mm: close PageTail race
[deliverable/linux.git] / include / linux / mm.h
1 #ifndef _LINUX_MM_H
2 #define _LINUX_MM_H
3
4 #include <linux/errno.h>
5
6 #ifdef __KERNEL__
7
8 #include <linux/mmdebug.h>
9 #include <linux/gfp.h>
10 #include <linux/bug.h>
11 #include <linux/list.h>
12 #include <linux/mmzone.h>
13 #include <linux/rbtree.h>
14 #include <linux/atomic.h>
15 #include <linux/debug_locks.h>
16 #include <linux/mm_types.h>
17 #include <linux/range.h>
18 #include <linux/pfn.h>
19 #include <linux/bit_spinlock.h>
20 #include <linux/shrinker.h>
21
22 struct mempolicy;
23 struct anon_vma;
24 struct anon_vma_chain;
25 struct file_ra_state;
26 struct user_struct;
27 struct writeback_control;
28
29 #ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */
30 extern unsigned long max_mapnr;
31
32 static inline void set_max_mapnr(unsigned long limit)
33 {
34 max_mapnr = limit;
35 }
36 #else
37 static inline void set_max_mapnr(unsigned long limit) { }
38 #endif
39
40 extern unsigned long totalram_pages;
41 extern void * high_memory;
42 extern int page_cluster;
43
44 #ifdef CONFIG_SYSCTL
45 extern int sysctl_legacy_va_layout;
46 #else
47 #define sysctl_legacy_va_layout 0
48 #endif
49
50 #include <asm/page.h>
51 #include <asm/pgtable.h>
52 #include <asm/processor.h>
53
54 #ifndef __pa_symbol
55 #define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0))
56 #endif
57
58 extern unsigned long sysctl_user_reserve_kbytes;
59 extern unsigned long sysctl_admin_reserve_kbytes;
60
61 extern int sysctl_overcommit_memory;
62 extern int sysctl_overcommit_ratio;
63 extern unsigned long sysctl_overcommit_kbytes;
64
65 extern int overcommit_ratio_handler(struct ctl_table *, int, void __user *,
66 size_t *, loff_t *);
67 extern int overcommit_kbytes_handler(struct ctl_table *, int, void __user *,
68 size_t *, loff_t *);
69
70 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
71
72 /* to align the pointer to the (next) page boundary */
73 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
74
75 /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
76 #define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)addr, PAGE_SIZE)
77
78 /*
79 * Linux kernel virtual memory manager primitives.
80 * The idea being to have a "virtual" mm in the same way
81 * we have a virtual fs - giving a cleaner interface to the
82 * mm details, and allowing different kinds of memory mappings
83 * (from shared memory to executable loading to arbitrary
84 * mmap() functions).
85 */
86
87 extern struct kmem_cache *vm_area_cachep;
88
89 #ifndef CONFIG_MMU
90 extern struct rb_root nommu_region_tree;
91 extern struct rw_semaphore nommu_region_sem;
92
93 extern unsigned int kobjsize(const void *objp);
94 #endif
95
96 /*
97 * vm_flags in vm_area_struct, see mm_types.h.
98 */
99 #define VM_NONE 0x00000000
100
101 #define VM_READ 0x00000001 /* currently active flags */
102 #define VM_WRITE 0x00000002
103 #define VM_EXEC 0x00000004
104 #define VM_SHARED 0x00000008
105
106 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
107 #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
108 #define VM_MAYWRITE 0x00000020
109 #define VM_MAYEXEC 0x00000040
110 #define VM_MAYSHARE 0x00000080
111
112 #define VM_GROWSDOWN 0x00000100 /* general info on the segment */
113 #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
114 #define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
115
116 #define VM_LOCKED 0x00002000
117 #define VM_IO 0x00004000 /* Memory mapped I/O or similar */
118
119 /* Used by sys_madvise() */
120 #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
121 #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
122
123 #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
124 #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
125 #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
126 #define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
127 #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
128 #define VM_NONLINEAR 0x00800000 /* Is non-linear (remap_file_pages) */
129 #define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
130 #define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
131
132 #ifdef CONFIG_MEM_SOFT_DIRTY
133 # define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */
134 #else
135 # define VM_SOFTDIRTY 0
136 #endif
137
138 #define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
139 #define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
140 #define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
141 #define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
142
143 #if defined(CONFIG_X86)
144 # define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
145 #elif defined(CONFIG_PPC)
146 # define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
147 #elif defined(CONFIG_PARISC)
148 # define VM_GROWSUP VM_ARCH_1
149 #elif defined(CONFIG_METAG)
150 # define VM_GROWSUP VM_ARCH_1
151 #elif defined(CONFIG_IA64)
152 # define VM_GROWSUP VM_ARCH_1
153 #elif !defined(CONFIG_MMU)
154 # define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
155 #endif
156
157 #ifndef VM_GROWSUP
158 # define VM_GROWSUP VM_NONE
159 #endif
160
161 /* Bits set in the VMA until the stack is in its final location */
162 #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
163
164 #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
165 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
166 #endif
167
168 #ifdef CONFIG_STACK_GROWSUP
169 #define VM_STACK_FLAGS (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
170 #else
171 #define VM_STACK_FLAGS (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
172 #endif
173
174 /*
175 * Special vmas that are non-mergable, non-mlock()able.
176 * Note: mm/huge_memory.c VM_NO_THP depends on this definition.
177 */
178 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP)
179
180 /*
181 * mapping from the currently active vm_flags protection bits (the
182 * low four bits) to a page protection mask..
183 */
184 extern pgprot_t protection_map[16];
185
186 #define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */
187 #define FAULT_FLAG_NONLINEAR 0x02 /* Fault was via a nonlinear mapping */
188 #define FAULT_FLAG_MKWRITE 0x04 /* Fault was mkwrite of existing pte */
189 #define FAULT_FLAG_ALLOW_RETRY 0x08 /* Retry fault if blocking */
190 #define FAULT_FLAG_RETRY_NOWAIT 0x10 /* Don't drop mmap_sem and wait when retrying */
191 #define FAULT_FLAG_KILLABLE 0x20 /* The fault task is in SIGKILL killable region */
192 #define FAULT_FLAG_TRIED 0x40 /* second try */
193 #define FAULT_FLAG_USER 0x80 /* The fault originated in userspace */
194
195 /*
196 * vm_fault is filled by the the pagefault handler and passed to the vma's
197 * ->fault function. The vma's ->fault is responsible for returning a bitmask
198 * of VM_FAULT_xxx flags that give details about how the fault was handled.
199 *
200 * pgoff should be used in favour of virtual_address, if possible. If pgoff
201 * is used, one may implement ->remap_pages to get nonlinear mapping support.
202 */
203 struct vm_fault {
204 unsigned int flags; /* FAULT_FLAG_xxx flags */
205 pgoff_t pgoff; /* Logical page offset based on vma */
206 void __user *virtual_address; /* Faulting virtual address */
207
208 struct page *page; /* ->fault handlers should return a
209 * page here, unless VM_FAULT_NOPAGE
210 * is set (which is also implied by
211 * VM_FAULT_ERROR).
212 */
213 };
214
215 /*
216 * These are the virtual MM functions - opening of an area, closing and
217 * unmapping it (needed to keep files on disk up-to-date etc), pointer
218 * to the functions called when a no-page or a wp-page exception occurs.
219 */
220 struct vm_operations_struct {
221 void (*open)(struct vm_area_struct * area);
222 void (*close)(struct vm_area_struct * area);
223 int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf);
224
225 /* notification that a previously read-only page is about to become
226 * writable, if an error is returned it will cause a SIGBUS */
227 int (*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
228
229 /* called by access_process_vm when get_user_pages() fails, typically
230 * for use by special VMAs that can switch between memory and hardware
231 */
232 int (*access)(struct vm_area_struct *vma, unsigned long addr,
233 void *buf, int len, int write);
234 #ifdef CONFIG_NUMA
235 /*
236 * set_policy() op must add a reference to any non-NULL @new mempolicy
237 * to hold the policy upon return. Caller should pass NULL @new to
238 * remove a policy and fall back to surrounding context--i.e. do not
239 * install a MPOL_DEFAULT policy, nor the task or system default
240 * mempolicy.
241 */
242 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
243
244 /*
245 * get_policy() op must add reference [mpol_get()] to any policy at
246 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
247 * in mm/mempolicy.c will do this automatically.
248 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
249 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
250 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
251 * must return NULL--i.e., do not "fallback" to task or system default
252 * policy.
253 */
254 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
255 unsigned long addr);
256 int (*migrate)(struct vm_area_struct *vma, const nodemask_t *from,
257 const nodemask_t *to, unsigned long flags);
258 #endif
259 /* called by sys_remap_file_pages() to populate non-linear mapping */
260 int (*remap_pages)(struct vm_area_struct *vma, unsigned long addr,
261 unsigned long size, pgoff_t pgoff);
262 };
263
264 struct mmu_gather;
265 struct inode;
266
267 #define page_private(page) ((page)->private)
268 #define set_page_private(page, v) ((page)->private = (v))
269
270 /* It's valid only if the page is free path or free_list */
271 static inline void set_freepage_migratetype(struct page *page, int migratetype)
272 {
273 page->index = migratetype;
274 }
275
276 /* It's valid only if the page is free path or free_list */
277 static inline int get_freepage_migratetype(struct page *page)
278 {
279 return page->index;
280 }
281
282 /*
283 * FIXME: take this include out, include page-flags.h in
284 * files which need it (119 of them)
285 */
286 #include <linux/page-flags.h>
287 #include <linux/huge_mm.h>
288
289 /*
290 * Methods to modify the page usage count.
291 *
292 * What counts for a page usage:
293 * - cache mapping (page->mapping)
294 * - private data (page->private)
295 * - page mapped in a task's page tables, each mapping
296 * is counted separately
297 *
298 * Also, many kernel routines increase the page count before a critical
299 * routine so they can be sure the page doesn't go away from under them.
300 */
301
302 /*
303 * Drop a ref, return true if the refcount fell to zero (the page has no users)
304 */
305 static inline int put_page_testzero(struct page *page)
306 {
307 VM_BUG_ON_PAGE(atomic_read(&page->_count) == 0, page);
308 return atomic_dec_and_test(&page->_count);
309 }
310
311 /*
312 * Try to grab a ref unless the page has a refcount of zero, return false if
313 * that is the case.
314 * This can be called when MMU is off so it must not access
315 * any of the virtual mappings.
316 */
317 static inline int get_page_unless_zero(struct page *page)
318 {
319 return atomic_inc_not_zero(&page->_count);
320 }
321
322 /*
323 * Try to drop a ref unless the page has a refcount of one, return false if
324 * that is the case.
325 * This is to make sure that the refcount won't become zero after this drop.
326 * This can be called when MMU is off so it must not access
327 * any of the virtual mappings.
328 */
329 static inline int put_page_unless_one(struct page *page)
330 {
331 return atomic_add_unless(&page->_count, -1, 1);
332 }
333
334 extern int page_is_ram(unsigned long pfn);
335
336 /* Support for virtually mapped pages */
337 struct page *vmalloc_to_page(const void *addr);
338 unsigned long vmalloc_to_pfn(const void *addr);
339
340 /*
341 * Determine if an address is within the vmalloc range
342 *
343 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
344 * is no special casing required.
345 */
346 static inline int is_vmalloc_addr(const void *x)
347 {
348 #ifdef CONFIG_MMU
349 unsigned long addr = (unsigned long)x;
350
351 return addr >= VMALLOC_START && addr < VMALLOC_END;
352 #else
353 return 0;
354 #endif
355 }
356 #ifdef CONFIG_MMU
357 extern int is_vmalloc_or_module_addr(const void *x);
358 #else
359 static inline int is_vmalloc_or_module_addr(const void *x)
360 {
361 return 0;
362 }
363 #endif
364
365 static inline void compound_lock(struct page *page)
366 {
367 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
368 VM_BUG_ON_PAGE(PageSlab(page), page);
369 bit_spin_lock(PG_compound_lock, &page->flags);
370 #endif
371 }
372
373 static inline void compound_unlock(struct page *page)
374 {
375 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
376 VM_BUG_ON_PAGE(PageSlab(page), page);
377 bit_spin_unlock(PG_compound_lock, &page->flags);
378 #endif
379 }
380
381 static inline unsigned long compound_lock_irqsave(struct page *page)
382 {
383 unsigned long uninitialized_var(flags);
384 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
385 local_irq_save(flags);
386 compound_lock(page);
387 #endif
388 return flags;
389 }
390
391 static inline void compound_unlock_irqrestore(struct page *page,
392 unsigned long flags)
393 {
394 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
395 compound_unlock(page);
396 local_irq_restore(flags);
397 #endif
398 }
399
400 static inline struct page *compound_head(struct page *page)
401 {
402 if (unlikely(PageTail(page))) {
403 struct page *head = page->first_page;
404
405 /*
406 * page->first_page may be a dangling pointer to an old
407 * compound page, so recheck that it is still a tail
408 * page before returning.
409 */
410 smp_rmb();
411 if (likely(PageTail(page)))
412 return head;
413 }
414 return page;
415 }
416
417 /*
418 * The atomic page->_mapcount, starts from -1: so that transitions
419 * both from it and to it can be tracked, using atomic_inc_and_test
420 * and atomic_add_negative(-1).
421 */
422 static inline void page_mapcount_reset(struct page *page)
423 {
424 atomic_set(&(page)->_mapcount, -1);
425 }
426
427 static inline int page_mapcount(struct page *page)
428 {
429 return atomic_read(&(page)->_mapcount) + 1;
430 }
431
432 static inline int page_count(struct page *page)
433 {
434 return atomic_read(&compound_head(page)->_count);
435 }
436
437 #ifdef CONFIG_HUGETLB_PAGE
438 extern int PageHeadHuge(struct page *page_head);
439 #else /* CONFIG_HUGETLB_PAGE */
440 static inline int PageHeadHuge(struct page *page_head)
441 {
442 return 0;
443 }
444 #endif /* CONFIG_HUGETLB_PAGE */
445
446 static inline bool __compound_tail_refcounted(struct page *page)
447 {
448 return !PageSlab(page) && !PageHeadHuge(page);
449 }
450
451 /*
452 * This takes a head page as parameter and tells if the
453 * tail page reference counting can be skipped.
454 *
455 * For this to be safe, PageSlab and PageHeadHuge must remain true on
456 * any given page where they return true here, until all tail pins
457 * have been released.
458 */
459 static inline bool compound_tail_refcounted(struct page *page)
460 {
461 VM_BUG_ON_PAGE(!PageHead(page), page);
462 return __compound_tail_refcounted(page);
463 }
464
465 static inline void get_huge_page_tail(struct page *page)
466 {
467 /*
468 * __split_huge_page_refcount() cannot run from under us.
469 */
470 VM_BUG_ON_PAGE(!PageTail(page), page);
471 VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
472 VM_BUG_ON_PAGE(atomic_read(&page->_count) != 0, page);
473 if (compound_tail_refcounted(page->first_page))
474 atomic_inc(&page->_mapcount);
475 }
476
477 extern bool __get_page_tail(struct page *page);
478
479 static inline void get_page(struct page *page)
480 {
481 if (unlikely(PageTail(page)))
482 if (likely(__get_page_tail(page)))
483 return;
484 /*
485 * Getting a normal page or the head of a compound page
486 * requires to already have an elevated page->_count.
487 */
488 VM_BUG_ON_PAGE(atomic_read(&page->_count) <= 0, page);
489 atomic_inc(&page->_count);
490 }
491
492 static inline struct page *virt_to_head_page(const void *x)
493 {
494 struct page *page = virt_to_page(x);
495 return compound_head(page);
496 }
497
498 /*
499 * Setup the page count before being freed into the page allocator for
500 * the first time (boot or memory hotplug)
501 */
502 static inline void init_page_count(struct page *page)
503 {
504 atomic_set(&page->_count, 1);
505 }
506
507 /*
508 * PageBuddy() indicate that the page is free and in the buddy system
509 * (see mm/page_alloc.c).
510 *
511 * PAGE_BUDDY_MAPCOUNT_VALUE must be <= -2 but better not too close to
512 * -2 so that an underflow of the page_mapcount() won't be mistaken
513 * for a genuine PAGE_BUDDY_MAPCOUNT_VALUE. -128 can be created very
514 * efficiently by most CPU architectures.
515 */
516 #define PAGE_BUDDY_MAPCOUNT_VALUE (-128)
517
518 static inline int PageBuddy(struct page *page)
519 {
520 return atomic_read(&page->_mapcount) == PAGE_BUDDY_MAPCOUNT_VALUE;
521 }
522
523 static inline void __SetPageBuddy(struct page *page)
524 {
525 VM_BUG_ON_PAGE(atomic_read(&page->_mapcount) != -1, page);
526 atomic_set(&page->_mapcount, PAGE_BUDDY_MAPCOUNT_VALUE);
527 }
528
529 static inline void __ClearPageBuddy(struct page *page)
530 {
531 VM_BUG_ON_PAGE(!PageBuddy(page), page);
532 atomic_set(&page->_mapcount, -1);
533 }
534
535 void put_page(struct page *page);
536 void put_pages_list(struct list_head *pages);
537
538 void split_page(struct page *page, unsigned int order);
539 int split_free_page(struct page *page);
540
541 /*
542 * Compound pages have a destructor function. Provide a
543 * prototype for that function and accessor functions.
544 * These are _only_ valid on the head of a PG_compound page.
545 */
546 typedef void compound_page_dtor(struct page *);
547
548 static inline void set_compound_page_dtor(struct page *page,
549 compound_page_dtor *dtor)
550 {
551 page[1].lru.next = (void *)dtor;
552 }
553
554 static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
555 {
556 return (compound_page_dtor *)page[1].lru.next;
557 }
558
559 static inline int compound_order(struct page *page)
560 {
561 if (!PageHead(page))
562 return 0;
563 return (unsigned long)page[1].lru.prev;
564 }
565
566 static inline void set_compound_order(struct page *page, unsigned long order)
567 {
568 page[1].lru.prev = (void *)order;
569 }
570
571 #ifdef CONFIG_MMU
572 /*
573 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
574 * servicing faults for write access. In the normal case, do always want
575 * pte_mkwrite. But get_user_pages can cause write faults for mappings
576 * that do not have writing enabled, when used by access_process_vm.
577 */
578 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
579 {
580 if (likely(vma->vm_flags & VM_WRITE))
581 pte = pte_mkwrite(pte);
582 return pte;
583 }
584 #endif
585
586 /*
587 * Multiple processes may "see" the same page. E.g. for untouched
588 * mappings of /dev/null, all processes see the same page full of
589 * zeroes, and text pages of executables and shared libraries have
590 * only one copy in memory, at most, normally.
591 *
592 * For the non-reserved pages, page_count(page) denotes a reference count.
593 * page_count() == 0 means the page is free. page->lru is then used for
594 * freelist management in the buddy allocator.
595 * page_count() > 0 means the page has been allocated.
596 *
597 * Pages are allocated by the slab allocator in order to provide memory
598 * to kmalloc and kmem_cache_alloc. In this case, the management of the
599 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
600 * unless a particular usage is carefully commented. (the responsibility of
601 * freeing the kmalloc memory is the caller's, of course).
602 *
603 * A page may be used by anyone else who does a __get_free_page().
604 * In this case, page_count still tracks the references, and should only
605 * be used through the normal accessor functions. The top bits of page->flags
606 * and page->virtual store page management information, but all other fields
607 * are unused and could be used privately, carefully. The management of this
608 * page is the responsibility of the one who allocated it, and those who have
609 * subsequently been given references to it.
610 *
611 * The other pages (we may call them "pagecache pages") are completely
612 * managed by the Linux memory manager: I/O, buffers, swapping etc.
613 * The following discussion applies only to them.
614 *
615 * A pagecache page contains an opaque `private' member, which belongs to the
616 * page's address_space. Usually, this is the address of a circular list of
617 * the page's disk buffers. PG_private must be set to tell the VM to call
618 * into the filesystem to release these pages.
619 *
620 * A page may belong to an inode's memory mapping. In this case, page->mapping
621 * is the pointer to the inode, and page->index is the file offset of the page,
622 * in units of PAGE_CACHE_SIZE.
623 *
624 * If pagecache pages are not associated with an inode, they are said to be
625 * anonymous pages. These may become associated with the swapcache, and in that
626 * case PG_swapcache is set, and page->private is an offset into the swapcache.
627 *
628 * In either case (swapcache or inode backed), the pagecache itself holds one
629 * reference to the page. Setting PG_private should also increment the
630 * refcount. The each user mapping also has a reference to the page.
631 *
632 * The pagecache pages are stored in a per-mapping radix tree, which is
633 * rooted at mapping->page_tree, and indexed by offset.
634 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
635 * lists, we instead now tag pages as dirty/writeback in the radix tree.
636 *
637 * All pagecache pages may be subject to I/O:
638 * - inode pages may need to be read from disk,
639 * - inode pages which have been modified and are MAP_SHARED may need
640 * to be written back to the inode on disk,
641 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
642 * modified may need to be swapped out to swap space and (later) to be read
643 * back into memory.
644 */
645
646 /*
647 * The zone field is never updated after free_area_init_core()
648 * sets it, so none of the operations on it need to be atomic.
649 */
650
651 /* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
652 #define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
653 #define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
654 #define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
655 #define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH)
656
657 /*
658 * Define the bit shifts to access each section. For non-existent
659 * sections we define the shift as 0; that plus a 0 mask ensures
660 * the compiler will optimise away reference to them.
661 */
662 #define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
663 #define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
664 #define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
665 #define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
666
667 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
668 #ifdef NODE_NOT_IN_PAGE_FLAGS
669 #define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
670 #define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
671 SECTIONS_PGOFF : ZONES_PGOFF)
672 #else
673 #define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
674 #define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
675 NODES_PGOFF : ZONES_PGOFF)
676 #endif
677
678 #define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
679
680 #if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
681 #error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
682 #endif
683
684 #define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
685 #define NODES_MASK ((1UL << NODES_WIDTH) - 1)
686 #define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
687 #define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_WIDTH) - 1)
688 #define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
689
690 static inline enum zone_type page_zonenum(const struct page *page)
691 {
692 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
693 }
694
695 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
696 #define SECTION_IN_PAGE_FLAGS
697 #endif
698
699 /*
700 * The identification function is mainly used by the buddy allocator for
701 * determining if two pages could be buddies. We are not really identifying
702 * the zone since we could be using the section number id if we do not have
703 * node id available in page flags.
704 * We only guarantee that it will return the same value for two combinable
705 * pages in a zone.
706 */
707 static inline int page_zone_id(struct page *page)
708 {
709 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
710 }
711
712 static inline int zone_to_nid(struct zone *zone)
713 {
714 #ifdef CONFIG_NUMA
715 return zone->node;
716 #else
717 return 0;
718 #endif
719 }
720
721 #ifdef NODE_NOT_IN_PAGE_FLAGS
722 extern int page_to_nid(const struct page *page);
723 #else
724 static inline int page_to_nid(const struct page *page)
725 {
726 return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
727 }
728 #endif
729
730 #ifdef CONFIG_NUMA_BALANCING
731 static inline int cpu_pid_to_cpupid(int cpu, int pid)
732 {
733 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
734 }
735
736 static inline int cpupid_to_pid(int cpupid)
737 {
738 return cpupid & LAST__PID_MASK;
739 }
740
741 static inline int cpupid_to_cpu(int cpupid)
742 {
743 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
744 }
745
746 static inline int cpupid_to_nid(int cpupid)
747 {
748 return cpu_to_node(cpupid_to_cpu(cpupid));
749 }
750
751 static inline bool cpupid_pid_unset(int cpupid)
752 {
753 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
754 }
755
756 static inline bool cpupid_cpu_unset(int cpupid)
757 {
758 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
759 }
760
761 static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
762 {
763 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
764 }
765
766 #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
767 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
768 static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
769 {
770 return xchg(&page->_last_cpupid, cpupid);
771 }
772
773 static inline int page_cpupid_last(struct page *page)
774 {
775 return page->_last_cpupid;
776 }
777 static inline void page_cpupid_reset_last(struct page *page)
778 {
779 page->_last_cpupid = -1;
780 }
781 #else
782 static inline int page_cpupid_last(struct page *page)
783 {
784 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
785 }
786
787 extern int page_cpupid_xchg_last(struct page *page, int cpupid);
788
789 static inline void page_cpupid_reset_last(struct page *page)
790 {
791 int cpupid = (1 << LAST_CPUPID_SHIFT) - 1;
792
793 page->flags &= ~(LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT);
794 page->flags |= (cpupid & LAST_CPUPID_MASK) << LAST_CPUPID_PGSHIFT;
795 }
796 #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
797 #else /* !CONFIG_NUMA_BALANCING */
798 static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
799 {
800 return page_to_nid(page); /* XXX */
801 }
802
803 static inline int page_cpupid_last(struct page *page)
804 {
805 return page_to_nid(page); /* XXX */
806 }
807
808 static inline int cpupid_to_nid(int cpupid)
809 {
810 return -1;
811 }
812
813 static inline int cpupid_to_pid(int cpupid)
814 {
815 return -1;
816 }
817
818 static inline int cpupid_to_cpu(int cpupid)
819 {
820 return -1;
821 }
822
823 static inline int cpu_pid_to_cpupid(int nid, int pid)
824 {
825 return -1;
826 }
827
828 static inline bool cpupid_pid_unset(int cpupid)
829 {
830 return 1;
831 }
832
833 static inline void page_cpupid_reset_last(struct page *page)
834 {
835 }
836
837 static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
838 {
839 return false;
840 }
841 #endif /* CONFIG_NUMA_BALANCING */
842
843 static inline struct zone *page_zone(const struct page *page)
844 {
845 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
846 }
847
848 #ifdef SECTION_IN_PAGE_FLAGS
849 static inline void set_page_section(struct page *page, unsigned long section)
850 {
851 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
852 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
853 }
854
855 static inline unsigned long page_to_section(const struct page *page)
856 {
857 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
858 }
859 #endif
860
861 static inline void set_page_zone(struct page *page, enum zone_type zone)
862 {
863 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
864 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
865 }
866
867 static inline void set_page_node(struct page *page, unsigned long node)
868 {
869 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
870 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
871 }
872
873 static inline void set_page_links(struct page *page, enum zone_type zone,
874 unsigned long node, unsigned long pfn)
875 {
876 set_page_zone(page, zone);
877 set_page_node(page, node);
878 #ifdef SECTION_IN_PAGE_FLAGS
879 set_page_section(page, pfn_to_section_nr(pfn));
880 #endif
881 }
882
883 /*
884 * Some inline functions in vmstat.h depend on page_zone()
885 */
886 #include <linux/vmstat.h>
887
888 static __always_inline void *lowmem_page_address(const struct page *page)
889 {
890 return __va(PFN_PHYS(page_to_pfn(page)));
891 }
892
893 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
894 #define HASHED_PAGE_VIRTUAL
895 #endif
896
897 #if defined(WANT_PAGE_VIRTUAL)
898 static inline void *page_address(const struct page *page)
899 {
900 return page->virtual;
901 }
902 static inline void set_page_address(struct page *page, void *address)
903 {
904 page->virtual = address;
905 }
906 #define page_address_init() do { } while(0)
907 #endif
908
909 #if defined(HASHED_PAGE_VIRTUAL)
910 void *page_address(const struct page *page);
911 void set_page_address(struct page *page, void *virtual);
912 void page_address_init(void);
913 #endif
914
915 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
916 #define page_address(page) lowmem_page_address(page)
917 #define set_page_address(page, address) do { } while(0)
918 #define page_address_init() do { } while(0)
919 #endif
920
921 /*
922 * On an anonymous page mapped into a user virtual memory area,
923 * page->mapping points to its anon_vma, not to a struct address_space;
924 * with the PAGE_MAPPING_ANON bit set to distinguish it. See rmap.h.
925 *
926 * On an anonymous page in a VM_MERGEABLE area, if CONFIG_KSM is enabled,
927 * the PAGE_MAPPING_KSM bit may be set along with the PAGE_MAPPING_ANON bit;
928 * and then page->mapping points, not to an anon_vma, but to a private
929 * structure which KSM associates with that merged page. See ksm.h.
930 *
931 * PAGE_MAPPING_KSM without PAGE_MAPPING_ANON is currently never used.
932 *
933 * Please note that, confusingly, "page_mapping" refers to the inode
934 * address_space which maps the page from disk; whereas "page_mapped"
935 * refers to user virtual address space into which the page is mapped.
936 */
937 #define PAGE_MAPPING_ANON 1
938 #define PAGE_MAPPING_KSM 2
939 #define PAGE_MAPPING_FLAGS (PAGE_MAPPING_ANON | PAGE_MAPPING_KSM)
940
941 extern struct address_space *page_mapping(struct page *page);
942
943 /* Neutral page->mapping pointer to address_space or anon_vma or other */
944 static inline void *page_rmapping(struct page *page)
945 {
946 return (void *)((unsigned long)page->mapping & ~PAGE_MAPPING_FLAGS);
947 }
948
949 extern struct address_space *__page_file_mapping(struct page *);
950
951 static inline
952 struct address_space *page_file_mapping(struct page *page)
953 {
954 if (unlikely(PageSwapCache(page)))
955 return __page_file_mapping(page);
956
957 return page->mapping;
958 }
959
960 static inline int PageAnon(struct page *page)
961 {
962 return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0;
963 }
964
965 /*
966 * Return the pagecache index of the passed page. Regular pagecache pages
967 * use ->index whereas swapcache pages use ->private
968 */
969 static inline pgoff_t page_index(struct page *page)
970 {
971 if (unlikely(PageSwapCache(page)))
972 return page_private(page);
973 return page->index;
974 }
975
976 extern pgoff_t __page_file_index(struct page *page);
977
978 /*
979 * Return the file index of the page. Regular pagecache pages use ->index
980 * whereas swapcache pages use swp_offset(->private)
981 */
982 static inline pgoff_t page_file_index(struct page *page)
983 {
984 if (unlikely(PageSwapCache(page)))
985 return __page_file_index(page);
986
987 return page->index;
988 }
989
990 /*
991 * Return true if this page is mapped into pagetables.
992 */
993 static inline int page_mapped(struct page *page)
994 {
995 return atomic_read(&(page)->_mapcount) >= 0;
996 }
997
998 /*
999 * Different kinds of faults, as returned by handle_mm_fault().
1000 * Used to decide whether a process gets delivered SIGBUS or
1001 * just gets major/minor fault counters bumped up.
1002 */
1003
1004 #define VM_FAULT_MINOR 0 /* For backwards compat. Remove me quickly. */
1005
1006 #define VM_FAULT_OOM 0x0001
1007 #define VM_FAULT_SIGBUS 0x0002
1008 #define VM_FAULT_MAJOR 0x0004
1009 #define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */
1010 #define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */
1011 #define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */
1012
1013 #define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */
1014 #define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */
1015 #define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */
1016 #define VM_FAULT_FALLBACK 0x0800 /* huge page fault failed, fall back to small */
1017
1018 #define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */
1019
1020 #define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_HWPOISON | \
1021 VM_FAULT_FALLBACK | VM_FAULT_HWPOISON_LARGE)
1022
1023 /* Encode hstate index for a hwpoisoned large page */
1024 #define VM_FAULT_SET_HINDEX(x) ((x) << 12)
1025 #define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf)
1026
1027 /*
1028 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
1029 */
1030 extern void pagefault_out_of_memory(void);
1031
1032 #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
1033
1034 /*
1035 * Flags passed to show_mem() and show_free_areas() to suppress output in
1036 * various contexts.
1037 */
1038 #define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */
1039
1040 extern void show_free_areas(unsigned int flags);
1041 extern bool skip_free_areas_node(unsigned int flags, int nid);
1042
1043 int shmem_zero_setup(struct vm_area_struct *);
1044
1045 extern int can_do_mlock(void);
1046 extern int user_shm_lock(size_t, struct user_struct *);
1047 extern void user_shm_unlock(size_t, struct user_struct *);
1048
1049 /*
1050 * Parameter block passed down to zap_pte_range in exceptional cases.
1051 */
1052 struct zap_details {
1053 struct vm_area_struct *nonlinear_vma; /* Check page->index if set */
1054 struct address_space *check_mapping; /* Check page->mapping if set */
1055 pgoff_t first_index; /* Lowest page->index to unmap */
1056 pgoff_t last_index; /* Highest page->index to unmap */
1057 };
1058
1059 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
1060 pte_t pte);
1061
1062 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1063 unsigned long size);
1064 void zap_page_range(struct vm_area_struct *vma, unsigned long address,
1065 unsigned long size, struct zap_details *);
1066 void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
1067 unsigned long start, unsigned long end);
1068
1069 /**
1070 * mm_walk - callbacks for walk_page_range
1071 * @pgd_entry: if set, called for each non-empty PGD (top-level) entry
1072 * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry
1073 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
1074 * this handler is required to be able to handle
1075 * pmd_trans_huge() pmds. They may simply choose to
1076 * split_huge_page() instead of handling it explicitly.
1077 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
1078 * @pte_hole: if set, called for each hole at all levels
1079 * @hugetlb_entry: if set, called for each hugetlb entry
1080 * *Caution*: The caller must hold mmap_sem() if @hugetlb_entry
1081 * is used.
1082 *
1083 * (see walk_page_range for more details)
1084 */
1085 struct mm_walk {
1086 int (*pgd_entry)(pgd_t *pgd, unsigned long addr,
1087 unsigned long next, struct mm_walk *walk);
1088 int (*pud_entry)(pud_t *pud, unsigned long addr,
1089 unsigned long next, struct mm_walk *walk);
1090 int (*pmd_entry)(pmd_t *pmd, unsigned long addr,
1091 unsigned long next, struct mm_walk *walk);
1092 int (*pte_entry)(pte_t *pte, unsigned long addr,
1093 unsigned long next, struct mm_walk *walk);
1094 int (*pte_hole)(unsigned long addr, unsigned long next,
1095 struct mm_walk *walk);
1096 int (*hugetlb_entry)(pte_t *pte, unsigned long hmask,
1097 unsigned long addr, unsigned long next,
1098 struct mm_walk *walk);
1099 struct mm_struct *mm;
1100 void *private;
1101 };
1102
1103 int walk_page_range(unsigned long addr, unsigned long end,
1104 struct mm_walk *walk);
1105 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
1106 unsigned long end, unsigned long floor, unsigned long ceiling);
1107 int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
1108 struct vm_area_struct *vma);
1109 void unmap_mapping_range(struct address_space *mapping,
1110 loff_t const holebegin, loff_t const holelen, int even_cows);
1111 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
1112 unsigned long *pfn);
1113 int follow_phys(struct vm_area_struct *vma, unsigned long address,
1114 unsigned int flags, unsigned long *prot, resource_size_t *phys);
1115 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
1116 void *buf, int len, int write);
1117
1118 static inline void unmap_shared_mapping_range(struct address_space *mapping,
1119 loff_t const holebegin, loff_t const holelen)
1120 {
1121 unmap_mapping_range(mapping, holebegin, holelen, 0);
1122 }
1123
1124 extern void truncate_pagecache(struct inode *inode, loff_t new);
1125 extern void truncate_setsize(struct inode *inode, loff_t newsize);
1126 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
1127 int truncate_inode_page(struct address_space *mapping, struct page *page);
1128 int generic_error_remove_page(struct address_space *mapping, struct page *page);
1129 int invalidate_inode_page(struct page *page);
1130
1131 #ifdef CONFIG_MMU
1132 extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
1133 unsigned long address, unsigned int flags);
1134 extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1135 unsigned long address, unsigned int fault_flags);
1136 #else
1137 static inline int handle_mm_fault(struct mm_struct *mm,
1138 struct vm_area_struct *vma, unsigned long address,
1139 unsigned int flags)
1140 {
1141 /* should never happen if there's no MMU */
1142 BUG();
1143 return VM_FAULT_SIGBUS;
1144 }
1145 static inline int fixup_user_fault(struct task_struct *tsk,
1146 struct mm_struct *mm, unsigned long address,
1147 unsigned int fault_flags)
1148 {
1149 /* should never happen if there's no MMU */
1150 BUG();
1151 return -EFAULT;
1152 }
1153 #endif
1154
1155 extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write);
1156 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1157 void *buf, int len, int write);
1158
1159 long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1160 unsigned long start, unsigned long nr_pages,
1161 unsigned int foll_flags, struct page **pages,
1162 struct vm_area_struct **vmas, int *nonblocking);
1163 long get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1164 unsigned long start, unsigned long nr_pages,
1165 int write, int force, struct page **pages,
1166 struct vm_area_struct **vmas);
1167 int get_user_pages_fast(unsigned long start, int nr_pages, int write,
1168 struct page **pages);
1169 struct kvec;
1170 int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1171 struct page **pages);
1172 int get_kernel_page(unsigned long start, int write, struct page **pages);
1173 struct page *get_dump_page(unsigned long addr);
1174
1175 extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
1176 extern void do_invalidatepage(struct page *page, unsigned int offset,
1177 unsigned int length);
1178
1179 int __set_page_dirty_nobuffers(struct page *page);
1180 int __set_page_dirty_no_writeback(struct page *page);
1181 int redirty_page_for_writepage(struct writeback_control *wbc,
1182 struct page *page);
1183 void account_page_dirtied(struct page *page, struct address_space *mapping);
1184 void account_page_writeback(struct page *page);
1185 int set_page_dirty(struct page *page);
1186 int set_page_dirty_lock(struct page *page);
1187 int clear_page_dirty_for_io(struct page *page);
1188
1189 /* Is the vma a continuation of the stack vma above it? */
1190 static inline int vma_growsdown(struct vm_area_struct *vma, unsigned long addr)
1191 {
1192 return vma && (vma->vm_end == addr) && (vma->vm_flags & VM_GROWSDOWN);
1193 }
1194
1195 static inline int stack_guard_page_start(struct vm_area_struct *vma,
1196 unsigned long addr)
1197 {
1198 return (vma->vm_flags & VM_GROWSDOWN) &&
1199 (vma->vm_start == addr) &&
1200 !vma_growsdown(vma->vm_prev, addr);
1201 }
1202
1203 /* Is the vma a continuation of the stack vma below it? */
1204 static inline int vma_growsup(struct vm_area_struct *vma, unsigned long addr)
1205 {
1206 return vma && (vma->vm_start == addr) && (vma->vm_flags & VM_GROWSUP);
1207 }
1208
1209 static inline int stack_guard_page_end(struct vm_area_struct *vma,
1210 unsigned long addr)
1211 {
1212 return (vma->vm_flags & VM_GROWSUP) &&
1213 (vma->vm_end == addr) &&
1214 !vma_growsup(vma->vm_next, addr);
1215 }
1216
1217 extern pid_t
1218 vm_is_stack(struct task_struct *task, struct vm_area_struct *vma, int in_group);
1219
1220 extern unsigned long move_page_tables(struct vm_area_struct *vma,
1221 unsigned long old_addr, struct vm_area_struct *new_vma,
1222 unsigned long new_addr, unsigned long len,
1223 bool need_rmap_locks);
1224 extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
1225 unsigned long end, pgprot_t newprot,
1226 int dirty_accountable, int prot_numa);
1227 extern int mprotect_fixup(struct vm_area_struct *vma,
1228 struct vm_area_struct **pprev, unsigned long start,
1229 unsigned long end, unsigned long newflags);
1230
1231 /*
1232 * doesn't attempt to fault and will return short.
1233 */
1234 int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1235 struct page **pages);
1236 /*
1237 * per-process(per-mm_struct) statistics.
1238 */
1239 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1240 {
1241 long val = atomic_long_read(&mm->rss_stat.count[member]);
1242
1243 #ifdef SPLIT_RSS_COUNTING
1244 /*
1245 * counter is updated in asynchronous manner and may go to minus.
1246 * But it's never be expected number for users.
1247 */
1248 if (val < 0)
1249 val = 0;
1250 #endif
1251 return (unsigned long)val;
1252 }
1253
1254 static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1255 {
1256 atomic_long_add(value, &mm->rss_stat.count[member]);
1257 }
1258
1259 static inline void inc_mm_counter(struct mm_struct *mm, int member)
1260 {
1261 atomic_long_inc(&mm->rss_stat.count[member]);
1262 }
1263
1264 static inline void dec_mm_counter(struct mm_struct *mm, int member)
1265 {
1266 atomic_long_dec(&mm->rss_stat.count[member]);
1267 }
1268
1269 static inline unsigned long get_mm_rss(struct mm_struct *mm)
1270 {
1271 return get_mm_counter(mm, MM_FILEPAGES) +
1272 get_mm_counter(mm, MM_ANONPAGES);
1273 }
1274
1275 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1276 {
1277 return max(mm->hiwater_rss, get_mm_rss(mm));
1278 }
1279
1280 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1281 {
1282 return max(mm->hiwater_vm, mm->total_vm);
1283 }
1284
1285 static inline void update_hiwater_rss(struct mm_struct *mm)
1286 {
1287 unsigned long _rss = get_mm_rss(mm);
1288
1289 if ((mm)->hiwater_rss < _rss)
1290 (mm)->hiwater_rss = _rss;
1291 }
1292
1293 static inline void update_hiwater_vm(struct mm_struct *mm)
1294 {
1295 if (mm->hiwater_vm < mm->total_vm)
1296 mm->hiwater_vm = mm->total_vm;
1297 }
1298
1299 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1300 struct mm_struct *mm)
1301 {
1302 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1303
1304 if (*maxrss < hiwater_rss)
1305 *maxrss = hiwater_rss;
1306 }
1307
1308 #if defined(SPLIT_RSS_COUNTING)
1309 void sync_mm_rss(struct mm_struct *mm);
1310 #else
1311 static inline void sync_mm_rss(struct mm_struct *mm)
1312 {
1313 }
1314 #endif
1315
1316 int vma_wants_writenotify(struct vm_area_struct *vma);
1317
1318 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1319 spinlock_t **ptl);
1320 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1321 spinlock_t **ptl)
1322 {
1323 pte_t *ptep;
1324 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
1325 return ptep;
1326 }
1327
1328 #ifdef __PAGETABLE_PUD_FOLDED
1329 static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd,
1330 unsigned long address)
1331 {
1332 return 0;
1333 }
1334 #else
1335 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
1336 #endif
1337
1338 #ifdef __PAGETABLE_PMD_FOLDED
1339 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
1340 unsigned long address)
1341 {
1342 return 0;
1343 }
1344 #else
1345 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
1346 #endif
1347
1348 int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
1349 pmd_t *pmd, unsigned long address);
1350 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
1351
1352 /*
1353 * The following ifdef needed to get the 4level-fixup.h header to work.
1354 * Remove it when 4level-fixup.h has been removed.
1355 */
1356 #if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
1357 static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
1358 {
1359 return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))?
1360 NULL: pud_offset(pgd, address);
1361 }
1362
1363 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1364 {
1365 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
1366 NULL: pmd_offset(pud, address);
1367 }
1368 #endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
1369
1370 #if USE_SPLIT_PTE_PTLOCKS
1371 #if ALLOC_SPLIT_PTLOCKS
1372 void __init ptlock_cache_init(void);
1373 extern bool ptlock_alloc(struct page *page);
1374 extern void ptlock_free(struct page *page);
1375
1376 static inline spinlock_t *ptlock_ptr(struct page *page)
1377 {
1378 return page->ptl;
1379 }
1380 #else /* ALLOC_SPLIT_PTLOCKS */
1381 static inline void ptlock_cache_init(void)
1382 {
1383 }
1384
1385 static inline bool ptlock_alloc(struct page *page)
1386 {
1387 return true;
1388 }
1389
1390 static inline void ptlock_free(struct page *page)
1391 {
1392 }
1393
1394 static inline spinlock_t *ptlock_ptr(struct page *page)
1395 {
1396 return &page->ptl;
1397 }
1398 #endif /* ALLOC_SPLIT_PTLOCKS */
1399
1400 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1401 {
1402 return ptlock_ptr(pmd_page(*pmd));
1403 }
1404
1405 static inline bool ptlock_init(struct page *page)
1406 {
1407 /*
1408 * prep_new_page() initialize page->private (and therefore page->ptl)
1409 * with 0. Make sure nobody took it in use in between.
1410 *
1411 * It can happen if arch try to use slab for page table allocation:
1412 * slab code uses page->slab_cache and page->first_page (for tail
1413 * pages), which share storage with page->ptl.
1414 */
1415 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
1416 if (!ptlock_alloc(page))
1417 return false;
1418 spin_lock_init(ptlock_ptr(page));
1419 return true;
1420 }
1421
1422 /* Reset page->mapping so free_pages_check won't complain. */
1423 static inline void pte_lock_deinit(struct page *page)
1424 {
1425 page->mapping = NULL;
1426 ptlock_free(page);
1427 }
1428
1429 #else /* !USE_SPLIT_PTE_PTLOCKS */
1430 /*
1431 * We use mm->page_table_lock to guard all pagetable pages of the mm.
1432 */
1433 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1434 {
1435 return &mm->page_table_lock;
1436 }
1437 static inline void ptlock_cache_init(void) {}
1438 static inline bool ptlock_init(struct page *page) { return true; }
1439 static inline void pte_lock_deinit(struct page *page) {}
1440 #endif /* USE_SPLIT_PTE_PTLOCKS */
1441
1442 static inline void pgtable_init(void)
1443 {
1444 ptlock_cache_init();
1445 pgtable_cache_init();
1446 }
1447
1448 static inline bool pgtable_page_ctor(struct page *page)
1449 {
1450 inc_zone_page_state(page, NR_PAGETABLE);
1451 return ptlock_init(page);
1452 }
1453
1454 static inline void pgtable_page_dtor(struct page *page)
1455 {
1456 pte_lock_deinit(page);
1457 dec_zone_page_state(page, NR_PAGETABLE);
1458 }
1459
1460 #define pte_offset_map_lock(mm, pmd, address, ptlp) \
1461 ({ \
1462 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
1463 pte_t *__pte = pte_offset_map(pmd, address); \
1464 *(ptlp) = __ptl; \
1465 spin_lock(__ptl); \
1466 __pte; \
1467 })
1468
1469 #define pte_unmap_unlock(pte, ptl) do { \
1470 spin_unlock(ptl); \
1471 pte_unmap(pte); \
1472 } while (0)
1473
1474 #define pte_alloc_map(mm, vma, pmd, address) \
1475 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, vma, \
1476 pmd, address))? \
1477 NULL: pte_offset_map(pmd, address))
1478
1479 #define pte_alloc_map_lock(mm, pmd, address, ptlp) \
1480 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, NULL, \
1481 pmd, address))? \
1482 NULL: pte_offset_map_lock(mm, pmd, address, ptlp))
1483
1484 #define pte_alloc_kernel(pmd, address) \
1485 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
1486 NULL: pte_offset_kernel(pmd, address))
1487
1488 #if USE_SPLIT_PMD_PTLOCKS
1489
1490 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1491 {
1492 return ptlock_ptr(virt_to_page(pmd));
1493 }
1494
1495 static inline bool pgtable_pmd_page_ctor(struct page *page)
1496 {
1497 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1498 page->pmd_huge_pte = NULL;
1499 #endif
1500 return ptlock_init(page);
1501 }
1502
1503 static inline void pgtable_pmd_page_dtor(struct page *page)
1504 {
1505 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1506 VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
1507 #endif
1508 ptlock_free(page);
1509 }
1510
1511 #define pmd_huge_pte(mm, pmd) (virt_to_page(pmd)->pmd_huge_pte)
1512
1513 #else
1514
1515 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1516 {
1517 return &mm->page_table_lock;
1518 }
1519
1520 static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; }
1521 static inline void pgtable_pmd_page_dtor(struct page *page) {}
1522
1523 #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
1524
1525 #endif
1526
1527 static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
1528 {
1529 spinlock_t *ptl = pmd_lockptr(mm, pmd);
1530 spin_lock(ptl);
1531 return ptl;
1532 }
1533
1534 extern void free_area_init(unsigned long * zones_size);
1535 extern void free_area_init_node(int nid, unsigned long * zones_size,
1536 unsigned long zone_start_pfn, unsigned long *zholes_size);
1537 extern void free_initmem(void);
1538
1539 /*
1540 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
1541 * into the buddy system. The freed pages will be poisoned with pattern
1542 * "poison" if it's within range [0, UCHAR_MAX].
1543 * Return pages freed into the buddy system.
1544 */
1545 extern unsigned long free_reserved_area(void *start, void *end,
1546 int poison, char *s);
1547
1548 #ifdef CONFIG_HIGHMEM
1549 /*
1550 * Free a highmem page into the buddy system, adjusting totalhigh_pages
1551 * and totalram_pages.
1552 */
1553 extern void free_highmem_page(struct page *page);
1554 #endif
1555
1556 extern void adjust_managed_page_count(struct page *page, long count);
1557 extern void mem_init_print_info(const char *str);
1558
1559 /* Free the reserved page into the buddy system, so it gets managed. */
1560 static inline void __free_reserved_page(struct page *page)
1561 {
1562 ClearPageReserved(page);
1563 init_page_count(page);
1564 __free_page(page);
1565 }
1566
1567 static inline void free_reserved_page(struct page *page)
1568 {
1569 __free_reserved_page(page);
1570 adjust_managed_page_count(page, 1);
1571 }
1572
1573 static inline void mark_page_reserved(struct page *page)
1574 {
1575 SetPageReserved(page);
1576 adjust_managed_page_count(page, -1);
1577 }
1578
1579 /*
1580 * Default method to free all the __init memory into the buddy system.
1581 * The freed pages will be poisoned with pattern "poison" if it's within
1582 * range [0, UCHAR_MAX].
1583 * Return pages freed into the buddy system.
1584 */
1585 static inline unsigned long free_initmem_default(int poison)
1586 {
1587 extern char __init_begin[], __init_end[];
1588
1589 return free_reserved_area(&__init_begin, &__init_end,
1590 poison, "unused kernel");
1591 }
1592
1593 static inline unsigned long get_num_physpages(void)
1594 {
1595 int nid;
1596 unsigned long phys_pages = 0;
1597
1598 for_each_online_node(nid)
1599 phys_pages += node_present_pages(nid);
1600
1601 return phys_pages;
1602 }
1603
1604 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1605 /*
1606 * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its
1607 * zones, allocate the backing mem_map and account for memory holes in a more
1608 * architecture independent manner. This is a substitute for creating the
1609 * zone_sizes[] and zholes_size[] arrays and passing them to
1610 * free_area_init_node()
1611 *
1612 * An architecture is expected to register range of page frames backed by
1613 * physical memory with memblock_add[_node]() before calling
1614 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
1615 * usage, an architecture is expected to do something like
1616 *
1617 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
1618 * max_highmem_pfn};
1619 * for_each_valid_physical_page_range()
1620 * memblock_add_node(base, size, nid)
1621 * free_area_init_nodes(max_zone_pfns);
1622 *
1623 * free_bootmem_with_active_regions() calls free_bootmem_node() for each
1624 * registered physical page range. Similarly
1625 * sparse_memory_present_with_active_regions() calls memory_present() for
1626 * each range when SPARSEMEM is enabled.
1627 *
1628 * See mm/page_alloc.c for more information on each function exposed by
1629 * CONFIG_HAVE_MEMBLOCK_NODE_MAP.
1630 */
1631 extern void free_area_init_nodes(unsigned long *max_zone_pfn);
1632 unsigned long node_map_pfn_alignment(void);
1633 unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
1634 unsigned long end_pfn);
1635 extern unsigned long absent_pages_in_range(unsigned long start_pfn,
1636 unsigned long end_pfn);
1637 extern void get_pfn_range_for_nid(unsigned int nid,
1638 unsigned long *start_pfn, unsigned long *end_pfn);
1639 extern unsigned long find_min_pfn_with_active_regions(void);
1640 extern void free_bootmem_with_active_regions(int nid,
1641 unsigned long max_low_pfn);
1642 extern void sparse_memory_present_with_active_regions(int nid);
1643
1644 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
1645
1646 #if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \
1647 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
1648 static inline int __early_pfn_to_nid(unsigned long pfn)
1649 {
1650 return 0;
1651 }
1652 #else
1653 /* please see mm/page_alloc.c */
1654 extern int __meminit early_pfn_to_nid(unsigned long pfn);
1655 #ifdef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
1656 /* there is a per-arch backend function. */
1657 extern int __meminit __early_pfn_to_nid(unsigned long pfn);
1658 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
1659 #endif
1660
1661 extern void set_dma_reserve(unsigned long new_dma_reserve);
1662 extern void memmap_init_zone(unsigned long, int, unsigned long,
1663 unsigned long, enum memmap_context);
1664 extern void setup_per_zone_wmarks(void);
1665 extern int __meminit init_per_zone_wmark_min(void);
1666 extern void mem_init(void);
1667 extern void __init mmap_init(void);
1668 extern void show_mem(unsigned int flags);
1669 extern void si_meminfo(struct sysinfo * val);
1670 extern void si_meminfo_node(struct sysinfo *val, int nid);
1671
1672 extern __printf(3, 4)
1673 void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...);
1674
1675 extern void setup_per_cpu_pageset(void);
1676
1677 extern void zone_pcp_update(struct zone *zone);
1678 extern void zone_pcp_reset(struct zone *zone);
1679
1680 /* page_alloc.c */
1681 extern int min_free_kbytes;
1682
1683 /* nommu.c */
1684 extern atomic_long_t mmap_pages_allocated;
1685 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
1686
1687 /* interval_tree.c */
1688 void vma_interval_tree_insert(struct vm_area_struct *node,
1689 struct rb_root *root);
1690 void vma_interval_tree_insert_after(struct vm_area_struct *node,
1691 struct vm_area_struct *prev,
1692 struct rb_root *root);
1693 void vma_interval_tree_remove(struct vm_area_struct *node,
1694 struct rb_root *root);
1695 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root *root,
1696 unsigned long start, unsigned long last);
1697 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
1698 unsigned long start, unsigned long last);
1699
1700 #define vma_interval_tree_foreach(vma, root, start, last) \
1701 for (vma = vma_interval_tree_iter_first(root, start, last); \
1702 vma; vma = vma_interval_tree_iter_next(vma, start, last))
1703
1704 static inline void vma_nonlinear_insert(struct vm_area_struct *vma,
1705 struct list_head *list)
1706 {
1707 list_add_tail(&vma->shared.nonlinear, list);
1708 }
1709
1710 void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
1711 struct rb_root *root);
1712 void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
1713 struct rb_root *root);
1714 struct anon_vma_chain *anon_vma_interval_tree_iter_first(
1715 struct rb_root *root, unsigned long start, unsigned long last);
1716 struct anon_vma_chain *anon_vma_interval_tree_iter_next(
1717 struct anon_vma_chain *node, unsigned long start, unsigned long last);
1718 #ifdef CONFIG_DEBUG_VM_RB
1719 void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
1720 #endif
1721
1722 #define anon_vma_interval_tree_foreach(avc, root, start, last) \
1723 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
1724 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
1725
1726 /* mmap.c */
1727 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
1728 extern int vma_adjust(struct vm_area_struct *vma, unsigned long start,
1729 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert);
1730 extern struct vm_area_struct *vma_merge(struct mm_struct *,
1731 struct vm_area_struct *prev, unsigned long addr, unsigned long end,
1732 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
1733 struct mempolicy *);
1734 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
1735 extern int split_vma(struct mm_struct *,
1736 struct vm_area_struct *, unsigned long addr, int new_below);
1737 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
1738 extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
1739 struct rb_node **, struct rb_node *);
1740 extern void unlink_file_vma(struct vm_area_struct *);
1741 extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
1742 unsigned long addr, unsigned long len, pgoff_t pgoff,
1743 bool *need_rmap_locks);
1744 extern void exit_mmap(struct mm_struct *);
1745
1746 extern int mm_take_all_locks(struct mm_struct *mm);
1747 extern void mm_drop_all_locks(struct mm_struct *mm);
1748
1749 extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
1750 extern struct file *get_mm_exe_file(struct mm_struct *mm);
1751
1752 extern int may_expand_vm(struct mm_struct *mm, unsigned long npages);
1753 extern int install_special_mapping(struct mm_struct *mm,
1754 unsigned long addr, unsigned long len,
1755 unsigned long flags, struct page **pages);
1756
1757 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
1758
1759 extern unsigned long mmap_region(struct file *file, unsigned long addr,
1760 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff);
1761 extern unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
1762 unsigned long len, unsigned long prot, unsigned long flags,
1763 unsigned long pgoff, unsigned long *populate);
1764 extern int do_munmap(struct mm_struct *, unsigned long, size_t);
1765
1766 #ifdef CONFIG_MMU
1767 extern int __mm_populate(unsigned long addr, unsigned long len,
1768 int ignore_errors);
1769 static inline void mm_populate(unsigned long addr, unsigned long len)
1770 {
1771 /* Ignore errors */
1772 (void) __mm_populate(addr, len, 1);
1773 }
1774 #else
1775 static inline void mm_populate(unsigned long addr, unsigned long len) {}
1776 #endif
1777
1778 /* These take the mm semaphore themselves */
1779 extern unsigned long vm_brk(unsigned long, unsigned long);
1780 extern int vm_munmap(unsigned long, size_t);
1781 extern unsigned long vm_mmap(struct file *, unsigned long,
1782 unsigned long, unsigned long,
1783 unsigned long, unsigned long);
1784
1785 struct vm_unmapped_area_info {
1786 #define VM_UNMAPPED_AREA_TOPDOWN 1
1787 unsigned long flags;
1788 unsigned long length;
1789 unsigned long low_limit;
1790 unsigned long high_limit;
1791 unsigned long align_mask;
1792 unsigned long align_offset;
1793 };
1794
1795 extern unsigned long unmapped_area(struct vm_unmapped_area_info *info);
1796 extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info);
1797
1798 /*
1799 * Search for an unmapped address range.
1800 *
1801 * We are looking for a range that:
1802 * - does not intersect with any VMA;
1803 * - is contained within the [low_limit, high_limit) interval;
1804 * - is at least the desired size.
1805 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
1806 */
1807 static inline unsigned long
1808 vm_unmapped_area(struct vm_unmapped_area_info *info)
1809 {
1810 if (!(info->flags & VM_UNMAPPED_AREA_TOPDOWN))
1811 return unmapped_area(info);
1812 else
1813 return unmapped_area_topdown(info);
1814 }
1815
1816 /* truncate.c */
1817 extern void truncate_inode_pages(struct address_space *, loff_t);
1818 extern void truncate_inode_pages_range(struct address_space *,
1819 loff_t lstart, loff_t lend);
1820
1821 /* generic vm_area_ops exported for stackable file systems */
1822 extern int filemap_fault(struct vm_area_struct *, struct vm_fault *);
1823 extern int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf);
1824
1825 /* mm/page-writeback.c */
1826 int write_one_page(struct page *page, int wait);
1827 void task_dirty_inc(struct task_struct *tsk);
1828
1829 /* readahead.c */
1830 #define VM_MAX_READAHEAD 128 /* kbytes */
1831 #define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */
1832
1833 int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
1834 pgoff_t offset, unsigned long nr_to_read);
1835
1836 void page_cache_sync_readahead(struct address_space *mapping,
1837 struct file_ra_state *ra,
1838 struct file *filp,
1839 pgoff_t offset,
1840 unsigned long size);
1841
1842 void page_cache_async_readahead(struct address_space *mapping,
1843 struct file_ra_state *ra,
1844 struct file *filp,
1845 struct page *pg,
1846 pgoff_t offset,
1847 unsigned long size);
1848
1849 unsigned long max_sane_readahead(unsigned long nr);
1850 unsigned long ra_submit(struct file_ra_state *ra,
1851 struct address_space *mapping,
1852 struct file *filp);
1853
1854 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
1855 extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
1856
1857 /* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
1858 extern int expand_downwards(struct vm_area_struct *vma,
1859 unsigned long address);
1860 #if VM_GROWSUP
1861 extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
1862 #else
1863 #define expand_upwards(vma, address) do { } while (0)
1864 #endif
1865
1866 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
1867 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
1868 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
1869 struct vm_area_struct **pprev);
1870
1871 /* Look up the first VMA which intersects the interval start_addr..end_addr-1,
1872 NULL if none. Assume start_addr < end_addr. */
1873 static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
1874 {
1875 struct vm_area_struct * vma = find_vma(mm,start_addr);
1876
1877 if (vma && end_addr <= vma->vm_start)
1878 vma = NULL;
1879 return vma;
1880 }
1881
1882 static inline unsigned long vma_pages(struct vm_area_struct *vma)
1883 {
1884 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
1885 }
1886
1887 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */
1888 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
1889 unsigned long vm_start, unsigned long vm_end)
1890 {
1891 struct vm_area_struct *vma = find_vma(mm, vm_start);
1892
1893 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
1894 vma = NULL;
1895
1896 return vma;
1897 }
1898
1899 #ifdef CONFIG_MMU
1900 pgprot_t vm_get_page_prot(unsigned long vm_flags);
1901 #else
1902 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
1903 {
1904 return __pgprot(0);
1905 }
1906 #endif
1907
1908 #ifdef CONFIG_NUMA_BALANCING
1909 unsigned long change_prot_numa(struct vm_area_struct *vma,
1910 unsigned long start, unsigned long end);
1911 #endif
1912
1913 struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
1914 int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
1915 unsigned long pfn, unsigned long size, pgprot_t);
1916 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
1917 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1918 unsigned long pfn);
1919 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1920 unsigned long pfn);
1921 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
1922
1923
1924 struct page *follow_page_mask(struct vm_area_struct *vma,
1925 unsigned long address, unsigned int foll_flags,
1926 unsigned int *page_mask);
1927
1928 static inline struct page *follow_page(struct vm_area_struct *vma,
1929 unsigned long address, unsigned int foll_flags)
1930 {
1931 unsigned int unused_page_mask;
1932 return follow_page_mask(vma, address, foll_flags, &unused_page_mask);
1933 }
1934
1935 #define FOLL_WRITE 0x01 /* check pte is writable */
1936 #define FOLL_TOUCH 0x02 /* mark page accessed */
1937 #define FOLL_GET 0x04 /* do get_page on page */
1938 #define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
1939 #define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
1940 #define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO
1941 * and return without waiting upon it */
1942 #define FOLL_MLOCK 0x40 /* mark page as mlocked */
1943 #define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */
1944 #define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */
1945 #define FOLL_NUMA 0x200 /* force NUMA hinting page fault */
1946 #define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */
1947
1948 typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
1949 void *data);
1950 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
1951 unsigned long size, pte_fn_t fn, void *data);
1952
1953 #ifdef CONFIG_PROC_FS
1954 void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long);
1955 #else
1956 static inline void vm_stat_account(struct mm_struct *mm,
1957 unsigned long flags, struct file *file, long pages)
1958 {
1959 mm->total_vm += pages;
1960 }
1961 #endif /* CONFIG_PROC_FS */
1962
1963 #ifdef CONFIG_DEBUG_PAGEALLOC
1964 extern void kernel_map_pages(struct page *page, int numpages, int enable);
1965 #ifdef CONFIG_HIBERNATION
1966 extern bool kernel_page_present(struct page *page);
1967 #endif /* CONFIG_HIBERNATION */
1968 #else
1969 static inline void
1970 kernel_map_pages(struct page *page, int numpages, int enable) {}
1971 #ifdef CONFIG_HIBERNATION
1972 static inline bool kernel_page_present(struct page *page) { return true; }
1973 #endif /* CONFIG_HIBERNATION */
1974 #endif
1975
1976 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
1977 #ifdef __HAVE_ARCH_GATE_AREA
1978 int in_gate_area_no_mm(unsigned long addr);
1979 int in_gate_area(struct mm_struct *mm, unsigned long addr);
1980 #else
1981 int in_gate_area_no_mm(unsigned long addr);
1982 #define in_gate_area(mm, addr) ({(void)mm; in_gate_area_no_mm(addr);})
1983 #endif /* __HAVE_ARCH_GATE_AREA */
1984
1985 #ifdef CONFIG_SYSCTL
1986 extern int sysctl_drop_caches;
1987 int drop_caches_sysctl_handler(struct ctl_table *, int,
1988 void __user *, size_t *, loff_t *);
1989 #endif
1990
1991 unsigned long shrink_slab(struct shrink_control *shrink,
1992 unsigned long nr_pages_scanned,
1993 unsigned long lru_pages);
1994
1995 #ifndef CONFIG_MMU
1996 #define randomize_va_space 0
1997 #else
1998 extern int randomize_va_space;
1999 #endif
2000
2001 const char * arch_vma_name(struct vm_area_struct *vma);
2002 void print_vma_addr(char *prefix, unsigned long rip);
2003
2004 void sparse_mem_maps_populate_node(struct page **map_map,
2005 unsigned long pnum_begin,
2006 unsigned long pnum_end,
2007 unsigned long map_count,
2008 int nodeid);
2009
2010 struct page *sparse_mem_map_populate(unsigned long pnum, int nid);
2011 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
2012 pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node);
2013 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
2014 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
2015 void *vmemmap_alloc_block(unsigned long size, int node);
2016 void *vmemmap_alloc_block_buf(unsigned long size, int node);
2017 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
2018 int vmemmap_populate_basepages(unsigned long start, unsigned long end,
2019 int node);
2020 int vmemmap_populate(unsigned long start, unsigned long end, int node);
2021 void vmemmap_populate_print_last(void);
2022 #ifdef CONFIG_MEMORY_HOTPLUG
2023 void vmemmap_free(unsigned long start, unsigned long end);
2024 #endif
2025 void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
2026 unsigned long size);
2027
2028 enum mf_flags {
2029 MF_COUNT_INCREASED = 1 << 0,
2030 MF_ACTION_REQUIRED = 1 << 1,
2031 MF_MUST_KILL = 1 << 2,
2032 MF_SOFT_OFFLINE = 1 << 3,
2033 };
2034 extern int memory_failure(unsigned long pfn, int trapno, int flags);
2035 extern void memory_failure_queue(unsigned long pfn, int trapno, int flags);
2036 extern int unpoison_memory(unsigned long pfn);
2037 extern int sysctl_memory_failure_early_kill;
2038 extern int sysctl_memory_failure_recovery;
2039 extern void shake_page(struct page *p, int access);
2040 extern atomic_long_t num_poisoned_pages;
2041 extern int soft_offline_page(struct page *page, int flags);
2042
2043 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
2044 extern void clear_huge_page(struct page *page,
2045 unsigned long addr,
2046 unsigned int pages_per_huge_page);
2047 extern void copy_user_huge_page(struct page *dst, struct page *src,
2048 unsigned long addr, struct vm_area_struct *vma,
2049 unsigned int pages_per_huge_page);
2050 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
2051
2052 #ifdef CONFIG_DEBUG_PAGEALLOC
2053 extern unsigned int _debug_guardpage_minorder;
2054
2055 static inline unsigned int debug_guardpage_minorder(void)
2056 {
2057 return _debug_guardpage_minorder;
2058 }
2059
2060 static inline bool page_is_guard(struct page *page)
2061 {
2062 return test_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
2063 }
2064 #else
2065 static inline unsigned int debug_guardpage_minorder(void) { return 0; }
2066 static inline bool page_is_guard(struct page *page) { return false; }
2067 #endif /* CONFIG_DEBUG_PAGEALLOC */
2068
2069 #if MAX_NUMNODES > 1
2070 void __init setup_nr_node_ids(void);
2071 #else
2072 static inline void setup_nr_node_ids(void) {}
2073 #endif
2074
2075 #endif /* __KERNEL__ */
2076 #endif /* _LINUX_MM_H */
This page took 0.074593 seconds and 6 git commands to generate.