hiwater_rss = get_mm_rss(mm);
1428 }
1429
1430 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1431 struct mm_struct *mm)
1432 {
1433 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1434
1435 if (*maxrss < hiwater_rss)
1436 *maxrss = hiwater_rss;
1437 }
1438
1439 #if defined(SPLIT_RSS_COUNTING)
1440 void sync_mm_rss(struct mm_struct *mm);
1441 #else
1442 static inline void sync_mm_rss(struct mm_struct *mm)
1443 {
1444 }
1445 #endif
1446
1447 int vma_wants_writenotify(struct vm_area_struct *vma);
1448
1449 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1450 spinlock_t **ptl);
1451 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1452 spinlock_t **ptl)
1453 {
1454 pte_t *ptep;
1455 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
1456 return ptep;
1457 }
1458
1459 #ifdef __PAGETABLE_PUD_FOLDED
1460 static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd,
1461 unsigned long address)
1462 {
1463 return 0;
1464 }
1465 #else
1466 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
1467 #endif
1468
1469 #if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
1470 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
1471 unsigned long address)
1472 {
1473 return 0;
1474 }
1475
1476 static inline void mm_nr_pmds_init(struct mm_struct *mm) {}
1477
1478 static inline unsigned long mm_nr_pmds(struct mm_struct *mm)
1479 {
1480 return 0;
1481 }
1482
1483 static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
1484 static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
1485
1486 #else
1487 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
1488
1489 static inline void mm_nr_pmds_init(struct mm_struct *mm)
1490 {
1491 atomic_long_set(&mm->nr_pmds, 0);
1492 }
1493
1494 static inline unsigned long mm_nr_pmds(struct mm_struct *mm)
1495 {
1496 return atomic_long_read(&mm->nr_pmds);
1497 }
1498
1499 static inline void mm_inc_nr_pmds(struct mm_struct *mm)
1500 {
1501 atomic_long_inc(&mm->nr_pmds);
1502 }
1503
1504 static inline void mm_dec_nr_pmds(struct mm_struct *mm)
1505 {
1506 atomic_long_dec(&mm->nr_pmds);
1507 }
1508 #endif
1509
1510 int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
1511 pmd_t *pmd, unsigned long address);
1512 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
1513
1514 /*
1515 * The following ifdef needed to get the 4level-fixup.h header to work.
1516 * Remove it when 4level-fixup.h has been removed.
1517 */
1518 #if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
1519 static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
1520 {
1521 return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))?
1522 NULL: pud_offset(pgd, address);
1523 }
1524
1525 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1526 {
1527 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
1528 NULL: pmd_offset(pud, address);
1529 }
1530 #endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
1531
1532 #if USE_SPLIT_PTE_PTLOCKS
1533 #if ALLOC_SPLIT_PTLOCKS
1534 void __init ptlock_cache_init(void);
1535 extern bool ptlock_alloc(struct page *page);
1536 extern void ptlock_free(struct page *page);
1537
1538 static inline spinlock_t *ptlock_ptr(struct page *page)
1539 {
1540 return page->ptl;
1541 }
1542 #else /* ALLOC_SPLIT_PTLOCKS */
1543 static inline void ptlock_cache_init(void)
1544 {
1545 }
1546
1547 static inline bool ptlock_alloc(struct page *page)
1548 {
1549 return true;
1550 }
1551
1552 static inline void ptlock_free(struct page *page)
1553 {
1554 }
1555
1556 static inline spinlock_t *ptlock_ptr(struct page *page)
1557 {
1558 return &page->ptl;
1559 }
1560 #endif /* ALLOC_SPLIT_PTLOCKS */
1561
1562 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1563 {
1564 return ptlock_ptr(pmd_page(*pmd));
1565 }
1566
1567 static inline bool ptlock_init(struct page *page)
1568 {
1569 /*
1570 * prep_new_page() initialize page->private (and therefore page->ptl)
1571 * with 0. Make sure nobody took it in use in between.
1572 *
1573 * It can happen if arch try to use slab for page table allocation:
1574 * slab code uses page->slab_cache, which share storage with page->ptl.
1575 */
1576 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
1577 if (!ptlock_alloc(page))
1578 return false;
1579 spin_lock_init(ptlock_ptr(page));
1580 return true;
1581 }
1582
1583 /* Reset page->mapping so free_pages_check won't complain. */
1584 static inline void pte_lock_deinit(struct page *page)
1585 {
1586 page->mapping = NULL;
1587 ptlock_free(page);
1588 }
1589
1590 #else /* !USE_SPLIT_PTE_PTLOCKS */
1591 /*
1592 * We use mm->page_table_lock to guard all pagetable pages of the mm.
1593 */
1594 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1595 {
1596 return &mm->page_table_lock;
1597 }
1598 static inline void ptlock_cache_init(void) {}
1599 static inline bool ptlock_init(struct page *page) { return true; }
1600 static inline void pte_lock_deinit(struct page *page) {}
1601 #endif /* USE_SPLIT_PTE_PTLOCKS */
1602
1603 static inline void pgtable_init(void)
1604 {
1605 ptlock_cache_init();
1606 pgtable_cache_init();
1607 }
1608
1609 static inline bool pgtable_page_ctor(struct page *page)
1610 {
1611 if (!ptlock_init(page))
1612 return false;
1613 inc_zone_page_state(page, NR_PAGETABLE);
1614 return true;
1615 }
1616
1617 static inline void pgtable_page_dtor(struct page *page)
1618 {
1619 pte_lock_deinit(page);
1620 dec_zone_page_state(page, NR_PAGETABLE);
1621 }
1622
1623 #define pte_offset_map_lock(mm, pmd, address, ptlp) \
1624 ({ \
1625 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
1626 pte_t *__pte = pte_offset_map(pmd, address); \
1627 *(ptlp) = __ptl; \
1628 spin_lock(__ptl); \
1629 __pte; \
1630 })
1631
1632 #define pte_unmap_unlock(pte, ptl) do { \
1633 spin_unlock(ptl); \
1634 pte_unmap(pte); \
1635 } while (0)
1636
1637 #define pte_alloc_map(mm, vma, pmd, address) \
1638 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, vma, \
1639 pmd, address))? \
1640 NULL: pte_offset_map(pmd, address))
1641
1642 #define pte_alloc_map_lock(mm, pmd, address, ptlp) \
1643 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, NULL, \
1644 pmd, address))? \
1645 NULL: pte_offset_map_lock(mm, pmd, address, ptlp))
1646
1647 #define pte_alloc_kernel(pmd, address) \
1648 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
1649 NULL: pte_offset_kernel(pmd, address))
1650
1651 #if USE_SPLIT_PMD_PTLOCKS
1652
1653 static struct page *pmd_to_page(pmd_t *pmd)
1654 {
1655 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
1656 return virt_to_page((void *)((unsigned long) pmd & mask));
1657 }
1658
1659 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1660 {
1661 return ptlock_ptr(pmd_to_page(pmd));
1662 }
1663
1664 static inline bool pgtable_pmd_page_ctor(struct page *page)
1665 {
1666 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1667 page->pmd_huge_pte = NULL;
1668 #endif
1669 return ptlock_init(page);
1670 }
1671
1672 static inline void pgtable_pmd_page_dtor(struct page *page)
1673 {
1674 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1675 VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
1676 #endif
1677 ptlock_free(page);
1678 }
1679
1680 #define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte)
1681
1682 #else
1683
1684 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1685 {
1686 return &mm->page_table_lock;
1687 }
1688
1689 static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; }
1690 static inline void pgtable_pmd_page_dtor(struct page *page) {}
1691
1692 #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
1693
1694 #endif
1695
1696 static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
1697 {
1698 spinlock_t *ptl = pmd_lockptr(mm, pmd);
1699 spin_lock(ptl);
1700 return ptl;
1701 }
1702
1703 extern void free_area_init(unsigned long * zones_size);
1704 extern void free_area_init_node(int nid, unsigned long * zones_size,
1705 unsigned long zone_start_pfn, unsigned long *zholes_size);
1706 extern void free_initmem(void);
1707
1708 /*
1709 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
1710 * into the buddy system. The freed pages will be poisoned with pattern
1711 * "poison" if it's within range [0, UCHAR_MAX].
1712 * Return pages freed into the buddy system.
1713 */
1714 extern unsigned long free_reserved_area(void *start, void *end,
1715 int poison, char *s);
1716
1717 #ifdef CONFIG_HIGHMEM
1718 /*
1719 * Free a highmem page into the buddy system, adjusting totalhigh_pages
1720 * and totalram_pages.
1721 */
1722 extern void free_highmem_page(struct page *page);
1723 #endif
1724
1725 extern void adjust_managed_page_count(struct page *page, long count);
1726 extern void mem_init_print_info(const char *str);
1727
1728 extern void reserve_bootmem_region(unsigned long start, unsigned long end);
1729
1730 /* Free the reserved page into the buddy system, so it gets managed. */
1731 static inline void __free_reserved_page(struct page *page)
1732 {
1733 ClearPageReserved(page);
1734 init_page_count(page);
1735 __free_page(page);
1736 }
1737
1738 static inline void free_reserved_page(struct page *page)
1739 {
1740 __free_reserved_page(page);
1741 adjust_managed_page_count(page, 1);
1742 }
1743
1744 static inline void mark_page_reserved(struct page *page)
1745 {
1746 SetPageReserved(page);
1747 adjust_managed_page_count(page, -1);
1748 }
1749
1750 /*
1751 * Default method to free all the __init memory into the buddy system.
1752 * The freed pages will be poisoned with pattern "poison" if it's within
1753 * range [0, UCHAR_MAX].
1754 * Return pages freed into the buddy system.
1755 */
1756 static inline unsigned long free_initmem_default(int poison)
1757 {
1758 extern char __init_begin[], __init_end[];
1759
1760 return free_reserved_area(&__init_begin, &__init_end,
1761 poison, "unused kernel");
1762 }
1763
1764 static inline unsigned long get_num_physpages(void)
1765 {
1766 int nid;
1767 unsigned long phys_pages = 0;
1768
1769 for_each_online_node(nid)
1770 phys_pages += node_present_pages(nid);
1771
1772 return phys_pages;
1773 }
1774
1775 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1776 /*
1777 * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its
1778 * zones, allocate the backing mem_map and account for memory holes in a more
1779 * architecture independent manner. This is a substitute for creating the
1780 * zone_sizes[] and zholes_size[] arrays and passing them to
1781 * free_area_init_node()
1782 *
1783 * An architecture is expected to register range of page frames backed by
1784 * physical memory with memblock_add[_node]() before calling
1785 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
1786 * usage, an architecture is expected to do something like
1787 *
1788 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
1789 * max_highmem_pfn};
1790 * for_each_valid_physical_page_range()
1791 * memblock_add_node(base, size, nid)
1792 * free_area_init_nodes(max_zone_pfns);
1793 *
1794 * free_bootmem_with_active_regions() calls free_bootmem_node() for each
1795 * registered physical page range. Similarly
1796 * sparse_memory_present_with_active_regions() calls memory_present() for
1797 * each range when SPARSEMEM is enabled.
1798 *
1799 * See mm/page_alloc.c for more information on each function exposed by
1800 * CONFIG_HAVE_MEMBLOCK_NODE_MAP.
1801 */
1802 extern void free_area_init_nodes(unsigned long *max_zone_pfn);
1803 unsigned long node_map_pfn_alignment(void);
1804 unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
1805 unsigned long end_pfn);
1806 extern unsigned long absent_pages_in_range(unsigned long start_pfn,
1807 unsigned long end_pfn);
1808 extern void get_pfn_range_for_nid(unsigned int nid,
1809 unsigned long *start_pfn, unsigned long *end_pfn);
1810 extern unsigned long find_min_pfn_with_active_regions(void);
1811 extern void free_bootmem_with_active_regions(int nid,
1812 unsigned long max_low_pfn);
1813 extern void sparse_memory_present_with_active_regions(int nid);
1814
1815 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
1816
1817 #if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \
1818 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
1819 static inline int __early_pfn_to_nid(unsigned long pfn,
1820 struct mminit_pfnnid_cache *state)
1821 {
1822 return 0;
1823 }
1824 #else
1825 /* please see mm/page_alloc.c */
1826 extern int __meminit early_pfn_to_nid(unsigned long pfn);
1827 /* there is a per-arch backend function. */
1828 extern int __meminit __early_pfn_to_nid(unsigned long pfn,
1829 struct mminit_pfnnid_cache *state);
1830 #endif
1831
1832 extern void set_dma_reserve(unsigned long new_dma_reserve);
1833 extern void memmap_init_zone(unsigned long, int, unsigned long,
1834 unsigned long, enum memmap_context);
1835 extern void setup_per_zone_wmarks(void);
1836 extern int __meminit init_per_zone_wmark_min(void);
1837 extern void mem_init(void);
1838 extern void __init mmap_init(void);
1839 extern void show_mem(unsigned int flags);
1840 extern void si_meminfo(struct sysinfo * val);
1841 extern void si_meminfo_node(struct sysinfo *val, int nid);
1842
1843 extern __printf(3, 4)
1844 void warn_alloc_failed(gfp_t gfp_mask, unsigned int order,
1845 const char *fmt, ...);
1846
1847 extern void setup_per_cpu_pageset(void);
1848
1849 extern void zone_pcp_update(struct zone *zone);
1850 extern void zone_pcp_reset(struct zone *zone);
1851
1852 /* page_alloc.c */
1853 extern int min_free_kbytes;
1854
1855 /* nommu.c */
1856 extern atomic_long_t mmap_pages_allocated;
1857 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
1858
1859 /* interval_tree.c */
1860 void vma_interval_tree_insert(struct vm_area_struct *node,
1861 struct rb_root *root);
1862 void vma_interval_tree_insert_after(struct vm_area_struct *node,
1863 struct vm_area_struct *prev,
1864 struct rb_root *root);
1865 void vma_interval_tree_remove(struct vm_area_struct *node,
1866 struct rb_root *root);
1867 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root *root,
1868 unsigned long start, unsigned long last);
1869 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
1870 unsigned long start, unsigned long last);
1871
1872 #define vma_interval_tree_foreach(vma, root, start, last) \
1873 for (vma = vma_interval_tree_iter_first(root, start, last); \
1874 vma; vma = vma_interval_tree_iter_next(vma, start, last))
1875
1876 void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
1877 struct rb_root *root);
1878 void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
1879 struct rb_root *root);
1880 struct anon_vma_chain *anon_vma_interval_tree_iter_first(
1881 struct rb_root *root, unsigned long start, unsigned long last);
1882 struct anon_vma_chain *anon_vma_interval_tree_iter_next(
1883 struct anon_vma_chain *node, unsigned long start, unsigned long last);
1884 #ifdef CONFIG_DEBUG_VM_RB
1885 void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
1886 #endif
1887
1888 #define anon_vma_interval_tree_foreach(avc, root, start, last) \
1889 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
1890 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
1891
1892 /* mmap.c */
1893 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
1894 extern int vma_adjust(struct vm_area_struct *vma, unsigned long start,
1895 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert);
1896 extern struct vm_area_struct *vma_merge(struct mm_struct *,
1897 struct vm_area_struct *prev, unsigned long addr, unsigned long end,
1898 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
1899 struct mempolicy *, struct vm_userfaultfd_ctx);
1900 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
1901 extern int split_vma(struct mm_struct *,
1902 struct vm_area_struct *, unsigned long addr, int new_below);
1903 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
1904 extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
1905 struct rb_node **, struct rb_node *);
1906 extern void unlink_file_vma(struct vm_area_struct *);
1907 extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
1908 unsigned long addr, unsigned long len, pgoff_t pgoff,
1909 bool *need_rmap_locks);
1910 extern void exit_mmap(struct mm_struct *);
1911
1912 static inline int check_data_rlimit(unsigned long rlim,
1913 unsigned long new,
1914 unsigned long start,
1915 unsigned long end_data,
1916 unsigned long start_data)
1917 {
1918 if (rlim < RLIM_INFINITY) {
1919 if (((new - start) + (end_data - start_data)) > rlim)
1920 return -ENOSPC;
1921 }
1922
1923 return 0;
1924 }
1925
1926 extern int mm_take_all_locks(struct mm_struct *mm);
1927 extern void mm_drop_all_locks(struct mm_struct *mm);
1928
1929 extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
1930 extern struct file *get_mm_exe_file(struct mm_struct *mm);
1931
1932 extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
1933 extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
1934
1935 extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
1936 unsigned long addr, unsigned long len,
1937 unsigned long flags,
1938 const struct vm_special_mapping *spec);
1939 /* This is an obsolete alternative to _install_special_mapping. */
1940 extern int install_special_mapping(struct mm_struct *mm,
1941 unsigned long addr, unsigned long len,
1942 unsigned long flags, struct page **pages);
1943
1944 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
1945
1946 extern unsigned long mmap_region(struct file *file, unsigned long addr,
1947 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff);
1948 extern unsigned long do_mmap(struct file *file, unsigned long addr,
1949 unsigned long len, unsigned long prot, unsigned long flags,
1950 vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate);
1951 extern int do_munmap(struct mm_struct *, unsigned long, size_t);
1952
1953 static inline unsigned long
1954 do_mmap_pgoff(struct file *file, unsigned long addr,
1955 unsigned long len, unsigned long prot, unsigned long flags,
1956 unsigned long pgoff, unsigned long *populate)
1957 {
1958 return do_mmap(file, addr, len, prot, flags, 0, pgoff, populate);
1959 }
1960
1961 #ifdef CONFIG_MMU
1962 extern int __mm_populate(unsigned long addr, unsigned long len,
1963 int ignore_errors);
1964 static inline void mm_populate(unsigned long addr, unsigned long len)
1965 {
1966 /* Ignore errors */
1967 (void) __mm_populate(addr, len, 1);
1968 }
1969 #else
1970 static inline void mm_populate(unsigned long addr, unsigned long len) {}
1971 #endif
1972
1973 /* These take the mm semaphore themselves */
1974 extern unsigned long vm_brk(unsigned long, unsigned long);
1975 extern int vm_munmap(unsigned long, size_t);
1976 extern unsigned long vm_mmap(struct file *, unsigned long,
1977 unsigned long, unsigned long,
1978 unsigned long, unsigned long);
1979
1980 struct vm_unmapped_area_info {
1981 #define VM_UNMAPPED_AREA_TOPDOWN 1
1982 unsigned long flags;
1983 unsigned long length;
1984 unsigned long low_limit;
1985 unsigned long high_limit;
1986 unsigned long align_mask;
1987 unsigned long align_offset;
1988 };
1989
1990 extern unsigned long unmapped_area(struct vm_unmapped_area_info *info);
1991 extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info);
1992
1993 /*
1994 * Search for an unmapped address range.
1995 *
1996 * We are looking for a range that:
1997 * - does not intersect with any VMA;
1998 * - is contained within the [low_limit, high_limit) interval;
1999 * - is at least the desired size.
2000 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
2001 */
2002 static inline unsigned long
2003 vm_unmapped_area(struct vm_unmapped_area_info *info)
2004 {
2005 if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
2006 return unmapped_area_topdown(info);
2007 else
2008 return unmapped_area(info);
2009 }
2010
2011 /* truncate.c */
2012 extern void truncate_inode_pages(struct address_space *, loff_t);
2013 extern void truncate_inode_pages_range(struct address_space *,
2014 loff_t lstart, loff_t lend);
2015 extern void truncate_inode_pages_final(struct address_space *);
2016
2017 /* generic vm_area_ops exported for stackable file systems */
2018 extern int filemap_fault(struct vm_area_struct *, struct vm_fault *);
2019 extern void filemap_map_pages(struct vm_area_struct *vma, struct vm_fault *vmf);
2020 extern int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf);
2021
2022 /* mm/page-writeback.c */
2023 int write_one_page(struct page *page, int wait);
2024 void task_dirty_inc(struct task_struct *tsk);
2025
2026 /* readahead.c */
2027 #define VM_MAX_READAHEAD 128 /* kbytes */
2028 #define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */
2029
2030 int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
2031 pgoff_t offset, unsigned long nr_to_read);
2032
2033 void page_cache_sync_readahead(struct address_space *mapping,
2034 struct file_ra_state *ra,
2035 struct file *filp,
2036 pgoff_t offset,
2037 unsigned long size);
2038
2039 void page_cache_async_readahead(struct address_space *mapping,
2040 struct file_ra_state *ra,
2041 struct file *filp,
2042 struct page *pg,
2043 pgoff_t offset,
2044 unsigned long size);
2045
2046 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
2047 extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
2048
2049 /* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
2050 extern int expand_downwards(struct vm_area_struct *vma,
2051 unsigned long address);
2052 #if VM_GROWSUP
2053 extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
2054 #else
2055 #define expand_upwards(vma, address) (0)
2056 #endif
2057
2058 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
2059 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
2060 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
2061 struct vm_area_struct **pprev);
2062
2063 /* Look up the first VMA which intersects the interval start_addr..end_addr-1,
2064 NULL if none. Assume start_addr < end_addr. */
2065 static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
2066 {
2067 struct vm_area_struct * vma = find_vma(mm,start_addr);
2068
2069 if (vma && end_addr <= vma->vm_start)
2070 vma = NULL;
2071 return vma;
2072 }
2073
2074 static inline unsigned long vma_pages(struct vm_area_struct *vma)
2075 {
2076 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
2077 }
2078
2079 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */
2080 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
2081 unsigned long vm_start, unsigned long vm_end)
2082 {
2083 struct vm_area_struct *vma = find_vma(mm, vm_start);
2084
2085 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
2086 vma = NULL;
2087
2088 return vma;
2089 }
2090
2091 #ifdef CONFIG_MMU
2092 pgprot_t vm_get_page_prot(unsigned long vm_flags);
2093 void vma_set_page_prot(struct vm_area_struct *vma);
2094 #else
2095 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
2096 {
2097 return __pgprot(0);
2098 }
2099 static inline void vma_set_page_prot(struct vm_area_struct *vma)
2100 {
2101 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2102 }
2103 #endif
2104
2105 #ifdef CONFIG_NUMA_BALANCING
2106 unsigned long change_prot_numa(struct vm_area_struct *vma,
2107 unsigned long start, unsigned long end);
2108 #endif
2109
2110 struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
2111 int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
2112 unsigned long pfn, unsigned long size, pgprot_t);
2113 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
2114 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2115 unsigned long pfn);
2116 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2117 pfn_t pfn);
2118 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
2119
2120
2121 struct page *follow_page_mask(struct vm_area_struct *vma,
2122 unsigned long address, unsigned int foll_flags,
2123 unsigned int *page_mask);
2124
2125 static inline struct page *follow_page(struct vm_area_struct *vma,
2126 unsigned long address, unsigned int foll_flags)
2127 {
2128 unsigned int unused_page_mask;
2129 return follow_page_mask(vma, address, foll_flags, &unused_page_mask);
2130 }
2131
2132 #define FOLL_WRITE 0x01 /* check pte is writable */
2133 #define FOLL_TOUCH 0x02 /* mark page accessed */
2134 #define FOLL_GET 0x04 /* do get_page on page */
2135 #define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
2136 #define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
2137 #define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO
2138 * and return without waiting upon it */
2139 #define FOLL_POPULATE 0x40 /* fault in page */
2140 #define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */
2141 #define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */
2142 #define FOLL_NUMA 0x200 /* force NUMA hinting page fault */
2143 #define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */
2144 #define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */
2145 #define FOLL_MLOCK 0x1000 /* lock present pages */
2146
2147 typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
2148 void *data);
2149 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
2150 unsigned long size, pte_fn_t fn, void *data);
2151
2152
2153 #ifdef CONFIG_DEBUG_PAGEALLOC
2154 extern bool _debug_pagealloc_enabled;
2155 extern void __kernel_map_pages(struct page *page, int numpages, int enable);
2156
2157 static inline bool debug_pagealloc_enabled(void)
2158 {
2159 return _debug_pagealloc_enabled;
2160 }
2161
2162 static inline void
2163 kernel_map_pages(struct page *page, int numpages, int enable)
2164 {
2165 if (!debug_pagealloc_enabled())
2166 return;
2167
2168 __kernel_map_pages(page, numpages, enable);
2169 }
2170 #ifdef CONFIG_HIBERNATION
2171 extern bool kernel_page_present(struct page *page);
2172 #endif /* CONFIG_HIBERNATION */
2173 #else
2174 static inline void
2175 kernel_map_pages(struct page *page, int numpages, int enable) {}
2176 #ifdef CONFIG_HIBERNATION
2177 static inline bool kernel_page_present(struct page *page) { return true; }
2178 #endif /* CONFIG_HIBERNATION */
2179 #endif
2180
2181 #ifdef __HAVE_ARCH_GATE_AREA
2182 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
2183 extern int in_gate_area_no_mm(unsigned long addr);
2184 extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
2185 #else
2186 static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
2187 {
2188 return NULL;
2189 }
2190 static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
2191 static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
2192 {
2193 return 0;
2194 }
2195 #endif /* __HAVE_ARCH_GATE_AREA */
2196
2197 #ifdef CONFIG_SYSCTL
2198 extern int sysctl_drop_caches;
2199 int drop_caches_sysctl_handler(struct ctl_table *, int,
2200 void __user *, size_t *, loff_t *);
2201 #endif
2202
2203 void drop_slab(void);
2204 void drop_slab_node(int nid);
2205
2206 #ifndef CONFIG_MMU
2207 #define randomize_va_space 0
2208 #else
2209 extern int randomize_va_space;
2210 #endif
2211
2212 const char * arch_vma_name(struct vm_area_struct *vma);
2213 void print_vma_addr(char *prefix, unsigned long rip);
2214
2215 void sparse_mem_maps_populate_node(struct page **map_map,
2216 unsigned long pnum_begin,
2217 unsigned long pnum_end,
2218 unsigned long map_count,
2219 int nodeid);
2220
2221 struct page *sparse_mem_map_populate(unsigned long pnum, int nid);
2222 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
2223 pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node);
2224 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
2225 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
2226 void *vmemmap_alloc_block(unsigned long size, int node);
2227 struct vmem_altmap;
2228 void *__vmemmap_alloc_block_buf(unsigned long size, int node,
2229 struct vmem_altmap *altmap);
2230 static inline void *vmemmap_alloc_block_buf(unsigned long size, int node)
2231 {
2232 return __vmemmap_alloc_block_buf(size, node, NULL);
2233 }
2234
2235 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
2236 int vmemmap_populate_basepages(unsigned long start, unsigned long end,
2237 int node);
2238 int vmemmap_populate(unsigned long start, unsigned long end, int node);
2239 void vmemmap_populate_print_last(void);
2240 #ifdef CONFIG_MEMORY_HOTPLUG
2241 void vmemmap_free(unsigned long start, unsigned long end);
2242 #endif
2243 void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
2244 unsigned long size);
2245
2246 enum mf_flags {
2247 MF_COUNT_INCREASED = 1 << 0,
2248 MF_ACTION_REQUIRED = 1 << 1,
2249 MF_MUST_KILL = 1 << 2,
2250 MF_SOFT_OFFLINE = 1 << 3,
2251 };
2252 extern int memory_failure(unsigned long pfn, int trapno, int flags);
2253 extern void memory_failure_queue(unsigned long pfn, int trapno, int flags);
2254 extern int unpoison_memory(unsigned long pfn);
2255 extern int get_hwpoison_page(struct page *page);
2256 #define put_hwpoison_page(page) put_page(page)
2257 extern int sysctl_memory_failure_early_kill;
2258 extern int sysctl_memory_failure_recovery;
2259 extern void shake_page(struct page *p, int access);
2260 extern atomic_long_t num_poisoned_pages;
2261 extern int soft_offline_page(struct page *page, int flags);
2262
2263
2264 /*
2265 * Error handlers for various types of pages.
2266 */
2267 enum mf_result {
2268 MF_IGNORED, /* Error: cannot be handled */
2269 MF_FAILED, /* Error: handling failed */
2270 MF_DELAYED, /* Will be handled later */
2271 MF_RECOVERED, /* Successfully recovered */
2272 };
2273
2274 enum mf_action_page_type {
2275 MF_MSG_KERNEL,
2276 MF_MSG_KERNEL_HIGH_ORDER,
2277 MF_MSG_SLAB,
2278 MF_MSG_DIFFERENT_COMPOUND,
2279 MF_MSG_POISONED_HUGE,
2280 MF_MSG_HUGE,
2281 MF_MSG_FREE_HUGE,
2282 MF_MSG_UNMAP_FAILED,
2283 MF_MSG_DIRTY_SWAPCACHE,
2284 MF_MSG_CLEAN_SWAPCACHE,
2285 MF_MSG_DIRTY_MLOCKED_LRU,
2286 MF_MSG_CLEAN_MLOCKED_LRU,
2287 MF_MSG_DIRTY_UNEVICTABLE_LRU,
2288 MF_MSG_CLEAN_UNEVICTABLE_LRU,
2289 MF_MSG_DIRTY_LRU,
2290 MF_MSG_CLEAN_LRU,
2291 MF_MSG_TRUNCATED_LRU,
2292 MF_MSG_BUDDY,
2293 MF_MSG_BUDDY_2ND,
2294 MF_MSG_UNKNOWN,
2295 };
2296
2297 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
2298 extern void clear_huge_page(struct page *page,
2299 unsigned long addr,
2300 unsigned int pages_per_huge_page);
2301 extern void copy_user_huge_page(struct page *dst, struct page *src,
2302 unsigned long addr, struct vm_area_struct *vma,
2303 unsigned int pages_per_huge_page);
2304 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
2305
2306 extern struct page_ext_operations debug_guardpage_ops;
2307 extern struct page_ext_operations page_poisoning_ops;
2308
2309 #ifdef CONFIG_DEBUG_PAGEALLOC
2310 extern unsigned int _debug_guardpage_minorder;
2311 extern bool _debug_guardpage_enabled;
2312
2313 static inline unsigned int debug_guardpage_minorder(void)
2314 {
2315 return _debug_guardpage_minorder;
2316 }
2317
2318 static inline bool debug_guardpage_enabled(void)
2319 {
2320 return _debug_guardpage_enabled;
2321 }
2322
2323 static inline bool page_is_guard(struct page *page)
2324 {
2325 struct page_ext *page_ext;
2326
2327 if (!debug_guardpage_enabled())
2328 return false;
2329
2330 page_ext = lookup_page_ext(page);
2331 return test_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
2332 }
2333 #else
2334 static inline unsigned int debug_guardpage_minorder(void) { return 0; }
2335 static inline bool debug_guardpage_enabled(void) { return false; }
2336 static inline bool page_is_guard(struct page *page) { return false; }
2337 #endif /* CONFIG_DEBUG_PAGEALLOC */
2338
2339 #if MAX_NUMNODES > 1
2340 void __init setup_nr_node_ids(void);
2341 #else
2342 static inline void setup_nr_node_ids(void) {}
2343 #endif
2344
2345 #endif /* __KERNEL__ */
2346 #endif /* _LINUX_MM_H */
This page took 0.081343 seconds and 6 git commands to generate.