mm: prepare page_referenced() and page_idle to new THP refcounting
[deliverable/linux.git] / include / linux / mm.h
1 #ifndef _LINUX_MM_H
2 #define _LINUX_MM_H
3
4 #include <linux/errno.h>
5
6 #ifdef __KERNEL__
7
8 #include <linux/mmdebug.h>
9 #include <linux/gfp.h>
10 #include <linux/bug.h>
11 #include <linux/list.h>
12 #include <linux/mmzone.h>
13 #include <linux/rbtree.h>
14 #include <linux/atomic.h>
15 #include <linux/debug_locks.h>
16 #include <linux/mm_types.h>
17 #include <linux/range.h>
18 #include <linux/pfn.h>
19 #include <linux/bit_spinlock.h>
20 #include <linux/shrinker.h>
21 #include <linux/resource.h>
22 #include <linux/page_ext.h>
23 #include <linux/err.h>
24
25 struct mempolicy;
26 struct anon_vma;
27 struct anon_vma_chain;
28 struct file_ra_state;
29 struct user_struct;
30 struct writeback_control;
31 struct bdi_writeback;
32
33 #ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */
34 extern unsigned long max_mapnr;
35
36 static inline void set_max_mapnr(unsigned long limit)
37 {
38 max_mapnr = limit;
39 }
40 #else
41 static inline void set_max_mapnr(unsigned long limit) { }
42 #endif
43
44 extern unsigned long totalram_pages;
45 extern void * high_memory;
46 extern int page_cluster;
47
48 #ifdef CONFIG_SYSCTL
49 extern int sysctl_legacy_va_layout;
50 #else
51 #define sysctl_legacy_va_layout 0
52 #endif
53
54 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
55 extern const int mmap_rnd_bits_min;
56 extern const int mmap_rnd_bits_max;
57 extern int mmap_rnd_bits __read_mostly;
58 #endif
59 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
60 extern const int mmap_rnd_compat_bits_min;
61 extern const int mmap_rnd_compat_bits_max;
62 extern int mmap_rnd_compat_bits __read_mostly;
63 #endif
64
65 #include <asm/page.h>
66 #include <asm/pgtable.h>
67 #include <asm/processor.h>
68
69 #ifndef __pa_symbol
70 #define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0))
71 #endif
72
73 /*
74 * To prevent common memory management code establishing
75 * a zero page mapping on a read fault.
76 * This macro should be defined within <asm/pgtable.h>.
77 * s390 does this to prevent multiplexing of hardware bits
78 * related to the physical page in case of virtualization.
79 */
80 #ifndef mm_forbids_zeropage
81 #define mm_forbids_zeropage(X) (0)
82 #endif
83
84 extern unsigned long sysctl_user_reserve_kbytes;
85 extern unsigned long sysctl_admin_reserve_kbytes;
86
87 extern int sysctl_overcommit_memory;
88 extern int sysctl_overcommit_ratio;
89 extern unsigned long sysctl_overcommit_kbytes;
90
91 extern int overcommit_ratio_handler(struct ctl_table *, int, void __user *,
92 size_t *, loff_t *);
93 extern int overcommit_kbytes_handler(struct ctl_table *, int, void __user *,
94 size_t *, loff_t *);
95
96 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
97
98 /* to align the pointer to the (next) page boundary */
99 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
100
101 /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
102 #define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)addr, PAGE_SIZE)
103
104 /*
105 * Linux kernel virtual memory manager primitives.
106 * The idea being to have a "virtual" mm in the same way
107 * we have a virtual fs - giving a cleaner interface to the
108 * mm details, and allowing different kinds of memory mappings
109 * (from shared memory to executable loading to arbitrary
110 * mmap() functions).
111 */
112
113 extern struct kmem_cache *vm_area_cachep;
114
115 #ifndef CONFIG_MMU
116 extern struct rb_root nommu_region_tree;
117 extern struct rw_semaphore nommu_region_sem;
118
119 extern unsigned int kobjsize(const void *objp);
120 #endif
121
122 /*
123 * vm_flags in vm_area_struct, see mm_types.h.
124 */
125 #define VM_NONE 0x00000000
126
127 #define VM_READ 0x00000001 /* currently active flags */
128 #define VM_WRITE 0x00000002
129 #define VM_EXEC 0x00000004
130 #define VM_SHARED 0x00000008
131
132 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
133 #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
134 #define VM_MAYWRITE 0x00000020
135 #define VM_MAYEXEC 0x00000040
136 #define VM_MAYSHARE 0x00000080
137
138 #define VM_GROWSDOWN 0x00000100 /* general info on the segment */
139 #define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */
140 #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
141 #define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
142 #define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */
143
144 #define VM_LOCKED 0x00002000
145 #define VM_IO 0x00004000 /* Memory mapped I/O or similar */
146
147 /* Used by sys_madvise() */
148 #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
149 #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
150
151 #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
152 #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
153 #define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */
154 #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
155 #define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
156 #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
157 #define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
158 #define VM_ARCH_2 0x02000000
159 #define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
160
161 #ifdef CONFIG_MEM_SOFT_DIRTY
162 # define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */
163 #else
164 # define VM_SOFTDIRTY 0
165 #endif
166
167 #define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
168 #define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
169 #define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
170 #define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
171
172 #if defined(CONFIG_X86)
173 # define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
174 #elif defined(CONFIG_PPC)
175 # define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
176 #elif defined(CONFIG_PARISC)
177 # define VM_GROWSUP VM_ARCH_1
178 #elif defined(CONFIG_METAG)
179 # define VM_GROWSUP VM_ARCH_1
180 #elif defined(CONFIG_IA64)
181 # define VM_GROWSUP VM_ARCH_1
182 #elif !defined(CONFIG_MMU)
183 # define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
184 #endif
185
186 #if defined(CONFIG_X86)
187 /* MPX specific bounds table or bounds directory */
188 # define VM_MPX VM_ARCH_2
189 #endif
190
191 #ifndef VM_GROWSUP
192 # define VM_GROWSUP VM_NONE
193 #endif
194
195 /* Bits set in the VMA until the stack is in its final location */
196 #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
197
198 #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
199 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
200 #endif
201
202 #ifdef CONFIG_STACK_GROWSUP
203 #define VM_STACK_FLAGS (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
204 #else
205 #define VM_STACK_FLAGS (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
206 #endif
207
208 /*
209 * Special vmas that are non-mergable, non-mlock()able.
210 * Note: mm/huge_memory.c VM_NO_THP depends on this definition.
211 */
212 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
213
214 /* This mask defines which mm->def_flags a process can inherit its parent */
215 #define VM_INIT_DEF_MASK VM_NOHUGEPAGE
216
217 /* This mask is used to clear all the VMA flags used by mlock */
218 #define VM_LOCKED_CLEAR_MASK (~(VM_LOCKED | VM_LOCKONFAULT))
219
220 /*
221 * mapping from the currently active vm_flags protection bits (the
222 * low four bits) to a page protection mask..
223 */
224 extern pgprot_t protection_map[16];
225
226 #define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */
227 #define FAULT_FLAG_MKWRITE 0x02 /* Fault was mkwrite of existing pte */
228 #define FAULT_FLAG_ALLOW_RETRY 0x04 /* Retry fault if blocking */
229 #define FAULT_FLAG_RETRY_NOWAIT 0x08 /* Don't drop mmap_sem and wait when retrying */
230 #define FAULT_FLAG_KILLABLE 0x10 /* The fault task is in SIGKILL killable region */
231 #define FAULT_FLAG_TRIED 0x20 /* Second try */
232 #define FAULT_FLAG_USER 0x40 /* The fault originated in userspace */
233
234 /*
235 * vm_fault is filled by the the pagefault handler and passed to the vma's
236 * ->fault function. The vma's ->fault is responsible for returning a bitmask
237 * of VM_FAULT_xxx flags that give details about how the fault was handled.
238 *
239 * MM layer fills up gfp_mask for page allocations but fault handler might
240 * alter it if its implementation requires a different allocation context.
241 *
242 * pgoff should be used in favour of virtual_address, if possible.
243 */
244 struct vm_fault {
245 unsigned int flags; /* FAULT_FLAG_xxx flags */
246 gfp_t gfp_mask; /* gfp mask to be used for allocations */
247 pgoff_t pgoff; /* Logical page offset based on vma */
248 void __user *virtual_address; /* Faulting virtual address */
249
250 struct page *cow_page; /* Handler may choose to COW */
251 struct page *page; /* ->fault handlers should return a
252 * page here, unless VM_FAULT_NOPAGE
253 * is set (which is also implied by
254 * VM_FAULT_ERROR).
255 */
256 /* for ->map_pages() only */
257 pgoff_t max_pgoff; /* map pages for offset from pgoff till
258 * max_pgoff inclusive */
259 pte_t *pte; /* pte entry associated with ->pgoff */
260 };
261
262 /*
263 * These are the virtual MM functions - opening of an area, closing and
264 * unmapping it (needed to keep files on disk up-to-date etc), pointer
265 * to the functions called when a no-page or a wp-page exception occurs.
266 */
267 struct vm_operations_struct {
268 void (*open)(struct vm_area_struct * area);
269 void (*close)(struct vm_area_struct * area);
270 int (*mremap)(struct vm_area_struct * area);
271 int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf);
272 int (*pmd_fault)(struct vm_area_struct *, unsigned long address,
273 pmd_t *, unsigned int flags);
274 void (*map_pages)(struct vm_area_struct *vma, struct vm_fault *vmf);
275
276 /* notification that a previously read-only page is about to become
277 * writable, if an error is returned it will cause a SIGBUS */
278 int (*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
279
280 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
281 int (*pfn_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
282
283 /* called by access_process_vm when get_user_pages() fails, typically
284 * for use by special VMAs that can switch between memory and hardware
285 */
286 int (*access)(struct vm_area_struct *vma, unsigned long addr,
287 void *buf, int len, int write);
288
289 /* Called by the /proc/PID/maps code to ask the vma whether it
290 * has a special name. Returning non-NULL will also cause this
291 * vma to be dumped unconditionally. */
292 const char *(*name)(struct vm_area_struct *vma);
293
294 #ifdef CONFIG_NUMA
295 /*
296 * set_policy() op must add a reference to any non-NULL @new mempolicy
297 * to hold the policy upon return. Caller should pass NULL @new to
298 * remove a policy and fall back to surrounding context--i.e. do not
299 * install a MPOL_DEFAULT policy, nor the task or system default
300 * mempolicy.
301 */
302 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
303
304 /*
305 * get_policy() op must add reference [mpol_get()] to any policy at
306 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
307 * in mm/mempolicy.c will do this automatically.
308 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
309 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
310 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
311 * must return NULL--i.e., do not "fallback" to task or system default
312 * policy.
313 */
314 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
315 unsigned long addr);
316 #endif
317 /*
318 * Called by vm_normal_page() for special PTEs to find the
319 * page for @addr. This is useful if the default behavior
320 * (using pte_page()) would not find the correct page.
321 */
322 struct page *(*find_special_page)(struct vm_area_struct *vma,
323 unsigned long addr);
324 };
325
326 struct mmu_gather;
327 struct inode;
328
329 #define page_private(page) ((page)->private)
330 #define set_page_private(page, v) ((page)->private = (v))
331
332 /*
333 * FIXME: take this include out, include page-flags.h in
334 * files which need it (119 of them)
335 */
336 #include <linux/page-flags.h>
337 #include <linux/huge_mm.h>
338
339 /*
340 * Methods to modify the page usage count.
341 *
342 * What counts for a page usage:
343 * - cache mapping (page->mapping)
344 * - private data (page->private)
345 * - page mapped in a task's page tables, each mapping
346 * is counted separately
347 *
348 * Also, many kernel routines increase the page count before a critical
349 * routine so they can be sure the page doesn't go away from under them.
350 */
351
352 /*
353 * Drop a ref, return true if the refcount fell to zero (the page has no users)
354 */
355 static inline int put_page_testzero(struct page *page)
356 {
357 VM_BUG_ON_PAGE(atomic_read(&page->_count) == 0, page);
358 return atomic_dec_and_test(&page->_count);
359 }
360
361 /*
362 * Try to grab a ref unless the page has a refcount of zero, return false if
363 * that is the case.
364 * This can be called when MMU is off so it must not access
365 * any of the virtual mappings.
366 */
367 static inline int get_page_unless_zero(struct page *page)
368 {
369 return atomic_inc_not_zero(&page->_count);
370 }
371
372 extern int page_is_ram(unsigned long pfn);
373
374 enum {
375 REGION_INTERSECTS,
376 REGION_DISJOINT,
377 REGION_MIXED,
378 };
379
380 int region_intersects(resource_size_t offset, size_t size, const char *type);
381
382 /* Support for virtually mapped pages */
383 struct page *vmalloc_to_page(const void *addr);
384 unsigned long vmalloc_to_pfn(const void *addr);
385
386 /*
387 * Determine if an address is within the vmalloc range
388 *
389 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
390 * is no special casing required.
391 */
392 static inline int is_vmalloc_addr(const void *x)
393 {
394 #ifdef CONFIG_MMU
395 unsigned long addr = (unsigned long)x;
396
397 return addr >= VMALLOC_START && addr < VMALLOC_END;
398 #else
399 return 0;
400 #endif
401 }
402 #ifdef CONFIG_MMU
403 extern int is_vmalloc_or_module_addr(const void *x);
404 #else
405 static inline int is_vmalloc_or_module_addr(const void *x)
406 {
407 return 0;
408 }
409 #endif
410
411 extern void kvfree(const void *addr);
412
413 static inline atomic_t *compound_mapcount_ptr(struct page *page)
414 {
415 return &page[1].compound_mapcount;
416 }
417
418 static inline int compound_mapcount(struct page *page)
419 {
420 if (!PageCompound(page))
421 return 0;
422 page = compound_head(page);
423 return atomic_read(compound_mapcount_ptr(page)) + 1;
424 }
425
426 /*
427 * The atomic page->_mapcount, starts from -1: so that transitions
428 * both from it and to it can be tracked, using atomic_inc_and_test
429 * and atomic_add_negative(-1).
430 */
431 static inline void page_mapcount_reset(struct page *page)
432 {
433 atomic_set(&(page)->_mapcount, -1);
434 }
435
436 int __page_mapcount(struct page *page);
437
438 static inline int page_mapcount(struct page *page)
439 {
440 VM_BUG_ON_PAGE(PageSlab(page), page);
441
442 if (unlikely(PageCompound(page)))
443 return __page_mapcount(page);
444 return atomic_read(&page->_mapcount) + 1;
445 }
446
447 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
448 int total_mapcount(struct page *page);
449 #else
450 static inline int total_mapcount(struct page *page)
451 {
452 return page_mapcount(page);
453 }
454 #endif
455
456 static inline int page_count(struct page *page)
457 {
458 return atomic_read(&compound_head(page)->_count);
459 }
460
461 static inline void get_page(struct page *page)
462 {
463 page = compound_head(page);
464 /*
465 * Getting a normal page or the head of a compound page
466 * requires to already have an elevated page->_count.
467 */
468 VM_BUG_ON_PAGE(atomic_read(&page->_count) <= 0, page);
469 atomic_inc(&page->_count);
470 }
471
472 static inline struct page *virt_to_head_page(const void *x)
473 {
474 struct page *page = virt_to_page(x);
475
476 return compound_head(page);
477 }
478
479 /*
480 * Setup the page count before being freed into the page allocator for
481 * the first time (boot or memory hotplug)
482 */
483 static inline void init_page_count(struct page *page)
484 {
485 atomic_set(&page->_count, 1);
486 }
487
488 void __put_page(struct page *page);
489
490 static inline void put_page(struct page *page)
491 {
492 page = compound_head(page);
493 if (put_page_testzero(page))
494 __put_page(page);
495 }
496
497 void put_pages_list(struct list_head *pages);
498
499 void split_page(struct page *page, unsigned int order);
500 int split_free_page(struct page *page);
501
502 /*
503 * Compound pages have a destructor function. Provide a
504 * prototype for that function and accessor functions.
505 * These are _only_ valid on the head of a compound page.
506 */
507 typedef void compound_page_dtor(struct page *);
508
509 /* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */
510 enum compound_dtor_id {
511 NULL_COMPOUND_DTOR,
512 COMPOUND_PAGE_DTOR,
513 #ifdef CONFIG_HUGETLB_PAGE
514 HUGETLB_PAGE_DTOR,
515 #endif
516 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
517 TRANSHUGE_PAGE_DTOR,
518 #endif
519 NR_COMPOUND_DTORS,
520 };
521 extern compound_page_dtor * const compound_page_dtors[];
522
523 static inline void set_compound_page_dtor(struct page *page,
524 enum compound_dtor_id compound_dtor)
525 {
526 VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page);
527 page[1].compound_dtor = compound_dtor;
528 }
529
530 static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
531 {
532 VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page);
533 return compound_page_dtors[page[1].compound_dtor];
534 }
535
536 static inline unsigned int compound_order(struct page *page)
537 {
538 if (!PageHead(page))
539 return 0;
540 return page[1].compound_order;
541 }
542
543 static inline void set_compound_order(struct page *page, unsigned int order)
544 {
545 page[1].compound_order = order;
546 }
547
548 void free_compound_page(struct page *page);
549
550 #ifdef CONFIG_MMU
551 /*
552 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
553 * servicing faults for write access. In the normal case, do always want
554 * pte_mkwrite. But get_user_pages can cause write faults for mappings
555 * that do not have writing enabled, when used by access_process_vm.
556 */
557 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
558 {
559 if (likely(vma->vm_flags & VM_WRITE))
560 pte = pte_mkwrite(pte);
561 return pte;
562 }
563
564 void do_set_pte(struct vm_area_struct *vma, unsigned long address,
565 struct page *page, pte_t *pte, bool write, bool anon);
566 #endif
567
568 /*
569 * Multiple processes may "see" the same page. E.g. for untouched
570 * mappings of /dev/null, all processes see the same page full of
571 * zeroes, and text pages of executables and shared libraries have
572 * only one copy in memory, at most, normally.
573 *
574 * For the non-reserved pages, page_count(page) denotes a reference count.
575 * page_count() == 0 means the page is free. page->lru is then used for
576 * freelist management in the buddy allocator.
577 * page_count() > 0 means the page has been allocated.
578 *
579 * Pages are allocated by the slab allocator in order to provide memory
580 * to kmalloc and kmem_cache_alloc. In this case, the management of the
581 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
582 * unless a particular usage is carefully commented. (the responsibility of
583 * freeing the kmalloc memory is the caller's, of course).
584 *
585 * A page may be used by anyone else who does a __get_free_page().
586 * In this case, page_count still tracks the references, and should only
587 * be used through the normal accessor functions. The top bits of page->flags
588 * and page->virtual store page management information, but all other fields
589 * are unused and could be used privately, carefully. The management of this
590 * page is the responsibility of the one who allocated it, and those who have
591 * subsequently been given references to it.
592 *
593 * The other pages (we may call them "pagecache pages") are completely
594 * managed by the Linux memory manager: I/O, buffers, swapping etc.
595 * The following discussion applies only to them.
596 *
597 * A pagecache page contains an opaque `private' member, which belongs to the
598 * page's address_space. Usually, this is the address of a circular list of
599 * the page's disk buffers. PG_private must be set to tell the VM to call
600 * into the filesystem to release these pages.
601 *
602 * A page may belong to an inode's memory mapping. In this case, page->mapping
603 * is the pointer to the inode, and page->index is the file offset of the page,
604 * in units of PAGE_CACHE_SIZE.
605 *
606 * If pagecache pages are not associated with an inode, they are said to be
607 * anonymous pages. These may become associated with the swapcache, and in that
608 * case PG_swapcache is set, and page->private is an offset into the swapcache.
609 *
610 * In either case (swapcache or inode backed), the pagecache itself holds one
611 * reference to the page. Setting PG_private should also increment the
612 * refcount. The each user mapping also has a reference to the page.
613 *
614 * The pagecache pages are stored in a per-mapping radix tree, which is
615 * rooted at mapping->page_tree, and indexed by offset.
616 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
617 * lists, we instead now tag pages as dirty/writeback in the radix tree.
618 *
619 * All pagecache pages may be subject to I/O:
620 * - inode pages may need to be read from disk,
621 * - inode pages which have been modified and are MAP_SHARED may need
622 * to be written back to the inode on disk,
623 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
624 * modified may need to be swapped out to swap space and (later) to be read
625 * back into memory.
626 */
627
628 /*
629 * The zone field is never updated after free_area_init_core()
630 * sets it, so none of the operations on it need to be atomic.
631 */
632
633 /* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
634 #define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
635 #define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
636 #define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
637 #define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH)
638
639 /*
640 * Define the bit shifts to access each section. For non-existent
641 * sections we define the shift as 0; that plus a 0 mask ensures
642 * the compiler will optimise away reference to them.
643 */
644 #define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
645 #define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
646 #define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
647 #define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
648
649 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
650 #ifdef NODE_NOT_IN_PAGE_FLAGS
651 #define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
652 #define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
653 SECTIONS_PGOFF : ZONES_PGOFF)
654 #else
655 #define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
656 #define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
657 NODES_PGOFF : ZONES_PGOFF)
658 #endif
659
660 #define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
661
662 #if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
663 #error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
664 #endif
665
666 #define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
667 #define NODES_MASK ((1UL << NODES_WIDTH) - 1)
668 #define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
669 #define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1)
670 #define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
671
672 static inline enum zone_type page_zonenum(const struct page *page)
673 {
674 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
675 }
676
677 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
678 #define SECTION_IN_PAGE_FLAGS
679 #endif
680
681 /*
682 * The identification function is mainly used by the buddy allocator for
683 * determining if two pages could be buddies. We are not really identifying
684 * the zone since we could be using the section number id if we do not have
685 * node id available in page flags.
686 * We only guarantee that it will return the same value for two combinable
687 * pages in a zone.
688 */
689 static inline int page_zone_id(struct page *page)
690 {
691 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
692 }
693
694 static inline int zone_to_nid(struct zone *zone)
695 {
696 #ifdef CONFIG_NUMA
697 return zone->node;
698 #else
699 return 0;
700 #endif
701 }
702
703 #ifdef NODE_NOT_IN_PAGE_FLAGS
704 extern int page_to_nid(const struct page *page);
705 #else
706 static inline int page_to_nid(const struct page *page)
707 {
708 return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
709 }
710 #endif
711
712 #ifdef CONFIG_NUMA_BALANCING
713 static inline int cpu_pid_to_cpupid(int cpu, int pid)
714 {
715 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
716 }
717
718 static inline int cpupid_to_pid(int cpupid)
719 {
720 return cpupid & LAST__PID_MASK;
721 }
722
723 static inline int cpupid_to_cpu(int cpupid)
724 {
725 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
726 }
727
728 static inline int cpupid_to_nid(int cpupid)
729 {
730 return cpu_to_node(cpupid_to_cpu(cpupid));
731 }
732
733 static inline bool cpupid_pid_unset(int cpupid)
734 {
735 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
736 }
737
738 static inline bool cpupid_cpu_unset(int cpupid)
739 {
740 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
741 }
742
743 static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
744 {
745 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
746 }
747
748 #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
749 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
750 static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
751 {
752 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
753 }
754
755 static inline int page_cpupid_last(struct page *page)
756 {
757 return page->_last_cpupid;
758 }
759 static inline void page_cpupid_reset_last(struct page *page)
760 {
761 page->_last_cpupid = -1 & LAST_CPUPID_MASK;
762 }
763 #else
764 static inline int page_cpupid_last(struct page *page)
765 {
766 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
767 }
768
769 extern int page_cpupid_xchg_last(struct page *page, int cpupid);
770
771 static inline void page_cpupid_reset_last(struct page *page)
772 {
773 int cpupid = (1 << LAST_CPUPID_SHIFT) - 1;
774
775 page->flags &= ~(LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT);
776 page->flags |= (cpupid & LAST_CPUPID_MASK) << LAST_CPUPID_PGSHIFT;
777 }
778 #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
779 #else /* !CONFIG_NUMA_BALANCING */
780 static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
781 {
782 return page_to_nid(page); /* XXX */
783 }
784
785 static inline int page_cpupid_last(struct page *page)
786 {
787 return page_to_nid(page); /* XXX */
788 }
789
790 static inline int cpupid_to_nid(int cpupid)
791 {
792 return -1;
793 }
794
795 static inline int cpupid_to_pid(int cpupid)
796 {
797 return -1;
798 }
799
800 static inline int cpupid_to_cpu(int cpupid)
801 {
802 return -1;
803 }
804
805 static inline int cpu_pid_to_cpupid(int nid, int pid)
806 {
807 return -1;
808 }
809
810 static inline bool cpupid_pid_unset(int cpupid)
811 {
812 return 1;
813 }
814
815 static inline void page_cpupid_reset_last(struct page *page)
816 {
817 }
818
819 static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
820 {
821 return false;
822 }
823 #endif /* CONFIG_NUMA_BALANCING */
824
825 static inline struct zone *page_zone(const struct page *page)
826 {
827 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
828 }
829
830 #ifdef SECTION_IN_PAGE_FLAGS
831 static inline void set_page_section(struct page *page, unsigned long section)
832 {
833 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
834 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
835 }
836
837 static inline unsigned long page_to_section(const struct page *page)
838 {
839 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
840 }
841 #endif
842
843 static inline void set_page_zone(struct page *page, enum zone_type zone)
844 {
845 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
846 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
847 }
848
849 static inline void set_page_node(struct page *page, unsigned long node)
850 {
851 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
852 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
853 }
854
855 static inline void set_page_links(struct page *page, enum zone_type zone,
856 unsigned long node, unsigned long pfn)
857 {
858 set_page_zone(page, zone);
859 set_page_node(page, node);
860 #ifdef SECTION_IN_PAGE_FLAGS
861 set_page_section(page, pfn_to_section_nr(pfn));
862 #endif
863 }
864
865 #ifdef CONFIG_MEMCG
866 static inline struct mem_cgroup *page_memcg(struct page *page)
867 {
868 return page->mem_cgroup;
869 }
870
871 static inline void set_page_memcg(struct page *page, struct mem_cgroup *memcg)
872 {
873 page->mem_cgroup = memcg;
874 }
875 #else
876 static inline struct mem_cgroup *page_memcg(struct page *page)
877 {
878 return NULL;
879 }
880
881 static inline void set_page_memcg(struct page *page, struct mem_cgroup *memcg)
882 {
883 }
884 #endif
885
886 /*
887 * Some inline functions in vmstat.h depend on page_zone()
888 */
889 #include <linux/vmstat.h>
890
891 static __always_inline void *lowmem_page_address(const struct page *page)
892 {
893 return __va(PFN_PHYS(page_to_pfn(page)));
894 }
895
896 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
897 #define HASHED_PAGE_VIRTUAL
898 #endif
899
900 #if defined(WANT_PAGE_VIRTUAL)
901 static inline void *page_address(const struct page *page)
902 {
903 return page->virtual;
904 }
905 static inline void set_page_address(struct page *page, void *address)
906 {
907 page->virtual = address;
908 }
909 #define page_address_init() do { } while(0)
910 #endif
911
912 #if defined(HASHED_PAGE_VIRTUAL)
913 void *page_address(const struct page *page);
914 void set_page_address(struct page *page, void *virtual);
915 void page_address_init(void);
916 #endif
917
918 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
919 #define page_address(page) lowmem_page_address(page)
920 #define set_page_address(page, address) do { } while(0)
921 #define page_address_init() do { } while(0)
922 #endif
923
924 extern void *page_rmapping(struct page *page);
925 extern struct anon_vma *page_anon_vma(struct page *page);
926 extern struct address_space *page_mapping(struct page *page);
927
928 extern struct address_space *__page_file_mapping(struct page *);
929
930 static inline
931 struct address_space *page_file_mapping(struct page *page)
932 {
933 if (unlikely(PageSwapCache(page)))
934 return __page_file_mapping(page);
935
936 return page->mapping;
937 }
938
939 /*
940 * Return the pagecache index of the passed page. Regular pagecache pages
941 * use ->index whereas swapcache pages use ->private
942 */
943 static inline pgoff_t page_index(struct page *page)
944 {
945 if (unlikely(PageSwapCache(page)))
946 return page_private(page);
947 return page->index;
948 }
949
950 extern pgoff_t __page_file_index(struct page *page);
951
952 /*
953 * Return the file index of the page. Regular pagecache pages use ->index
954 * whereas swapcache pages use swp_offset(->private)
955 */
956 static inline pgoff_t page_file_index(struct page *page)
957 {
958 if (unlikely(PageSwapCache(page)))
959 return __page_file_index(page);
960
961 return page->index;
962 }
963
964 /*
965 * Return true if this page is mapped into pagetables.
966 * For compound page it returns true if any subpage of compound page is mapped.
967 */
968 static inline bool page_mapped(struct page *page)
969 {
970 int i;
971 if (likely(!PageCompound(page)))
972 return atomic_read(&page->_mapcount) >= 0;
973 page = compound_head(page);
974 if (atomic_read(compound_mapcount_ptr(page)) >= 0)
975 return true;
976 for (i = 0; i < hpage_nr_pages(page); i++) {
977 if (atomic_read(&page[i]._mapcount) >= 0)
978 return true;
979 }
980 return false;
981 }
982
983 /*
984 * Return true only if the page has been allocated with
985 * ALLOC_NO_WATERMARKS and the low watermark was not
986 * met implying that the system is under some pressure.
987 */
988 static inline bool page_is_pfmemalloc(struct page *page)
989 {
990 /*
991 * Page index cannot be this large so this must be
992 * a pfmemalloc page.
993 */
994 return page->index == -1UL;
995 }
996
997 /*
998 * Only to be called by the page allocator on a freshly allocated
999 * page.
1000 */
1001 static inline void set_page_pfmemalloc(struct page *page)
1002 {
1003 page->index = -1UL;
1004 }
1005
1006 static inline void clear_page_pfmemalloc(struct page *page)
1007 {
1008 page->index = 0;
1009 }
1010
1011 /*
1012 * Different kinds of faults, as returned by handle_mm_fault().
1013 * Used to decide whether a process gets delivered SIGBUS or
1014 * just gets major/minor fault counters bumped up.
1015 */
1016
1017 #define VM_FAULT_MINOR 0 /* For backwards compat. Remove me quickly. */
1018
1019 #define VM_FAULT_OOM 0x0001
1020 #define VM_FAULT_SIGBUS 0x0002
1021 #define VM_FAULT_MAJOR 0x0004
1022 #define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */
1023 #define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */
1024 #define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */
1025 #define VM_FAULT_SIGSEGV 0x0040
1026
1027 #define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */
1028 #define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */
1029 #define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */
1030 #define VM_FAULT_FALLBACK 0x0800 /* huge page fault failed, fall back to small */
1031
1032 #define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */
1033
1034 #define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | \
1035 VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE | \
1036 VM_FAULT_FALLBACK)
1037
1038 /* Encode hstate index for a hwpoisoned large page */
1039 #define VM_FAULT_SET_HINDEX(x) ((x) << 12)
1040 #define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf)
1041
1042 /*
1043 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
1044 */
1045 extern void pagefault_out_of_memory(void);
1046
1047 #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
1048
1049 /*
1050 * Flags passed to show_mem() and show_free_areas() to suppress output in
1051 * various contexts.
1052 */
1053 #define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */
1054
1055 extern void show_free_areas(unsigned int flags);
1056 extern bool skip_free_areas_node(unsigned int flags, int nid);
1057
1058 int shmem_zero_setup(struct vm_area_struct *);
1059 #ifdef CONFIG_SHMEM
1060 bool shmem_mapping(struct address_space *mapping);
1061 #else
1062 static inline bool shmem_mapping(struct address_space *mapping)
1063 {
1064 return false;
1065 }
1066 #endif
1067
1068 extern int can_do_mlock(void);
1069 extern int user_shm_lock(size_t, struct user_struct *);
1070 extern void user_shm_unlock(size_t, struct user_struct *);
1071
1072 /*
1073 * Parameter block passed down to zap_pte_range in exceptional cases.
1074 */
1075 struct zap_details {
1076 struct address_space *check_mapping; /* Check page->mapping if set */
1077 pgoff_t first_index; /* Lowest page->index to unmap */
1078 pgoff_t last_index; /* Highest page->index to unmap */
1079 };
1080
1081 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
1082 pte_t pte);
1083
1084 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1085 unsigned long size);
1086 void zap_page_range(struct vm_area_struct *vma, unsigned long address,
1087 unsigned long size, struct zap_details *);
1088 void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
1089 unsigned long start, unsigned long end);
1090
1091 /**
1092 * mm_walk - callbacks for walk_page_range
1093 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
1094 * this handler is required to be able to handle
1095 * pmd_trans_huge() pmds. They may simply choose to
1096 * split_huge_page() instead of handling it explicitly.
1097 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
1098 * @pte_hole: if set, called for each hole at all levels
1099 * @hugetlb_entry: if set, called for each hugetlb entry
1100 * @test_walk: caller specific callback function to determine whether
1101 * we walk over the current vma or not. A positive returned
1102 * value means "do page table walk over the current vma,"
1103 * and a negative one means "abort current page table walk
1104 * right now." 0 means "skip the current vma."
1105 * @mm: mm_struct representing the target process of page table walk
1106 * @vma: vma currently walked (NULL if walking outside vmas)
1107 * @private: private data for callbacks' usage
1108 *
1109 * (see the comment on walk_page_range() for more details)
1110 */
1111 struct mm_walk {
1112 int (*pmd_entry)(pmd_t *pmd, unsigned long addr,
1113 unsigned long next, struct mm_walk *walk);
1114 int (*pte_entry)(pte_t *pte, unsigned long addr,
1115 unsigned long next, struct mm_walk *walk);
1116 int (*pte_hole)(unsigned long addr, unsigned long next,
1117 struct mm_walk *walk);
1118 int (*hugetlb_entry)(pte_t *pte, unsigned long hmask,
1119 unsigned long addr, unsigned long next,
1120 struct mm_walk *walk);
1121 int (*test_walk)(unsigned long addr, unsigned long next,
1122 struct mm_walk *walk);
1123 struct mm_struct *mm;
1124 struct vm_area_struct *vma;
1125 void *private;
1126 };
1127
1128 int walk_page_range(unsigned long addr, unsigned long end,
1129 struct mm_walk *walk);
1130 int walk_page_vma(struct vm_area_struct *vma, struct mm_walk *walk);
1131 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
1132 unsigned long end, unsigned long floor, unsigned long ceiling);
1133 int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
1134 struct vm_area_struct *vma);
1135 void unmap_mapping_range(struct address_space *mapping,
1136 loff_t const holebegin, loff_t const holelen, int even_cows);
1137 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
1138 unsigned long *pfn);
1139 int follow_phys(struct vm_area_struct *vma, unsigned long address,
1140 unsigned int flags, unsigned long *prot, resource_size_t *phys);
1141 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
1142 void *buf, int len, int write);
1143
1144 static inline void unmap_shared_mapping_range(struct address_space *mapping,
1145 loff_t const holebegin, loff_t const holelen)
1146 {
1147 unmap_mapping_range(mapping, holebegin, holelen, 0);
1148 }
1149
1150 extern void truncate_pagecache(struct inode *inode, loff_t new);
1151 extern void truncate_setsize(struct inode *inode, loff_t newsize);
1152 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
1153 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
1154 int truncate_inode_page(struct address_space *mapping, struct page *page);
1155 int generic_error_remove_page(struct address_space *mapping, struct page *page);
1156 int invalidate_inode_page(struct page *page);
1157
1158 #ifdef CONFIG_MMU
1159 extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
1160 unsigned long address, unsigned int flags);
1161 extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1162 unsigned long address, unsigned int fault_flags);
1163 #else
1164 static inline int handle_mm_fault(struct mm_struct *mm,
1165 struct vm_area_struct *vma, unsigned long address,
1166 unsigned int flags)
1167 {
1168 /* should never happen if there's no MMU */
1169 BUG();
1170 return VM_FAULT_SIGBUS;
1171 }
1172 static inline int fixup_user_fault(struct task_struct *tsk,
1173 struct mm_struct *mm, unsigned long address,
1174 unsigned int fault_flags)
1175 {
1176 /* should never happen if there's no MMU */
1177 BUG();
1178 return -EFAULT;
1179 }
1180 #endif
1181
1182 extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write);
1183 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1184 void *buf, int len, int write);
1185
1186 long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1187 unsigned long start, unsigned long nr_pages,
1188 unsigned int foll_flags, struct page **pages,
1189 struct vm_area_struct **vmas, int *nonblocking);
1190 long get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1191 unsigned long start, unsigned long nr_pages,
1192 int write, int force, struct page **pages,
1193 struct vm_area_struct **vmas);
1194 long get_user_pages_locked(struct task_struct *tsk, struct mm_struct *mm,
1195 unsigned long start, unsigned long nr_pages,
1196 int write, int force, struct page **pages,
1197 int *locked);
1198 long __get_user_pages_unlocked(struct task_struct *tsk, struct mm_struct *mm,
1199 unsigned long start, unsigned long nr_pages,
1200 int write, int force, struct page **pages,
1201 unsigned int gup_flags);
1202 long get_user_pages_unlocked(struct task_struct *tsk, struct mm_struct *mm,
1203 unsigned long start, unsigned long nr_pages,
1204 int write, int force, struct page **pages);
1205 int get_user_pages_fast(unsigned long start, int nr_pages, int write,
1206 struct page **pages);
1207
1208 /* Container for pinned pfns / pages */
1209 struct frame_vector {
1210 unsigned int nr_allocated; /* Number of frames we have space for */
1211 unsigned int nr_frames; /* Number of frames stored in ptrs array */
1212 bool got_ref; /* Did we pin pages by getting page ref? */
1213 bool is_pfns; /* Does array contain pages or pfns? */
1214 void *ptrs[0]; /* Array of pinned pfns / pages. Use
1215 * pfns_vector_pages() or pfns_vector_pfns()
1216 * for access */
1217 };
1218
1219 struct frame_vector *frame_vector_create(unsigned int nr_frames);
1220 void frame_vector_destroy(struct frame_vector *vec);
1221 int get_vaddr_frames(unsigned long start, unsigned int nr_pfns,
1222 bool write, bool force, struct frame_vector *vec);
1223 void put_vaddr_frames(struct frame_vector *vec);
1224 int frame_vector_to_pages(struct frame_vector *vec);
1225 void frame_vector_to_pfns(struct frame_vector *vec);
1226
1227 static inline unsigned int frame_vector_count(struct frame_vector *vec)
1228 {
1229 return vec->nr_frames;
1230 }
1231
1232 static inline struct page **frame_vector_pages(struct frame_vector *vec)
1233 {
1234 if (vec->is_pfns) {
1235 int err = frame_vector_to_pages(vec);
1236
1237 if (err)
1238 return ERR_PTR(err);
1239 }
1240 return (struct page **)(vec->ptrs);
1241 }
1242
1243 static inline unsigned long *frame_vector_pfns(struct frame_vector *vec)
1244 {
1245 if (!vec->is_pfns)
1246 frame_vector_to_pfns(vec);
1247 return (unsigned long *)(vec->ptrs);
1248 }
1249
1250 struct kvec;
1251 int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1252 struct page **pages);
1253 int get_kernel_page(unsigned long start, int write, struct page **pages);
1254 struct page *get_dump_page(unsigned long addr);
1255
1256 extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
1257 extern void do_invalidatepage(struct page *page, unsigned int offset,
1258 unsigned int length);
1259
1260 int __set_page_dirty_nobuffers(struct page *page);
1261 int __set_page_dirty_no_writeback(struct page *page);
1262 int redirty_page_for_writepage(struct writeback_control *wbc,
1263 struct page *page);
1264 void account_page_dirtied(struct page *page, struct address_space *mapping,
1265 struct mem_cgroup *memcg);
1266 void account_page_cleaned(struct page *page, struct address_space *mapping,
1267 struct mem_cgroup *memcg, struct bdi_writeback *wb);
1268 int set_page_dirty(struct page *page);
1269 int set_page_dirty_lock(struct page *page);
1270 void cancel_dirty_page(struct page *page);
1271 int clear_page_dirty_for_io(struct page *page);
1272
1273 int get_cmdline(struct task_struct *task, char *buffer, int buflen);
1274
1275 /* Is the vma a continuation of the stack vma above it? */
1276 static inline int vma_growsdown(struct vm_area_struct *vma, unsigned long addr)
1277 {
1278 return vma && (vma->vm_end == addr) && (vma->vm_flags & VM_GROWSDOWN);
1279 }
1280
1281 static inline bool vma_is_anonymous(struct vm_area_struct *vma)
1282 {
1283 return !vma->vm_ops;
1284 }
1285
1286 static inline int stack_guard_page_start(struct vm_area_struct *vma,
1287 unsigned long addr)
1288 {
1289 return (vma->vm_flags & VM_GROWSDOWN) &&
1290 (vma->vm_start == addr) &&
1291 !vma_growsdown(vma->vm_prev, addr);
1292 }
1293
1294 /* Is the vma a continuation of the stack vma below it? */
1295 static inline int vma_growsup(struct vm_area_struct *vma, unsigned long addr)
1296 {
1297 return vma && (vma->vm_start == addr) && (vma->vm_flags & VM_GROWSUP);
1298 }
1299
1300 static inline int stack_guard_page_end(struct vm_area_struct *vma,
1301 unsigned long addr)
1302 {
1303 return (vma->vm_flags & VM_GROWSUP) &&
1304 (vma->vm_end == addr) &&
1305 !vma_growsup(vma->vm_next, addr);
1306 }
1307
1308 extern struct task_struct *task_of_stack(struct task_struct *task,
1309 struct vm_area_struct *vma, bool in_group);
1310
1311 extern unsigned long move_page_tables(struct vm_area_struct *vma,
1312 unsigned long old_addr, struct vm_area_struct *new_vma,
1313 unsigned long new_addr, unsigned long len,
1314 bool need_rmap_locks);
1315 extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
1316 unsigned long end, pgprot_t newprot,
1317 int dirty_accountable, int prot_numa);
1318 extern int mprotect_fixup(struct vm_area_struct *vma,
1319 struct vm_area_struct **pprev, unsigned long start,
1320 unsigned long end, unsigned long newflags);
1321
1322 /*
1323 * doesn't attempt to fault and will return short.
1324 */
1325 int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1326 struct page **pages);
1327 /*
1328 * per-process(per-mm_struct) statistics.
1329 */
1330 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1331 {
1332 long val = atomic_long_read(&mm->rss_stat.count[member]);
1333
1334 #ifdef SPLIT_RSS_COUNTING
1335 /*
1336 * counter is updated in asynchronous manner and may go to minus.
1337 * But it's never be expected number for users.
1338 */
1339 if (val < 0)
1340 val = 0;
1341 #endif
1342 return (unsigned long)val;
1343 }
1344
1345 static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1346 {
1347 atomic_long_add(value, &mm->rss_stat.count[member]);
1348 }
1349
1350 static inline void inc_mm_counter(struct mm_struct *mm, int member)
1351 {
1352 atomic_long_inc(&mm->rss_stat.count[member]);
1353 }
1354
1355 static inline void dec_mm_counter(struct mm_struct *mm, int member)
1356 {
1357 atomic_long_dec(&mm->rss_stat.count[member]);
1358 }
1359
1360 /* Optimized variant when page is already known not to be PageAnon */
1361 static inline int mm_counter_file(struct page *page)
1362 {
1363 if (PageSwapBacked(page))
1364 return MM_SHMEMPAGES;
1365 return MM_FILEPAGES;
1366 }
1367
1368 static inline int mm_counter(struct page *page)
1369 {
1370 if (PageAnon(page))
1371 return MM_ANONPAGES;
1372 return mm_counter_file(page);
1373 }
1374
1375 static inline unsigned long get_mm_rss(struct mm_struct *mm)
1376 {
1377 return get_mm_counter(mm, MM_FILEPAGES) +
1378 get_mm_counter(mm, MM_ANONPAGES) +
1379 get_mm_counter(mm, MM_SHMEMPAGES);
1380 }
1381
1382 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1383 {
1384 return max(mm->hiwater_rss, get_mm_rss(mm));
1385 }
1386
1387 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1388 {
1389 return max(mm->hiwater_vm, mm->total_vm);
1390 }
1391
1392 static inline void update_hiwater_rss(struct mm_struct *mm)
1393 {
1394 unsigned long _rss = get_mm_rss(mm);
1395
1396 if ((mm)->hiwater_rss < _rss)
1397 (mm)->hiwater_rss = _rss;
1398 }
1399
1400 static inline void update_hiwater_vm(struct mm_struct *mm)
1401 {
1402 if (mm->hiwater_vm < mm->total_vm)
1403 mm->hiwater_vm = mm->total_vm;
1404 }
1405
1406 static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
1407 {
1408 mm->hiwater_rss = get_mm_rss(mm);
1409 }
1410
1411 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1412 struct mm_struct *mm)
1413 {
1414 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1415
1416 if (*maxrss < hiwater_rss)
1417 *maxrss = hiwater_rss;
1418 }
1419
1420 #if defined(SPLIT_RSS_COUNTING)
1421 void sync_mm_rss(struct mm_struct *mm);
1422 #else
1423 static inline void sync_mm_rss(struct mm_struct *mm)
1424 {
1425 }
1426 #endif
1427
1428 int vma_wants_writenotify(struct vm_area_struct *vma);
1429
1430 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1431 spinlock_t **ptl);
1432 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1433 spinlock_t **ptl)
1434 {
1435 pte_t *ptep;
1436 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
1437 return ptep;
1438 }
1439
1440 #ifdef __PAGETABLE_PUD_FOLDED
1441 static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd,
1442 unsigned long address)
1443 {
1444 return 0;
1445 }
1446 #else
1447 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
1448 #endif
1449
1450 #if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
1451 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
1452 unsigned long address)
1453 {
1454 return 0;
1455 }
1456
1457 static inline void mm_nr_pmds_init(struct mm_struct *mm) {}
1458
1459 static inline unsigned long mm_nr_pmds(struct mm_struct *mm)
1460 {
1461 return 0;
1462 }
1463
1464 static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
1465 static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
1466
1467 #else
1468 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
1469
1470 static inline void mm_nr_pmds_init(struct mm_struct *mm)
1471 {
1472 atomic_long_set(&mm->nr_pmds, 0);
1473 }
1474
1475 static inline unsigned long mm_nr_pmds(struct mm_struct *mm)
1476 {
1477 return atomic_long_read(&mm->nr_pmds);
1478 }
1479
1480 static inline void mm_inc_nr_pmds(struct mm_struct *mm)
1481 {
1482 atomic_long_inc(&mm->nr_pmds);
1483 }
1484
1485 static inline void mm_dec_nr_pmds(struct mm_struct *mm)
1486 {
1487 atomic_long_dec(&mm->nr_pmds);
1488 }
1489 #endif
1490
1491 int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
1492 pmd_t *pmd, unsigned long address);
1493 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
1494
1495 /*
1496 * The following ifdef needed to get the 4level-fixup.h header to work.
1497 * Remove it when 4level-fixup.h has been removed.
1498 */
1499 #if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
1500 static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
1501 {
1502 return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))?
1503 NULL: pud_offset(pgd, address);
1504 }
1505
1506 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1507 {
1508 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
1509 NULL: pmd_offset(pud, address);
1510 }
1511 #endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
1512
1513 #if USE_SPLIT_PTE_PTLOCKS
1514 #if ALLOC_SPLIT_PTLOCKS
1515 void __init ptlock_cache_init(void);
1516 extern bool ptlock_alloc(struct page *page);
1517 extern void ptlock_free(struct page *page);
1518
1519 static inline spinlock_t *ptlock_ptr(struct page *page)
1520 {
1521 return page->ptl;
1522 }
1523 #else /* ALLOC_SPLIT_PTLOCKS */
1524 static inline void ptlock_cache_init(void)
1525 {
1526 }
1527
1528 static inline bool ptlock_alloc(struct page *page)
1529 {
1530 return true;
1531 }
1532
1533 static inline void ptlock_free(struct page *page)
1534 {
1535 }
1536
1537 static inline spinlock_t *ptlock_ptr(struct page *page)
1538 {
1539 return &page->ptl;
1540 }
1541 #endif /* ALLOC_SPLIT_PTLOCKS */
1542
1543 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1544 {
1545 return ptlock_ptr(pmd_page(*pmd));
1546 }
1547
1548 static inline bool ptlock_init(struct page *page)
1549 {
1550 /*
1551 * prep_new_page() initialize page->private (and therefore page->ptl)
1552 * with 0. Make sure nobody took it in use in between.
1553 *
1554 * It can happen if arch try to use slab for page table allocation:
1555 * slab code uses page->slab_cache, which share storage with page->ptl.
1556 */
1557 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
1558 if (!ptlock_alloc(page))
1559 return false;
1560 spin_lock_init(ptlock_ptr(page));
1561 return true;
1562 }
1563
1564 /* Reset page->mapping so free_pages_check won't complain. */
1565 static inline void pte_lock_deinit(struct page *page)
1566 {
1567 page->mapping = NULL;
1568 ptlock_free(page);
1569 }
1570
1571 #else /* !USE_SPLIT_PTE_PTLOCKS */
1572 /*
1573 * We use mm->page_table_lock to guard all pagetable pages of the mm.
1574 */
1575 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1576 {
1577 return &mm->page_table_lock;
1578 }
1579 static inline void ptlock_cache_init(void) {}
1580 static inline bool ptlock_init(struct page *page) { return true; }
1581 static inline void pte_lock_deinit(struct page *page) {}
1582 #endif /* USE_SPLIT_PTE_PTLOCKS */
1583
1584 static inline void pgtable_init(void)
1585 {
1586 ptlock_cache_init();
1587 pgtable_cache_init();
1588 }
1589
1590 static inline bool pgtable_page_ctor(struct page *page)
1591 {
1592 if (!ptlock_init(page))
1593 return false;
1594 inc_zone_page_state(page, NR_PAGETABLE);
1595 return true;
1596 }
1597
1598 static inline void pgtable_page_dtor(struct page *page)
1599 {
1600 pte_lock_deinit(page);
1601 dec_zone_page_state(page, NR_PAGETABLE);
1602 }
1603
1604 #define pte_offset_map_lock(mm, pmd, address, ptlp) \
1605 ({ \
1606 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
1607 pte_t *__pte = pte_offset_map(pmd, address); \
1608 *(ptlp) = __ptl; \
1609 spin_lock(__ptl); \
1610 __pte; \
1611 })
1612
1613 #define pte_unmap_unlock(pte, ptl) do { \
1614 spin_unlock(ptl); \
1615 pte_unmap(pte); \
1616 } while (0)
1617
1618 #define pte_alloc_map(mm, vma, pmd, address) \
1619 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, vma, \
1620 pmd, address))? \
1621 NULL: pte_offset_map(pmd, address))
1622
1623 #define pte_alloc_map_lock(mm, pmd, address, ptlp) \
1624 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, NULL, \
1625 pmd, address))? \
1626 NULL: pte_offset_map_lock(mm, pmd, address, ptlp))
1627
1628 #define pte_alloc_kernel(pmd, address) \
1629 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
1630 NULL: pte_offset_kernel(pmd, address))
1631
1632 #if USE_SPLIT_PMD_PTLOCKS
1633
1634 static struct page *pmd_to_page(pmd_t *pmd)
1635 {
1636 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
1637 return virt_to_page((void *)((unsigned long) pmd & mask));
1638 }
1639
1640 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1641 {
1642 return ptlock_ptr(pmd_to_page(pmd));
1643 }
1644
1645 static inline bool pgtable_pmd_page_ctor(struct page *page)
1646 {
1647 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1648 page->pmd_huge_pte = NULL;
1649 #endif
1650 return ptlock_init(page);
1651 }
1652
1653 static inline void pgtable_pmd_page_dtor(struct page *page)
1654 {
1655 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1656 VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
1657 #endif
1658 ptlock_free(page);
1659 }
1660
1661 #define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte)
1662
1663 #else
1664
1665 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1666 {
1667 return &mm->page_table_lock;
1668 }
1669
1670 static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; }
1671 static inline void pgtable_pmd_page_dtor(struct page *page) {}
1672
1673 #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
1674
1675 #endif
1676
1677 static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
1678 {
1679 spinlock_t *ptl = pmd_lockptr(mm, pmd);
1680 spin_lock(ptl);
1681 return ptl;
1682 }
1683
1684 extern void free_area_init(unsigned long * zones_size);
1685 extern void free_area_init_node(int nid, unsigned long * zones_size,
1686 unsigned long zone_start_pfn, unsigned long *zholes_size);
1687 extern void free_initmem(void);
1688
1689 /*
1690 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
1691 * into the buddy system. The freed pages will be poisoned with pattern
1692 * "poison" if it's within range [0, UCHAR_MAX].
1693 * Return pages freed into the buddy system.
1694 */
1695 extern unsigned long free_reserved_area(void *start, void *end,
1696 int poison, char *s);
1697
1698 #ifdef CONFIG_HIGHMEM
1699 /*
1700 * Free a highmem page into the buddy system, adjusting totalhigh_pages
1701 * and totalram_pages.
1702 */
1703 extern void free_highmem_page(struct page *page);
1704 #endif
1705
1706 extern void adjust_managed_page_count(struct page *page, long count);
1707 extern void mem_init_print_info(const char *str);
1708
1709 extern void reserve_bootmem_region(unsigned long start, unsigned long end);
1710
1711 /* Free the reserved page into the buddy system, so it gets managed. */
1712 static inline void __free_reserved_page(struct page *page)
1713 {
1714 ClearPageReserved(page);
1715 init_page_count(page);
1716 __free_page(page);
1717 }
1718
1719 static inline void free_reserved_page(struct page *page)
1720 {
1721 __free_reserved_page(page);
1722 adjust_managed_page_count(page, 1);
1723 }
1724
1725 static inline void mark_page_reserved(struct page *page)
1726 {
1727 SetPageReserved(page);
1728 adjust_managed_page_count(page, -1);
1729 }
1730
1731 /*
1732 * Default method to free all the __init memory into the buddy system.
1733 * The freed pages will be poisoned with pattern "poison" if it's within
1734 * range [0, UCHAR_MAX].
1735 * Return pages freed into the buddy system.
1736 */
1737 static inline unsigned long free_initmem_default(int poison)
1738 {
1739 extern char __init_begin[], __init_end[];
1740
1741 return free_reserved_area(&__init_begin, &__init_end,
1742 poison, "unused kernel");
1743 }
1744
1745 static inline unsigned long get_num_physpages(void)
1746 {
1747 int nid;
1748 unsigned long phys_pages = 0;
1749
1750 for_each_online_node(nid)
1751 phys_pages += node_present_pages(nid);
1752
1753 return phys_pages;
1754 }
1755
1756 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1757 /*
1758 * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its
1759 * zones, allocate the backing mem_map and account for memory holes in a more
1760 * architecture independent manner. This is a substitute for creating the
1761 * zone_sizes[] and zholes_size[] arrays and passing them to
1762 * free_area_init_node()
1763 *
1764 * An architecture is expected to register range of page frames backed by
1765 * physical memory with memblock_add[_node]() before calling
1766 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
1767 * usage, an architecture is expected to do something like
1768 *
1769 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
1770 * max_highmem_pfn};
1771 * for_each_valid_physical_page_range()
1772 * memblock_add_node(base, size, nid)
1773 * free_area_init_nodes(max_zone_pfns);
1774 *
1775 * free_bootmem_with_active_regions() calls free_bootmem_node() for each
1776 * registered physical page range. Similarly
1777 * sparse_memory_present_with_active_regions() calls memory_present() for
1778 * each range when SPARSEMEM is enabled.
1779 *
1780 * See mm/page_alloc.c for more information on each function exposed by
1781 * CONFIG_HAVE_MEMBLOCK_NODE_MAP.
1782 */
1783 extern void free_area_init_nodes(unsigned long *max_zone_pfn);
1784 unsigned long node_map_pfn_alignment(void);
1785 unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
1786 unsigned long end_pfn);
1787 extern unsigned long absent_pages_in_range(unsigned long start_pfn,
1788 unsigned long end_pfn);
1789 extern void get_pfn_range_for_nid(unsigned int nid,
1790 unsigned long *start_pfn, unsigned long *end_pfn);
1791 extern unsigned long find_min_pfn_with_active_regions(void);
1792 extern void free_bootmem_with_active_regions(int nid,
1793 unsigned long max_low_pfn);
1794 extern void sparse_memory_present_with_active_regions(int nid);
1795
1796 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
1797
1798 #if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \
1799 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
1800 static inline int __early_pfn_to_nid(unsigned long pfn,
1801 struct mminit_pfnnid_cache *state)
1802 {
1803 return 0;
1804 }
1805 #else
1806 /* please see mm/page_alloc.c */
1807 extern int __meminit early_pfn_to_nid(unsigned long pfn);
1808 /* there is a per-arch backend function. */
1809 extern int __meminit __early_pfn_to_nid(unsigned long pfn,
1810 struct mminit_pfnnid_cache *state);
1811 #endif
1812
1813 extern void set_dma_reserve(unsigned long new_dma_reserve);
1814 extern void memmap_init_zone(unsigned long, int, unsigned long,
1815 unsigned long, enum memmap_context);
1816 extern void setup_per_zone_wmarks(void);
1817 extern int __meminit init_per_zone_wmark_min(void);
1818 extern void mem_init(void);
1819 extern void __init mmap_init(void);
1820 extern void show_mem(unsigned int flags);
1821 extern void si_meminfo(struct sysinfo * val);
1822 extern void si_meminfo_node(struct sysinfo *val, int nid);
1823
1824 extern __printf(3, 4)
1825 void warn_alloc_failed(gfp_t gfp_mask, unsigned int order,
1826 const char *fmt, ...);
1827
1828 extern void setup_per_cpu_pageset(void);
1829
1830 extern void zone_pcp_update(struct zone *zone);
1831 extern void zone_pcp_reset(struct zone *zone);
1832
1833 /* page_alloc.c */
1834 extern int min_free_kbytes;
1835
1836 /* nommu.c */
1837 extern atomic_long_t mmap_pages_allocated;
1838 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
1839
1840 /* interval_tree.c */
1841 void vma_interval_tree_insert(struct vm_area_struct *node,
1842 struct rb_root *root);
1843 void vma_interval_tree_insert_after(struct vm_area_struct *node,
1844 struct vm_area_struct *prev,
1845 struct rb_root *root);
1846 void vma_interval_tree_remove(struct vm_area_struct *node,
1847 struct rb_root *root);
1848 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root *root,
1849 unsigned long start, unsigned long last);
1850 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
1851 unsigned long start, unsigned long last);
1852
1853 #define vma_interval_tree_foreach(vma, root, start, last) \
1854 for (vma = vma_interval_tree_iter_first(root, start, last); \
1855 vma; vma = vma_interval_tree_iter_next(vma, start, last))
1856
1857 void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
1858 struct rb_root *root);
1859 void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
1860 struct rb_root *root);
1861 struct anon_vma_chain *anon_vma_interval_tree_iter_first(
1862 struct rb_root *root, unsigned long start, unsigned long last);
1863 struct anon_vma_chain *anon_vma_interval_tree_iter_next(
1864 struct anon_vma_chain *node, unsigned long start, unsigned long last);
1865 #ifdef CONFIG_DEBUG_VM_RB
1866 void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
1867 #endif
1868
1869 #define anon_vma_interval_tree_foreach(avc, root, start, last) \
1870 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
1871 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
1872
1873 /* mmap.c */
1874 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
1875 extern int vma_adjust(struct vm_area_struct *vma, unsigned long start,
1876 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert);
1877 extern struct vm_area_struct *vma_merge(struct mm_struct *,
1878 struct vm_area_struct *prev, unsigned long addr, unsigned long end,
1879 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
1880 struct mempolicy *, struct vm_userfaultfd_ctx);
1881 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
1882 extern int split_vma(struct mm_struct *,
1883 struct vm_area_struct *, unsigned long addr, int new_below);
1884 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
1885 extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
1886 struct rb_node **, struct rb_node *);
1887 extern void unlink_file_vma(struct vm_area_struct *);
1888 extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
1889 unsigned long addr, unsigned long len, pgoff_t pgoff,
1890 bool *need_rmap_locks);
1891 extern void exit_mmap(struct mm_struct *);
1892
1893 static inline int check_data_rlimit(unsigned long rlim,
1894 unsigned long new,
1895 unsigned long start,
1896 unsigned long end_data,
1897 unsigned long start_data)
1898 {
1899 if (rlim < RLIM_INFINITY) {
1900 if (((new - start) + (end_data - start_data)) > rlim)
1901 return -ENOSPC;
1902 }
1903
1904 return 0;
1905 }
1906
1907 extern int mm_take_all_locks(struct mm_struct *mm);
1908 extern void mm_drop_all_locks(struct mm_struct *mm);
1909
1910 extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
1911 extern struct file *get_mm_exe_file(struct mm_struct *mm);
1912
1913 extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
1914 extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
1915
1916 extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
1917 unsigned long addr, unsigned long len,
1918 unsigned long flags,
1919 const struct vm_special_mapping *spec);
1920 /* This is an obsolete alternative to _install_special_mapping. */
1921 extern int install_special_mapping(struct mm_struct *mm,
1922 unsigned long addr, unsigned long len,
1923 unsigned long flags, struct page **pages);
1924
1925 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
1926
1927 extern unsigned long mmap_region(struct file *file, unsigned long addr,
1928 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff);
1929 extern unsigned long do_mmap(struct file *file, unsigned long addr,
1930 unsigned long len, unsigned long prot, unsigned long flags,
1931 vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate);
1932 extern int do_munmap(struct mm_struct *, unsigned long, size_t);
1933
1934 static inline unsigned long
1935 do_mmap_pgoff(struct file *file, unsigned long addr,
1936 unsigned long len, unsigned long prot, unsigned long flags,
1937 unsigned long pgoff, unsigned long *populate)
1938 {
1939 return do_mmap(file, addr, len, prot, flags, 0, pgoff, populate);
1940 }
1941
1942 #ifdef CONFIG_MMU
1943 extern int __mm_populate(unsigned long addr, unsigned long len,
1944 int ignore_errors);
1945 static inline void mm_populate(unsigned long addr, unsigned long len)
1946 {
1947 /* Ignore errors */
1948 (void) __mm_populate(addr, len, 1);
1949 }
1950 #else
1951 static inline void mm_populate(unsigned long addr, unsigned long len) {}
1952 #endif
1953
1954 /* These take the mm semaphore themselves */
1955 extern unsigned long vm_brk(unsigned long, unsigned long);
1956 extern int vm_munmap(unsigned long, size_t);
1957 extern unsigned long vm_mmap(struct file *, unsigned long,
1958 unsigned long, unsigned long,
1959 unsigned long, unsigned long);
1960
1961 struct vm_unmapped_area_info {
1962 #define VM_UNMAPPED_AREA_TOPDOWN 1
1963 unsigned long flags;
1964 unsigned long length;
1965 unsigned long low_limit;
1966 unsigned long high_limit;
1967 unsigned long align_mask;
1968 unsigned long align_offset;
1969 };
1970
1971 extern unsigned long unmapped_area(struct vm_unmapped_area_info *info);
1972 extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info);
1973
1974 /*
1975 * Search for an unmapped address range.
1976 *
1977 * We are looking for a range that:
1978 * - does not intersect with any VMA;
1979 * - is contained within the [low_limit, high_limit) interval;
1980 * - is at least the desired size.
1981 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
1982 */
1983 static inline unsigned long
1984 vm_unmapped_area(struct vm_unmapped_area_info *info)
1985 {
1986 if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
1987 return unmapped_area_topdown(info);
1988 else
1989 return unmapped_area(info);
1990 }
1991
1992 /* truncate.c */
1993 extern void truncate_inode_pages(struct address_space *, loff_t);
1994 extern void truncate_inode_pages_range(struct address_space *,
1995 loff_t lstart, loff_t lend);
1996 extern void truncate_inode_pages_final(struct address_space *);
1997
1998 /* generic vm_area_ops exported for stackable file systems */
1999 extern int filemap_fault(struct vm_area_struct *, struct vm_fault *);
2000 extern void filemap_map_pages(struct vm_area_struct *vma, struct vm_fault *vmf);
2001 extern int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf);
2002
2003 /* mm/page-writeback.c */
2004 int write_one_page(struct page *page, int wait);
2005 void task_dirty_inc(struct task_struct *tsk);
2006
2007 /* readahead.c */
2008 #define VM_MAX_READAHEAD 128 /* kbytes */
2009 #define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */
2010
2011 int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
2012 pgoff_t offset, unsigned long nr_to_read);
2013
2014 void page_cache_sync_readahead(struct address_space *mapping,
2015 struct file_ra_state *ra,
2016 struct file *filp,
2017 pgoff_t offset,
2018 unsigned long size);
2019
2020 void page_cache_async_readahead(struct address_space *mapping,
2021 struct file_ra_state *ra,
2022 struct file *filp,
2023 struct page *pg,
2024 pgoff_t offset,
2025 unsigned long size);
2026
2027 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
2028 extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
2029
2030 /* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
2031 extern int expand_downwards(struct vm_area_struct *vma,
2032 unsigned long address);
2033 #if VM_GROWSUP
2034 extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
2035 #else
2036 #define expand_upwards(vma, address) (0)
2037 #endif
2038
2039 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
2040 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
2041 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
2042 struct vm_area_struct **pprev);
2043
2044 /* Look up the first VMA which intersects the interval start_addr..end_addr-1,
2045 NULL if none. Assume start_addr < end_addr. */
2046 static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
2047 {
2048 struct vm_area_struct * vma = find_vma(mm,start_addr);
2049
2050 if (vma && end_addr <= vma->vm_start)
2051 vma = NULL;
2052 return vma;
2053 }
2054
2055 static inline unsigned long vma_pages(struct vm_area_struct *vma)
2056 {
2057 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
2058 }
2059
2060 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */
2061 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
2062 unsigned long vm_start, unsigned long vm_end)
2063 {
2064 struct vm_area_struct *vma = find_vma(mm, vm_start);
2065
2066 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
2067 vma = NULL;
2068
2069 return vma;
2070 }
2071
2072 #ifdef CONFIG_MMU
2073 pgprot_t vm_get_page_prot(unsigned long vm_flags);
2074 void vma_set_page_prot(struct vm_area_struct *vma);
2075 #else
2076 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
2077 {
2078 return __pgprot(0);
2079 }
2080 static inline void vma_set_page_prot(struct vm_area_struct *vma)
2081 {
2082 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2083 }
2084 #endif
2085
2086 #ifdef CONFIG_NUMA_BALANCING
2087 unsigned long change_prot_numa(struct vm_area_struct *vma,
2088 unsigned long start, unsigned long end);
2089 #endif
2090
2091 struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
2092 int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
2093 unsigned long pfn, unsigned long size, pgprot_t);
2094 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
2095 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2096 unsigned long pfn);
2097 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2098 unsigned long pfn);
2099 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
2100
2101
2102 struct page *follow_page_mask(struct vm_area_struct *vma,
2103 unsigned long address, unsigned int foll_flags,
2104 unsigned int *page_mask);
2105
2106 static inline struct page *follow_page(struct vm_area_struct *vma,
2107 unsigned long address, unsigned int foll_flags)
2108 {
2109 unsigned int unused_page_mask;
2110 return follow_page_mask(vma, address, foll_flags, &unused_page_mask);
2111 }
2112
2113 #define FOLL_WRITE 0x01 /* check pte is writable */
2114 #define FOLL_TOUCH 0x02 /* mark page accessed */
2115 #define FOLL_GET 0x04 /* do get_page on page */
2116 #define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
2117 #define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
2118 #define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO
2119 * and return without waiting upon it */
2120 #define FOLL_POPULATE 0x40 /* fault in page */
2121 #define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */
2122 #define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */
2123 #define FOLL_NUMA 0x200 /* force NUMA hinting page fault */
2124 #define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */
2125 #define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */
2126 #define FOLL_MLOCK 0x1000 /* lock present pages */
2127
2128 typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
2129 void *data);
2130 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
2131 unsigned long size, pte_fn_t fn, void *data);
2132
2133
2134 #ifdef CONFIG_DEBUG_PAGEALLOC
2135 extern bool _debug_pagealloc_enabled;
2136 extern void __kernel_map_pages(struct page *page, int numpages, int enable);
2137
2138 static inline bool debug_pagealloc_enabled(void)
2139 {
2140 return _debug_pagealloc_enabled;
2141 }
2142
2143 static inline void
2144 kernel_map_pages(struct page *page, int numpages, int enable)
2145 {
2146 if (!debug_pagealloc_enabled())
2147 return;
2148
2149 __kernel_map_pages(page, numpages, enable);
2150 }
2151 #ifdef CONFIG_HIBERNATION
2152 extern bool kernel_page_present(struct page *page);
2153 #endif /* CONFIG_HIBERNATION */
2154 #else
2155 static inline void
2156 kernel_map_pages(struct page *page, int numpages, int enable) {}
2157 #ifdef CONFIG_HIBERNATION
2158 static inline bool kernel_page_present(struct page *page) { return true; }
2159 #endif /* CONFIG_HIBERNATION */
2160 #endif
2161
2162 #ifdef __HAVE_ARCH_GATE_AREA
2163 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
2164 extern int in_gate_area_no_mm(unsigned long addr);
2165 extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
2166 #else
2167 static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
2168 {
2169 return NULL;
2170 }
2171 static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
2172 static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
2173 {
2174 return 0;
2175 }
2176 #endif /* __HAVE_ARCH_GATE_AREA */
2177
2178 #ifdef CONFIG_SYSCTL
2179 extern int sysctl_drop_caches;
2180 int drop_caches_sysctl_handler(struct ctl_table *, int,
2181 void __user *, size_t *, loff_t *);
2182 #endif
2183
2184 void drop_slab(void);
2185 void drop_slab_node(int nid);
2186
2187 #ifndef CONFIG_MMU
2188 #define randomize_va_space 0
2189 #else
2190 extern int randomize_va_space;
2191 #endif
2192
2193 const char * arch_vma_name(struct vm_area_struct *vma);
2194 void print_vma_addr(char *prefix, unsigned long rip);
2195
2196 void sparse_mem_maps_populate_node(struct page **map_map,
2197 unsigned long pnum_begin,
2198 unsigned long pnum_end,
2199 unsigned long map_count,
2200 int nodeid);
2201
2202 struct page *sparse_mem_map_populate(unsigned long pnum, int nid);
2203 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
2204 pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node);
2205 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
2206 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
2207 void *vmemmap_alloc_block(unsigned long size, int node);
2208 void *vmemmap_alloc_block_buf(unsigned long size, int node);
2209 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
2210 int vmemmap_populate_basepages(unsigned long start, unsigned long end,
2211 int node);
2212 int vmemmap_populate(unsigned long start, unsigned long end, int node);
2213 void vmemmap_populate_print_last(void);
2214 #ifdef CONFIG_MEMORY_HOTPLUG
2215 void vmemmap_free(unsigned long start, unsigned long end);
2216 #endif
2217 void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
2218 unsigned long size);
2219
2220 enum mf_flags {
2221 MF_COUNT_INCREASED = 1 << 0,
2222 MF_ACTION_REQUIRED = 1 << 1,
2223 MF_MUST_KILL = 1 << 2,
2224 MF_SOFT_OFFLINE = 1 << 3,
2225 };
2226 extern int memory_failure(unsigned long pfn, int trapno, int flags);
2227 extern void memory_failure_queue(unsigned long pfn, int trapno, int flags);
2228 extern int unpoison_memory(unsigned long pfn);
2229 extern int get_hwpoison_page(struct page *page);
2230 #define put_hwpoison_page(page) put_page(page)
2231 extern int sysctl_memory_failure_early_kill;
2232 extern int sysctl_memory_failure_recovery;
2233 extern void shake_page(struct page *p, int access);
2234 extern atomic_long_t num_poisoned_pages;
2235 extern int soft_offline_page(struct page *page, int flags);
2236
2237
2238 /*
2239 * Error handlers for various types of pages.
2240 */
2241 enum mf_result {
2242 MF_IGNORED, /* Error: cannot be handled */
2243 MF_FAILED, /* Error: handling failed */
2244 MF_DELAYED, /* Will be handled later */
2245 MF_RECOVERED, /* Successfully recovered */
2246 };
2247
2248 enum mf_action_page_type {
2249 MF_MSG_KERNEL,
2250 MF_MSG_KERNEL_HIGH_ORDER,
2251 MF_MSG_SLAB,
2252 MF_MSG_DIFFERENT_COMPOUND,
2253 MF_MSG_POISONED_HUGE,
2254 MF_MSG_HUGE,
2255 MF_MSG_FREE_HUGE,
2256 MF_MSG_UNMAP_FAILED,
2257 MF_MSG_DIRTY_SWAPCACHE,
2258 MF_MSG_CLEAN_SWAPCACHE,
2259 MF_MSG_DIRTY_MLOCKED_LRU,
2260 MF_MSG_CLEAN_MLOCKED_LRU,
2261 MF_MSG_DIRTY_UNEVICTABLE_LRU,
2262 MF_MSG_CLEAN_UNEVICTABLE_LRU,
2263 MF_MSG_DIRTY_LRU,
2264 MF_MSG_CLEAN_LRU,
2265 MF_MSG_TRUNCATED_LRU,
2266 MF_MSG_BUDDY,
2267 MF_MSG_BUDDY_2ND,
2268 MF_MSG_UNKNOWN,
2269 };
2270
2271 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
2272 extern void clear_huge_page(struct page *page,
2273 unsigned long addr,
2274 unsigned int pages_per_huge_page);
2275 extern void copy_user_huge_page(struct page *dst, struct page *src,
2276 unsigned long addr, struct vm_area_struct *vma,
2277 unsigned int pages_per_huge_page);
2278 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
2279
2280 extern struct page_ext_operations debug_guardpage_ops;
2281 extern struct page_ext_operations page_poisoning_ops;
2282
2283 #ifdef CONFIG_DEBUG_PAGEALLOC
2284 extern unsigned int _debug_guardpage_minorder;
2285 extern bool _debug_guardpage_enabled;
2286
2287 static inline unsigned int debug_guardpage_minorder(void)
2288 {
2289 return _debug_guardpage_minorder;
2290 }
2291
2292 static inline bool debug_guardpage_enabled(void)
2293 {
2294 return _debug_guardpage_enabled;
2295 }
2296
2297 static inline bool page_is_guard(struct page *page)
2298 {
2299 struct page_ext *page_ext;
2300
2301 if (!debug_guardpage_enabled())
2302 return false;
2303
2304 page_ext = lookup_page_ext(page);
2305 return test_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
2306 }
2307 #else
2308 static inline unsigned int debug_guardpage_minorder(void) { return 0; }
2309 static inline bool debug_guardpage_enabled(void) { return false; }
2310 static inline bool page_is_guard(struct page *page) { return false; }
2311 #endif /* CONFIG_DEBUG_PAGEALLOC */
2312
2313 #if MAX_NUMNODES > 1
2314 void __init setup_nr_node_ids(void);
2315 #else
2316 static inline void setup_nr_node_ids(void) {}
2317 #endif
2318
2319 #endif /* __KERNEL__ */
2320 #endif /* _LINUX_MM_H */
This page took 0.086685 seconds and 6 git commands to generate.