mm: drop vm_ops->remap_pages and generic_file_remap_pages() stub
[deliverable/linux.git] / include / linux / mm.h
1 #ifndef _LINUX_MM_H
2 #define _LINUX_MM_H
3
4 #include <linux/errno.h>
5
6 #ifdef __KERNEL__
7
8 #include <linux/mmdebug.h>
9 #include <linux/gfp.h>
10 #include <linux/bug.h>
11 #include <linux/list.h>
12 #include <linux/mmzone.h>
13 #include <linux/rbtree.h>
14 #include <linux/atomic.h>
15 #include <linux/debug_locks.h>
16 #include <linux/mm_types.h>
17 #include <linux/range.h>
18 #include <linux/pfn.h>
19 #include <linux/bit_spinlock.h>
20 #include <linux/shrinker.h>
21 #include <linux/resource.h>
22 #include <linux/page_ext.h>
23
24 struct mempolicy;
25 struct anon_vma;
26 struct anon_vma_chain;
27 struct file_ra_state;
28 struct user_struct;
29 struct writeback_control;
30
31 #ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */
32 extern unsigned long max_mapnr;
33
34 static inline void set_max_mapnr(unsigned long limit)
35 {
36 max_mapnr = limit;
37 }
38 #else
39 static inline void set_max_mapnr(unsigned long limit) { }
40 #endif
41
42 extern unsigned long totalram_pages;
43 extern void * high_memory;
44 extern int page_cluster;
45
46 #ifdef CONFIG_SYSCTL
47 extern int sysctl_legacy_va_layout;
48 #else
49 #define sysctl_legacy_va_layout 0
50 #endif
51
52 #include <asm/page.h>
53 #include <asm/pgtable.h>
54 #include <asm/processor.h>
55
56 #ifndef __pa_symbol
57 #define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0))
58 #endif
59
60 /*
61 * To prevent common memory management code establishing
62 * a zero page mapping on a read fault.
63 * This macro should be defined within <asm/pgtable.h>.
64 * s390 does this to prevent multiplexing of hardware bits
65 * related to the physical page in case of virtualization.
66 */
67 #ifndef mm_forbids_zeropage
68 #define mm_forbids_zeropage(X) (0)
69 #endif
70
71 extern unsigned long sysctl_user_reserve_kbytes;
72 extern unsigned long sysctl_admin_reserve_kbytes;
73
74 extern int sysctl_overcommit_memory;
75 extern int sysctl_overcommit_ratio;
76 extern unsigned long sysctl_overcommit_kbytes;
77
78 extern int overcommit_ratio_handler(struct ctl_table *, int, void __user *,
79 size_t *, loff_t *);
80 extern int overcommit_kbytes_handler(struct ctl_table *, int, void __user *,
81 size_t *, loff_t *);
82
83 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
84
85 /* to align the pointer to the (next) page boundary */
86 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
87
88 /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
89 #define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)addr, PAGE_SIZE)
90
91 /*
92 * Linux kernel virtual memory manager primitives.
93 * The idea being to have a "virtual" mm in the same way
94 * we have a virtual fs - giving a cleaner interface to the
95 * mm details, and allowing different kinds of memory mappings
96 * (from shared memory to executable loading to arbitrary
97 * mmap() functions).
98 */
99
100 extern struct kmem_cache *vm_area_cachep;
101
102 #ifndef CONFIG_MMU
103 extern struct rb_root nommu_region_tree;
104 extern struct rw_semaphore nommu_region_sem;
105
106 extern unsigned int kobjsize(const void *objp);
107 #endif
108
109 /*
110 * vm_flags in vm_area_struct, see mm_types.h.
111 */
112 #define VM_NONE 0x00000000
113
114 #define VM_READ 0x00000001 /* currently active flags */
115 #define VM_WRITE 0x00000002
116 #define VM_EXEC 0x00000004
117 #define VM_SHARED 0x00000008
118
119 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
120 #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
121 #define VM_MAYWRITE 0x00000020
122 #define VM_MAYEXEC 0x00000040
123 #define VM_MAYSHARE 0x00000080
124
125 #define VM_GROWSDOWN 0x00000100 /* general info on the segment */
126 #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
127 #define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
128
129 #define VM_LOCKED 0x00002000
130 #define VM_IO 0x00004000 /* Memory mapped I/O or similar */
131
132 /* Used by sys_madvise() */
133 #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
134 #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
135
136 #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
137 #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
138 #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
139 #define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
140 #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
141 #define VM_NONLINEAR 0x00800000 /* Is non-linear (remap_file_pages) */
142 #define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
143 #define VM_ARCH_2 0x02000000
144 #define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
145
146 #ifdef CONFIG_MEM_SOFT_DIRTY
147 # define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */
148 #else
149 # define VM_SOFTDIRTY 0
150 #endif
151
152 #define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
153 #define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
154 #define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
155 #define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
156
157 #if defined(CONFIG_X86)
158 # define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
159 #elif defined(CONFIG_PPC)
160 # define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
161 #elif defined(CONFIG_PARISC)
162 # define VM_GROWSUP VM_ARCH_1
163 #elif defined(CONFIG_METAG)
164 # define VM_GROWSUP VM_ARCH_1
165 #elif defined(CONFIG_IA64)
166 # define VM_GROWSUP VM_ARCH_1
167 #elif !defined(CONFIG_MMU)
168 # define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
169 #endif
170
171 #if defined(CONFIG_X86)
172 /* MPX specific bounds table or bounds directory */
173 # define VM_MPX VM_ARCH_2
174 #endif
175
176 #ifndef VM_GROWSUP
177 # define VM_GROWSUP VM_NONE
178 #endif
179
180 /* Bits set in the VMA until the stack is in its final location */
181 #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
182
183 #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
184 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
185 #endif
186
187 #ifdef CONFIG_STACK_GROWSUP
188 #define VM_STACK_FLAGS (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
189 #else
190 #define VM_STACK_FLAGS (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
191 #endif
192
193 /*
194 * Special vmas that are non-mergable, non-mlock()able.
195 * Note: mm/huge_memory.c VM_NO_THP depends on this definition.
196 */
197 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
198
199 /* This mask defines which mm->def_flags a process can inherit its parent */
200 #define VM_INIT_DEF_MASK VM_NOHUGEPAGE
201
202 /*
203 * mapping from the currently active vm_flags protection bits (the
204 * low four bits) to a page protection mask..
205 */
206 extern pgprot_t protection_map[16];
207
208 #define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */
209 #define FAULT_FLAG_MKWRITE 0x02 /* Fault was mkwrite of existing pte */
210 #define FAULT_FLAG_ALLOW_RETRY 0x04 /* Retry fault if blocking */
211 #define FAULT_FLAG_RETRY_NOWAIT 0x08 /* Don't drop mmap_sem and wait when retrying */
212 #define FAULT_FLAG_KILLABLE 0x10 /* The fault task is in SIGKILL killable region */
213 #define FAULT_FLAG_TRIED 0x20 /* Second try */
214 #define FAULT_FLAG_USER 0x40 /* The fault originated in userspace */
215
216 /*
217 * vm_fault is filled by the the pagefault handler and passed to the vma's
218 * ->fault function. The vma's ->fault is responsible for returning a bitmask
219 * of VM_FAULT_xxx flags that give details about how the fault was handled.
220 *
221 * pgoff should be used in favour of virtual_address, if possible.
222 */
223 struct vm_fault {
224 unsigned int flags; /* FAULT_FLAG_xxx flags */
225 pgoff_t pgoff; /* Logical page offset based on vma */
226 void __user *virtual_address; /* Faulting virtual address */
227
228 struct page *page; /* ->fault handlers should return a
229 * page here, unless VM_FAULT_NOPAGE
230 * is set (which is also implied by
231 * VM_FAULT_ERROR).
232 */
233 /* for ->map_pages() only */
234 pgoff_t max_pgoff; /* map pages for offset from pgoff till
235 * max_pgoff inclusive */
236 pte_t *pte; /* pte entry associated with ->pgoff */
237 };
238
239 /*
240 * These are the virtual MM functions - opening of an area, closing and
241 * unmapping it (needed to keep files on disk up-to-date etc), pointer
242 * to the functions called when a no-page or a wp-page exception occurs.
243 */
244 struct vm_operations_struct {
245 void (*open)(struct vm_area_struct * area);
246 void (*close)(struct vm_area_struct * area);
247 int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf);
248 void (*map_pages)(struct vm_area_struct *vma, struct vm_fault *vmf);
249
250 /* notification that a previously read-only page is about to become
251 * writable, if an error is returned it will cause a SIGBUS */
252 int (*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
253
254 /* called by access_process_vm when get_user_pages() fails, typically
255 * for use by special VMAs that can switch between memory and hardware
256 */
257 int (*access)(struct vm_area_struct *vma, unsigned long addr,
258 void *buf, int len, int write);
259
260 /* Called by the /proc/PID/maps code to ask the vma whether it
261 * has a special name. Returning non-NULL will also cause this
262 * vma to be dumped unconditionally. */
263 const char *(*name)(struct vm_area_struct *vma);
264
265 #ifdef CONFIG_NUMA
266 /*
267 * set_policy() op must add a reference to any non-NULL @new mempolicy
268 * to hold the policy upon return. Caller should pass NULL @new to
269 * remove a policy and fall back to surrounding context--i.e. do not
270 * install a MPOL_DEFAULT policy, nor the task or system default
271 * mempolicy.
272 */
273 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
274
275 /*
276 * get_policy() op must add reference [mpol_get()] to any policy at
277 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
278 * in mm/mempolicy.c will do this automatically.
279 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
280 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
281 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
282 * must return NULL--i.e., do not "fallback" to task or system default
283 * policy.
284 */
285 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
286 unsigned long addr);
287 #endif
288 };
289
290 struct mmu_gather;
291 struct inode;
292
293 #define page_private(page) ((page)->private)
294 #define set_page_private(page, v) ((page)->private = (v))
295
296 /* It's valid only if the page is free path or free_list */
297 static inline void set_freepage_migratetype(struct page *page, int migratetype)
298 {
299 page->index = migratetype;
300 }
301
302 /* It's valid only if the page is free path or free_list */
303 static inline int get_freepage_migratetype(struct page *page)
304 {
305 return page->index;
306 }
307
308 /*
309 * FIXME: take this include out, include page-flags.h in
310 * files which need it (119 of them)
311 */
312 #include <linux/page-flags.h>
313 #include <linux/huge_mm.h>
314
315 /*
316 * Methods to modify the page usage count.
317 *
318 * What counts for a page usage:
319 * - cache mapping (page->mapping)
320 * - private data (page->private)
321 * - page mapped in a task's page tables, each mapping
322 * is counted separately
323 *
324 * Also, many kernel routines increase the page count before a critical
325 * routine so they can be sure the page doesn't go away from under them.
326 */
327
328 /*
329 * Drop a ref, return true if the refcount fell to zero (the page has no users)
330 */
331 static inline int put_page_testzero(struct page *page)
332 {
333 VM_BUG_ON_PAGE(atomic_read(&page->_count) == 0, page);
334 return atomic_dec_and_test(&page->_count);
335 }
336
337 /*
338 * Try to grab a ref unless the page has a refcount of zero, return false if
339 * that is the case.
340 * This can be called when MMU is off so it must not access
341 * any of the virtual mappings.
342 */
343 static inline int get_page_unless_zero(struct page *page)
344 {
345 return atomic_inc_not_zero(&page->_count);
346 }
347
348 /*
349 * Try to drop a ref unless the page has a refcount of one, return false if
350 * that is the case.
351 * This is to make sure that the refcount won't become zero after this drop.
352 * This can be called when MMU is off so it must not access
353 * any of the virtual mappings.
354 */
355 static inline int put_page_unless_one(struct page *page)
356 {
357 return atomic_add_unless(&page->_count, -1, 1);
358 }
359
360 extern int page_is_ram(unsigned long pfn);
361 extern int region_is_ram(resource_size_t phys_addr, unsigned long size);
362
363 /* Support for virtually mapped pages */
364 struct page *vmalloc_to_page(const void *addr);
365 unsigned long vmalloc_to_pfn(const void *addr);
366
367 /*
368 * Determine if an address is within the vmalloc range
369 *
370 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
371 * is no special casing required.
372 */
373 static inline int is_vmalloc_addr(const void *x)
374 {
375 #ifdef CONFIG_MMU
376 unsigned long addr = (unsigned long)x;
377
378 return addr >= VMALLOC_START && addr < VMALLOC_END;
379 #else
380 return 0;
381 #endif
382 }
383 #ifdef CONFIG_MMU
384 extern int is_vmalloc_or_module_addr(const void *x);
385 #else
386 static inline int is_vmalloc_or_module_addr(const void *x)
387 {
388 return 0;
389 }
390 #endif
391
392 extern void kvfree(const void *addr);
393
394 static inline void compound_lock(struct page *page)
395 {
396 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
397 VM_BUG_ON_PAGE(PageSlab(page), page);
398 bit_spin_lock(PG_compound_lock, &page->flags);
399 #endif
400 }
401
402 static inline void compound_unlock(struct page *page)
403 {
404 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
405 VM_BUG_ON_PAGE(PageSlab(page), page);
406 bit_spin_unlock(PG_compound_lock, &page->flags);
407 #endif
408 }
409
410 static inline unsigned long compound_lock_irqsave(struct page *page)
411 {
412 unsigned long uninitialized_var(flags);
413 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
414 local_irq_save(flags);
415 compound_lock(page);
416 #endif
417 return flags;
418 }
419
420 static inline void compound_unlock_irqrestore(struct page *page,
421 unsigned long flags)
422 {
423 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
424 compound_unlock(page);
425 local_irq_restore(flags);
426 #endif
427 }
428
429 static inline struct page *compound_head_by_tail(struct page *tail)
430 {
431 struct page *head = tail->first_page;
432
433 /*
434 * page->first_page may be a dangling pointer to an old
435 * compound page, so recheck that it is still a tail
436 * page before returning.
437 */
438 smp_rmb();
439 if (likely(PageTail(tail)))
440 return head;
441 return tail;
442 }
443
444 /*
445 * Since either compound page could be dismantled asynchronously in THP
446 * or we access asynchronously arbitrary positioned struct page, there
447 * would be tail flag race. To handle this race, we should call
448 * smp_rmb() before checking tail flag. compound_head_by_tail() did it.
449 */
450 static inline struct page *compound_head(struct page *page)
451 {
452 if (unlikely(PageTail(page)))
453 return compound_head_by_tail(page);
454 return page;
455 }
456
457 /*
458 * If we access compound page synchronously such as access to
459 * allocated page, there is no need to handle tail flag race, so we can
460 * check tail flag directly without any synchronization primitive.
461 */
462 static inline struct page *compound_head_fast(struct page *page)
463 {
464 if (unlikely(PageTail(page)))
465 return page->first_page;
466 return page;
467 }
468
469 /*
470 * The atomic page->_mapcount, starts from -1: so that transitions
471 * both from it and to it can be tracked, using atomic_inc_and_test
472 * and atomic_add_negative(-1).
473 */
474 static inline void page_mapcount_reset(struct page *page)
475 {
476 atomic_set(&(page)->_mapcount, -1);
477 }
478
479 static inline int page_mapcount(struct page *page)
480 {
481 return atomic_read(&(page)->_mapcount) + 1;
482 }
483
484 static inline int page_count(struct page *page)
485 {
486 return atomic_read(&compound_head(page)->_count);
487 }
488
489 #ifdef CONFIG_HUGETLB_PAGE
490 extern int PageHeadHuge(struct page *page_head);
491 #else /* CONFIG_HUGETLB_PAGE */
492 static inline int PageHeadHuge(struct page *page_head)
493 {
494 return 0;
495 }
496 #endif /* CONFIG_HUGETLB_PAGE */
497
498 static inline bool __compound_tail_refcounted(struct page *page)
499 {
500 return !PageSlab(page) && !PageHeadHuge(page);
501 }
502
503 /*
504 * This takes a head page as parameter and tells if the
505 * tail page reference counting can be skipped.
506 *
507 * For this to be safe, PageSlab and PageHeadHuge must remain true on
508 * any given page where they return true here, until all tail pins
509 * have been released.
510 */
511 static inline bool compound_tail_refcounted(struct page *page)
512 {
513 VM_BUG_ON_PAGE(!PageHead(page), page);
514 return __compound_tail_refcounted(page);
515 }
516
517 static inline void get_huge_page_tail(struct page *page)
518 {
519 /*
520 * __split_huge_page_refcount() cannot run from under us.
521 */
522 VM_BUG_ON_PAGE(!PageTail(page), page);
523 VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
524 VM_BUG_ON_PAGE(atomic_read(&page->_count) != 0, page);
525 if (compound_tail_refcounted(page->first_page))
526 atomic_inc(&page->_mapcount);
527 }
528
529 extern bool __get_page_tail(struct page *page);
530
531 static inline void get_page(struct page *page)
532 {
533 if (unlikely(PageTail(page)))
534 if (likely(__get_page_tail(page)))
535 return;
536 /*
537 * Getting a normal page or the head of a compound page
538 * requires to already have an elevated page->_count.
539 */
540 VM_BUG_ON_PAGE(atomic_read(&page->_count) <= 0, page);
541 atomic_inc(&page->_count);
542 }
543
544 static inline struct page *virt_to_head_page(const void *x)
545 {
546 struct page *page = virt_to_page(x);
547
548 /*
549 * We don't need to worry about synchronization of tail flag
550 * when we call virt_to_head_page() since it is only called for
551 * already allocated page and this page won't be freed until
552 * this virt_to_head_page() is finished. So use _fast variant.
553 */
554 return compound_head_fast(page);
555 }
556
557 /*
558 * Setup the page count before being freed into the page allocator for
559 * the first time (boot or memory hotplug)
560 */
561 static inline void init_page_count(struct page *page)
562 {
563 atomic_set(&page->_count, 1);
564 }
565
566 /*
567 * PageBuddy() indicate that the page is free and in the buddy system
568 * (see mm/page_alloc.c).
569 *
570 * PAGE_BUDDY_MAPCOUNT_VALUE must be <= -2 but better not too close to
571 * -2 so that an underflow of the page_mapcount() won't be mistaken
572 * for a genuine PAGE_BUDDY_MAPCOUNT_VALUE. -128 can be created very
573 * efficiently by most CPU architectures.
574 */
575 #define PAGE_BUDDY_MAPCOUNT_VALUE (-128)
576
577 static inline int PageBuddy(struct page *page)
578 {
579 return atomic_read(&page->_mapcount) == PAGE_BUDDY_MAPCOUNT_VALUE;
580 }
581
582 static inline void __SetPageBuddy(struct page *page)
583 {
584 VM_BUG_ON_PAGE(atomic_read(&page->_mapcount) != -1, page);
585 atomic_set(&page->_mapcount, PAGE_BUDDY_MAPCOUNT_VALUE);
586 }
587
588 static inline void __ClearPageBuddy(struct page *page)
589 {
590 VM_BUG_ON_PAGE(!PageBuddy(page), page);
591 atomic_set(&page->_mapcount, -1);
592 }
593
594 #define PAGE_BALLOON_MAPCOUNT_VALUE (-256)
595
596 static inline int PageBalloon(struct page *page)
597 {
598 return atomic_read(&page->_mapcount) == PAGE_BALLOON_MAPCOUNT_VALUE;
599 }
600
601 static inline void __SetPageBalloon(struct page *page)
602 {
603 VM_BUG_ON_PAGE(atomic_read(&page->_mapcount) != -1, page);
604 atomic_set(&page->_mapcount, PAGE_BALLOON_MAPCOUNT_VALUE);
605 }
606
607 static inline void __ClearPageBalloon(struct page *page)
608 {
609 VM_BUG_ON_PAGE(!PageBalloon(page), page);
610 atomic_set(&page->_mapcount, -1);
611 }
612
613 void put_page(struct page *page);
614 void put_pages_list(struct list_head *pages);
615
616 void split_page(struct page *page, unsigned int order);
617 int split_free_page(struct page *page);
618
619 /*
620 * Compound pages have a destructor function. Provide a
621 * prototype for that function and accessor functions.
622 * These are _only_ valid on the head of a PG_compound page.
623 */
624 typedef void compound_page_dtor(struct page *);
625
626 static inline void set_compound_page_dtor(struct page *page,
627 compound_page_dtor *dtor)
628 {
629 page[1].lru.next = (void *)dtor;
630 }
631
632 static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
633 {
634 return (compound_page_dtor *)page[1].lru.next;
635 }
636
637 static inline int compound_order(struct page *page)
638 {
639 if (!PageHead(page))
640 return 0;
641 return (unsigned long)page[1].lru.prev;
642 }
643
644 static inline void set_compound_order(struct page *page, unsigned long order)
645 {
646 page[1].lru.prev = (void *)order;
647 }
648
649 #ifdef CONFIG_MMU
650 /*
651 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
652 * servicing faults for write access. In the normal case, do always want
653 * pte_mkwrite. But get_user_pages can cause write faults for mappings
654 * that do not have writing enabled, when used by access_process_vm.
655 */
656 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
657 {
658 if (likely(vma->vm_flags & VM_WRITE))
659 pte = pte_mkwrite(pte);
660 return pte;
661 }
662
663 void do_set_pte(struct vm_area_struct *vma, unsigned long address,
664 struct page *page, pte_t *pte, bool write, bool anon);
665 #endif
666
667 /*
668 * Multiple processes may "see" the same page. E.g. for untouched
669 * mappings of /dev/null, all processes see the same page full of
670 * zeroes, and text pages of executables and shared libraries have
671 * only one copy in memory, at most, normally.
672 *
673 * For the non-reserved pages, page_count(page) denotes a reference count.
674 * page_count() == 0 means the page is free. page->lru is then used for
675 * freelist management in the buddy allocator.
676 * page_count() > 0 means the page has been allocated.
677 *
678 * Pages are allocated by the slab allocator in order to provide memory
679 * to kmalloc and kmem_cache_alloc. In this case, the management of the
680 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
681 * unless a particular usage is carefully commented. (the responsibility of
682 * freeing the kmalloc memory is the caller's, of course).
683 *
684 * A page may be used by anyone else who does a __get_free_page().
685 * In this case, page_count still tracks the references, and should only
686 * be used through the normal accessor functions. The top bits of page->flags
687 * and page->virtual store page management information, but all other fields
688 * are unused and could be used privately, carefully. The management of this
689 * page is the responsibility of the one who allocated it, and those who have
690 * subsequently been given references to it.
691 *
692 * The other pages (we may call them "pagecache pages") are completely
693 * managed by the Linux memory manager: I/O, buffers, swapping etc.
694 * The following discussion applies only to them.
695 *
696 * A pagecache page contains an opaque `private' member, which belongs to the
697 * page's address_space. Usually, this is the address of a circular list of
698 * the page's disk buffers. PG_private must be set to tell the VM to call
699 * into the filesystem to release these pages.
700 *
701 * A page may belong to an inode's memory mapping. In this case, page->mapping
702 * is the pointer to the inode, and page->index is the file offset of the page,
703 * in units of PAGE_CACHE_SIZE.
704 *
705 * If pagecache pages are not associated with an inode, they are said to be
706 * anonymous pages. These may become associated with the swapcache, and in that
707 * case PG_swapcache is set, and page->private is an offset into the swapcache.
708 *
709 * In either case (swapcache or inode backed), the pagecache itself holds one
710 * reference to the page. Setting PG_private should also increment the
711 * refcount. The each user mapping also has a reference to the page.
712 *
713 * The pagecache pages are stored in a per-mapping radix tree, which is
714 * rooted at mapping->page_tree, and indexed by offset.
715 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
716 * lists, we instead now tag pages as dirty/writeback in the radix tree.
717 *
718 * All pagecache pages may be subject to I/O:
719 * - inode pages may need to be read from disk,
720 * - inode pages which have been modified and are MAP_SHARED may need
721 * to be written back to the inode on disk,
722 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
723 * modified may need to be swapped out to swap space and (later) to be read
724 * back into memory.
725 */
726
727 /*
728 * The zone field is never updated after free_area_init_core()
729 * sets it, so none of the operations on it need to be atomic.
730 */
731
732 /* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
733 #define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
734 #define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
735 #define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
736 #define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH)
737
738 /*
739 * Define the bit shifts to access each section. For non-existent
740 * sections we define the shift as 0; that plus a 0 mask ensures
741 * the compiler will optimise away reference to them.
742 */
743 #define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
744 #define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
745 #define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
746 #define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
747
748 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
749 #ifdef NODE_NOT_IN_PAGE_FLAGS
750 #define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
751 #define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
752 SECTIONS_PGOFF : ZONES_PGOFF)
753 #else
754 #define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
755 #define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
756 NODES_PGOFF : ZONES_PGOFF)
757 #endif
758
759 #define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
760
761 #if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
762 #error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
763 #endif
764
765 #define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
766 #define NODES_MASK ((1UL << NODES_WIDTH) - 1)
767 #define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
768 #define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1)
769 #define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
770
771 static inline enum zone_type page_zonenum(const struct page *page)
772 {
773 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
774 }
775
776 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
777 #define SECTION_IN_PAGE_FLAGS
778 #endif
779
780 /*
781 * The identification function is mainly used by the buddy allocator for
782 * determining if two pages could be buddies. We are not really identifying
783 * the zone since we could be using the section number id if we do not have
784 * node id available in page flags.
785 * We only guarantee that it will return the same value for two combinable
786 * pages in a zone.
787 */
788 static inline int page_zone_id(struct page *page)
789 {
790 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
791 }
792
793 static inline int zone_to_nid(struct zone *zone)
794 {
795 #ifdef CONFIG_NUMA
796 return zone->node;
797 #else
798 return 0;
799 #endif
800 }
801
802 #ifdef NODE_NOT_IN_PAGE_FLAGS
803 extern int page_to_nid(const struct page *page);
804 #else
805 static inline int page_to_nid(const struct page *page)
806 {
807 return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
808 }
809 #endif
810
811 #ifdef CONFIG_NUMA_BALANCING
812 static inline int cpu_pid_to_cpupid(int cpu, int pid)
813 {
814 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
815 }
816
817 static inline int cpupid_to_pid(int cpupid)
818 {
819 return cpupid & LAST__PID_MASK;
820 }
821
822 static inline int cpupid_to_cpu(int cpupid)
823 {
824 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
825 }
826
827 static inline int cpupid_to_nid(int cpupid)
828 {
829 return cpu_to_node(cpupid_to_cpu(cpupid));
830 }
831
832 static inline bool cpupid_pid_unset(int cpupid)
833 {
834 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
835 }
836
837 static inline bool cpupid_cpu_unset(int cpupid)
838 {
839 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
840 }
841
842 static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
843 {
844 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
845 }
846
847 #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
848 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
849 static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
850 {
851 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
852 }
853
854 static inline int page_cpupid_last(struct page *page)
855 {
856 return page->_last_cpupid;
857 }
858 static inline void page_cpupid_reset_last(struct page *page)
859 {
860 page->_last_cpupid = -1 & LAST_CPUPID_MASK;
861 }
862 #else
863 static inline int page_cpupid_last(struct page *page)
864 {
865 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
866 }
867
868 extern int page_cpupid_xchg_last(struct page *page, int cpupid);
869
870 static inline void page_cpupid_reset_last(struct page *page)
871 {
872 int cpupid = (1 << LAST_CPUPID_SHIFT) - 1;
873
874 page->flags &= ~(LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT);
875 page->flags |= (cpupid & LAST_CPUPID_MASK) << LAST_CPUPID_PGSHIFT;
876 }
877 #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
878 #else /* !CONFIG_NUMA_BALANCING */
879 static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
880 {
881 return page_to_nid(page); /* XXX */
882 }
883
884 static inline int page_cpupid_last(struct page *page)
885 {
886 return page_to_nid(page); /* XXX */
887 }
888
889 static inline int cpupid_to_nid(int cpupid)
890 {
891 return -1;
892 }
893
894 static inline int cpupid_to_pid(int cpupid)
895 {
896 return -1;
897 }
898
899 static inline int cpupid_to_cpu(int cpupid)
900 {
901 return -1;
902 }
903
904 static inline int cpu_pid_to_cpupid(int nid, int pid)
905 {
906 return -1;
907 }
908
909 static inline bool cpupid_pid_unset(int cpupid)
910 {
911 return 1;
912 }
913
914 static inline void page_cpupid_reset_last(struct page *page)
915 {
916 }
917
918 static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
919 {
920 return false;
921 }
922 #endif /* CONFIG_NUMA_BALANCING */
923
924 static inline struct zone *page_zone(const struct page *page)
925 {
926 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
927 }
928
929 #ifdef SECTION_IN_PAGE_FLAGS
930 static inline void set_page_section(struct page *page, unsigned long section)
931 {
932 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
933 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
934 }
935
936 static inline unsigned long page_to_section(const struct page *page)
937 {
938 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
939 }
940 #endif
941
942 static inline void set_page_zone(struct page *page, enum zone_type zone)
943 {
944 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
945 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
946 }
947
948 static inline void set_page_node(struct page *page, unsigned long node)
949 {
950 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
951 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
952 }
953
954 static inline void set_page_links(struct page *page, enum zone_type zone,
955 unsigned long node, unsigned long pfn)
956 {
957 set_page_zone(page, zone);
958 set_page_node(page, node);
959 #ifdef SECTION_IN_PAGE_FLAGS
960 set_page_section(page, pfn_to_section_nr(pfn));
961 #endif
962 }
963
964 /*
965 * Some inline functions in vmstat.h depend on page_zone()
966 */
967 #include <linux/vmstat.h>
968
969 static __always_inline void *lowmem_page_address(const struct page *page)
970 {
971 return __va(PFN_PHYS(page_to_pfn(page)));
972 }
973
974 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
975 #define HASHED_PAGE_VIRTUAL
976 #endif
977
978 #if defined(WANT_PAGE_VIRTUAL)
979 static inline void *page_address(const struct page *page)
980 {
981 return page->virtual;
982 }
983 static inline void set_page_address(struct page *page, void *address)
984 {
985 page->virtual = address;
986 }
987 #define page_address_init() do { } while(0)
988 #endif
989
990 #if defined(HASHED_PAGE_VIRTUAL)
991 void *page_address(const struct page *page);
992 void set_page_address(struct page *page, void *virtual);
993 void page_address_init(void);
994 #endif
995
996 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
997 #define page_address(page) lowmem_page_address(page)
998 #define set_page_address(page, address) do { } while(0)
999 #define page_address_init() do { } while(0)
1000 #endif
1001
1002 /*
1003 * On an anonymous page mapped into a user virtual memory area,
1004 * page->mapping points to its anon_vma, not to a struct address_space;
1005 * with the PAGE_MAPPING_ANON bit set to distinguish it. See rmap.h.
1006 *
1007 * On an anonymous page in a VM_MERGEABLE area, if CONFIG_KSM is enabled,
1008 * the PAGE_MAPPING_KSM bit may be set along with the PAGE_MAPPING_ANON bit;
1009 * and then page->mapping points, not to an anon_vma, but to a private
1010 * structure which KSM associates with that merged page. See ksm.h.
1011 *
1012 * PAGE_MAPPING_KSM without PAGE_MAPPING_ANON is currently never used.
1013 *
1014 * Please note that, confusingly, "page_mapping" refers to the inode
1015 * address_space which maps the page from disk; whereas "page_mapped"
1016 * refers to user virtual address space into which the page is mapped.
1017 */
1018 #define PAGE_MAPPING_ANON 1
1019 #define PAGE_MAPPING_KSM 2
1020 #define PAGE_MAPPING_FLAGS (PAGE_MAPPING_ANON | PAGE_MAPPING_KSM)
1021
1022 extern struct address_space *page_mapping(struct page *page);
1023
1024 /* Neutral page->mapping pointer to address_space or anon_vma or other */
1025 static inline void *page_rmapping(struct page *page)
1026 {
1027 return (void *)((unsigned long)page->mapping & ~PAGE_MAPPING_FLAGS);
1028 }
1029
1030 extern struct address_space *__page_file_mapping(struct page *);
1031
1032 static inline
1033 struct address_space *page_file_mapping(struct page *page)
1034 {
1035 if (unlikely(PageSwapCache(page)))
1036 return __page_file_mapping(page);
1037
1038 return page->mapping;
1039 }
1040
1041 static inline int PageAnon(struct page *page)
1042 {
1043 return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0;
1044 }
1045
1046 /*
1047 * Return the pagecache index of the passed page. Regular pagecache pages
1048 * use ->index whereas swapcache pages use ->private
1049 */
1050 static inline pgoff_t page_index(struct page *page)
1051 {
1052 if (unlikely(PageSwapCache(page)))
1053 return page_private(page);
1054 return page->index;
1055 }
1056
1057 extern pgoff_t __page_file_index(struct page *page);
1058
1059 /*
1060 * Return the file index of the page. Regular pagecache pages use ->index
1061 * whereas swapcache pages use swp_offset(->private)
1062 */
1063 static inline pgoff_t page_file_index(struct page *page)
1064 {
1065 if (unlikely(PageSwapCache(page)))
1066 return __page_file_index(page);
1067
1068 return page->index;
1069 }
1070
1071 /*
1072 * Return true if this page is mapped into pagetables.
1073 */
1074 static inline int page_mapped(struct page *page)
1075 {
1076 return atomic_read(&(page)->_mapcount) >= 0;
1077 }
1078
1079 /*
1080 * Different kinds of faults, as returned by handle_mm_fault().
1081 * Used to decide whether a process gets delivered SIGBUS or
1082 * just gets major/minor fault counters bumped up.
1083 */
1084
1085 #define VM_FAULT_MINOR 0 /* For backwards compat. Remove me quickly. */
1086
1087 #define VM_FAULT_OOM 0x0001
1088 #define VM_FAULT_SIGBUS 0x0002
1089 #define VM_FAULT_MAJOR 0x0004
1090 #define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */
1091 #define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */
1092 #define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */
1093 #define VM_FAULT_SIGSEGV 0x0040
1094
1095 #define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */
1096 #define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */
1097 #define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */
1098 #define VM_FAULT_FALLBACK 0x0800 /* huge page fault failed, fall back to small */
1099
1100 #define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */
1101
1102 #define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | \
1103 VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE | \
1104 VM_FAULT_FALLBACK)
1105
1106 /* Encode hstate index for a hwpoisoned large page */
1107 #define VM_FAULT_SET_HINDEX(x) ((x) << 12)
1108 #define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf)
1109
1110 /*
1111 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
1112 */
1113 extern void pagefault_out_of_memory(void);
1114
1115 #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
1116
1117 /*
1118 * Flags passed to show_mem() and show_free_areas() to suppress output in
1119 * various contexts.
1120 */
1121 #define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */
1122
1123 extern void show_free_areas(unsigned int flags);
1124 extern bool skip_free_areas_node(unsigned int flags, int nid);
1125
1126 int shmem_zero_setup(struct vm_area_struct *);
1127 #ifdef CONFIG_SHMEM
1128 bool shmem_mapping(struct address_space *mapping);
1129 #else
1130 static inline bool shmem_mapping(struct address_space *mapping)
1131 {
1132 return false;
1133 }
1134 #endif
1135
1136 extern int can_do_mlock(void);
1137 extern int user_shm_lock(size_t, struct user_struct *);
1138 extern void user_shm_unlock(size_t, struct user_struct *);
1139
1140 /*
1141 * Parameter block passed down to zap_pte_range in exceptional cases.
1142 */
1143 struct zap_details {
1144 struct address_space *check_mapping; /* Check page->mapping if set */
1145 pgoff_t first_index; /* Lowest page->index to unmap */
1146 pgoff_t last_index; /* Highest page->index to unmap */
1147 };
1148
1149 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
1150 pte_t pte);
1151
1152 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1153 unsigned long size);
1154 void zap_page_range(struct vm_area_struct *vma, unsigned long address,
1155 unsigned long size, struct zap_details *);
1156 void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
1157 unsigned long start, unsigned long end);
1158
1159 /**
1160 * mm_walk - callbacks for walk_page_range
1161 * @pgd_entry: if set, called for each non-empty PGD (top-level) entry
1162 * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry
1163 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
1164 * this handler is required to be able to handle
1165 * pmd_trans_huge() pmds. They may simply choose to
1166 * split_huge_page() instead of handling it explicitly.
1167 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
1168 * @pte_hole: if set, called for each hole at all levels
1169 * @hugetlb_entry: if set, called for each hugetlb entry
1170 * *Caution*: The caller must hold mmap_sem() if @hugetlb_entry
1171 * is used.
1172 *
1173 * (see walk_page_range for more details)
1174 */
1175 struct mm_walk {
1176 int (*pgd_entry)(pgd_t *pgd, unsigned long addr,
1177 unsigned long next, struct mm_walk *walk);
1178 int (*pud_entry)(pud_t *pud, unsigned long addr,
1179 unsigned long next, struct mm_walk *walk);
1180 int (*pmd_entry)(pmd_t *pmd, unsigned long addr,
1181 unsigned long next, struct mm_walk *walk);
1182 int (*pte_entry)(pte_t *pte, unsigned long addr,
1183 unsigned long next, struct mm_walk *walk);
1184 int (*pte_hole)(unsigned long addr, unsigned long next,
1185 struct mm_walk *walk);
1186 int (*hugetlb_entry)(pte_t *pte, unsigned long hmask,
1187 unsigned long addr, unsigned long next,
1188 struct mm_walk *walk);
1189 struct mm_struct *mm;
1190 void *private;
1191 };
1192
1193 int walk_page_range(unsigned long addr, unsigned long end,
1194 struct mm_walk *walk);
1195 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
1196 unsigned long end, unsigned long floor, unsigned long ceiling);
1197 int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
1198 struct vm_area_struct *vma);
1199 void unmap_mapping_range(struct address_space *mapping,
1200 loff_t const holebegin, loff_t const holelen, int even_cows);
1201 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
1202 unsigned long *pfn);
1203 int follow_phys(struct vm_area_struct *vma, unsigned long address,
1204 unsigned int flags, unsigned long *prot, resource_size_t *phys);
1205 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
1206 void *buf, int len, int write);
1207
1208 static inline void unmap_shared_mapping_range(struct address_space *mapping,
1209 loff_t const holebegin, loff_t const holelen)
1210 {
1211 unmap_mapping_range(mapping, holebegin, holelen, 0);
1212 }
1213
1214 extern void truncate_pagecache(struct inode *inode, loff_t new);
1215 extern void truncate_setsize(struct inode *inode, loff_t newsize);
1216 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
1217 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
1218 int truncate_inode_page(struct address_space *mapping, struct page *page);
1219 int generic_error_remove_page(struct address_space *mapping, struct page *page);
1220 int invalidate_inode_page(struct page *page);
1221
1222 #ifdef CONFIG_MMU
1223 extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
1224 unsigned long address, unsigned int flags);
1225 extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1226 unsigned long address, unsigned int fault_flags);
1227 #else
1228 static inline int handle_mm_fault(struct mm_struct *mm,
1229 struct vm_area_struct *vma, unsigned long address,
1230 unsigned int flags)
1231 {
1232 /* should never happen if there's no MMU */
1233 BUG();
1234 return VM_FAULT_SIGBUS;
1235 }
1236 static inline int fixup_user_fault(struct task_struct *tsk,
1237 struct mm_struct *mm, unsigned long address,
1238 unsigned int fault_flags)
1239 {
1240 /* should never happen if there's no MMU */
1241 BUG();
1242 return -EFAULT;
1243 }
1244 #endif
1245
1246 extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write);
1247 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1248 void *buf, int len, int write);
1249
1250 long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1251 unsigned long start, unsigned long nr_pages,
1252 unsigned int foll_flags, struct page **pages,
1253 struct vm_area_struct **vmas, int *nonblocking);
1254 long get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1255 unsigned long start, unsigned long nr_pages,
1256 int write, int force, struct page **pages,
1257 struct vm_area_struct **vmas);
1258 int get_user_pages_fast(unsigned long start, int nr_pages, int write,
1259 struct page **pages);
1260 struct kvec;
1261 int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1262 struct page **pages);
1263 int get_kernel_page(unsigned long start, int write, struct page **pages);
1264 struct page *get_dump_page(unsigned long addr);
1265
1266 extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
1267 extern void do_invalidatepage(struct page *page, unsigned int offset,
1268 unsigned int length);
1269
1270 int __set_page_dirty_nobuffers(struct page *page);
1271 int __set_page_dirty_no_writeback(struct page *page);
1272 int redirty_page_for_writepage(struct writeback_control *wbc,
1273 struct page *page);
1274 void account_page_dirtied(struct page *page, struct address_space *mapping);
1275 int set_page_dirty(struct page *page);
1276 int set_page_dirty_lock(struct page *page);
1277 int clear_page_dirty_for_io(struct page *page);
1278 int get_cmdline(struct task_struct *task, char *buffer, int buflen);
1279
1280 /* Is the vma a continuation of the stack vma above it? */
1281 static inline int vma_growsdown(struct vm_area_struct *vma, unsigned long addr)
1282 {
1283 return vma && (vma->vm_end == addr) && (vma->vm_flags & VM_GROWSDOWN);
1284 }
1285
1286 static inline int stack_guard_page_start(struct vm_area_struct *vma,
1287 unsigned long addr)
1288 {
1289 return (vma->vm_flags & VM_GROWSDOWN) &&
1290 (vma->vm_start == addr) &&
1291 !vma_growsdown(vma->vm_prev, addr);
1292 }
1293
1294 /* Is the vma a continuation of the stack vma below it? */
1295 static inline int vma_growsup(struct vm_area_struct *vma, unsigned long addr)
1296 {
1297 return vma && (vma->vm_start == addr) && (vma->vm_flags & VM_GROWSUP);
1298 }
1299
1300 static inline int stack_guard_page_end(struct vm_area_struct *vma,
1301 unsigned long addr)
1302 {
1303 return (vma->vm_flags & VM_GROWSUP) &&
1304 (vma->vm_end == addr) &&
1305 !vma_growsup(vma->vm_next, addr);
1306 }
1307
1308 extern struct task_struct *task_of_stack(struct task_struct *task,
1309 struct vm_area_struct *vma, bool in_group);
1310
1311 extern unsigned long move_page_tables(struct vm_area_struct *vma,
1312 unsigned long old_addr, struct vm_area_struct *new_vma,
1313 unsigned long new_addr, unsigned long len,
1314 bool need_rmap_locks);
1315 extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
1316 unsigned long end, pgprot_t newprot,
1317 int dirty_accountable, int prot_numa);
1318 extern int mprotect_fixup(struct vm_area_struct *vma,
1319 struct vm_area_struct **pprev, unsigned long start,
1320 unsigned long end, unsigned long newflags);
1321
1322 /*
1323 * doesn't attempt to fault and will return short.
1324 */
1325 int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1326 struct page **pages);
1327 /*
1328 * per-process(per-mm_struct) statistics.
1329 */
1330 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1331 {
1332 long val = atomic_long_read(&mm->rss_stat.count[member]);
1333
1334 #ifdef SPLIT_RSS_COUNTING
1335 /*
1336 * counter is updated in asynchronous manner and may go to minus.
1337 * But it's never be expected number for users.
1338 */
1339 if (val < 0)
1340 val = 0;
1341 #endif
1342 return (unsigned long)val;
1343 }
1344
1345 static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1346 {
1347 atomic_long_add(value, &mm->rss_stat.count[member]);
1348 }
1349
1350 static inline void inc_mm_counter(struct mm_struct *mm, int member)
1351 {
1352 atomic_long_inc(&mm->rss_stat.count[member]);
1353 }
1354
1355 static inline void dec_mm_counter(struct mm_struct *mm, int member)
1356 {
1357 atomic_long_dec(&mm->rss_stat.count[member]);
1358 }
1359
1360 static inline unsigned long get_mm_rss(struct mm_struct *mm)
1361 {
1362 return get_mm_counter(mm, MM_FILEPAGES) +
1363 get_mm_counter(mm, MM_ANONPAGES);
1364 }
1365
1366 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1367 {
1368 return max(mm->hiwater_rss, get_mm_rss(mm));
1369 }
1370
1371 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1372 {
1373 return max(mm->hiwater_vm, mm->total_vm);
1374 }
1375
1376 static inline void update_hiwater_rss(struct mm_struct *mm)
1377 {
1378 unsigned long _rss = get_mm_rss(mm);
1379
1380 if ((mm)->hiwater_rss < _rss)
1381 (mm)->hiwater_rss = _rss;
1382 }
1383
1384 static inline void update_hiwater_vm(struct mm_struct *mm)
1385 {
1386 if (mm->hiwater_vm < mm->total_vm)
1387 mm->hiwater_vm = mm->total_vm;
1388 }
1389
1390 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1391 struct mm_struct *mm)
1392 {
1393 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1394
1395 if (*maxrss < hiwater_rss)
1396 *maxrss = hiwater_rss;
1397 }
1398
1399 #if defined(SPLIT_RSS_COUNTING)
1400 void sync_mm_rss(struct mm_struct *mm);
1401 #else
1402 static inline void sync_mm_rss(struct mm_struct *mm)
1403 {
1404 }
1405 #endif
1406
1407 int vma_wants_writenotify(struct vm_area_struct *vma);
1408
1409 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1410 spinlock_t **ptl);
1411 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1412 spinlock_t **ptl)
1413 {
1414 pte_t *ptep;
1415 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
1416 return ptep;
1417 }
1418
1419 #ifdef __PAGETABLE_PUD_FOLDED
1420 static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd,
1421 unsigned long address)
1422 {
1423 return 0;
1424 }
1425 #else
1426 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
1427 #endif
1428
1429 #ifdef __PAGETABLE_PMD_FOLDED
1430 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
1431 unsigned long address)
1432 {
1433 return 0;
1434 }
1435 #else
1436 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
1437 #endif
1438
1439 int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
1440 pmd_t *pmd, unsigned long address);
1441 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
1442
1443 /*
1444 * The following ifdef needed to get the 4level-fixup.h header to work.
1445 * Remove it when 4level-fixup.h has been removed.
1446 */
1447 #if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
1448 static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
1449 {
1450 return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))?
1451 NULL: pud_offset(pgd, address);
1452 }
1453
1454 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1455 {
1456 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
1457 NULL: pmd_offset(pud, address);
1458 }
1459 #endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
1460
1461 #if USE_SPLIT_PTE_PTLOCKS
1462 #if ALLOC_SPLIT_PTLOCKS
1463 void __init ptlock_cache_init(void);
1464 extern bool ptlock_alloc(struct page *page);
1465 extern void ptlock_free(struct page *page);
1466
1467 static inline spinlock_t *ptlock_ptr(struct page *page)
1468 {
1469 return page->ptl;
1470 }
1471 #else /* ALLOC_SPLIT_PTLOCKS */
1472 static inline void ptlock_cache_init(void)
1473 {
1474 }
1475
1476 static inline bool ptlock_alloc(struct page *page)
1477 {
1478 return true;
1479 }
1480
1481 static inline void ptlock_free(struct page *page)
1482 {
1483 }
1484
1485 static inline spinlock_t *ptlock_ptr(struct page *page)
1486 {
1487 return &page->ptl;
1488 }
1489 #endif /* ALLOC_SPLIT_PTLOCKS */
1490
1491 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1492 {
1493 return ptlock_ptr(pmd_page(*pmd));
1494 }
1495
1496 static inline bool ptlock_init(struct page *page)
1497 {
1498 /*
1499 * prep_new_page() initialize page->private (and therefore page->ptl)
1500 * with 0. Make sure nobody took it in use in between.
1501 *
1502 * It can happen if arch try to use slab for page table allocation:
1503 * slab code uses page->slab_cache and page->first_page (for tail
1504 * pages), which share storage with page->ptl.
1505 */
1506 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
1507 if (!ptlock_alloc(page))
1508 return false;
1509 spin_lock_init(ptlock_ptr(page));
1510 return true;
1511 }
1512
1513 /* Reset page->mapping so free_pages_check won't complain. */
1514 static inline void pte_lock_deinit(struct page *page)
1515 {
1516 page->mapping = NULL;
1517 ptlock_free(page);
1518 }
1519
1520 #else /* !USE_SPLIT_PTE_PTLOCKS */
1521 /*
1522 * We use mm->page_table_lock to guard all pagetable pages of the mm.
1523 */
1524 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1525 {
1526 return &mm->page_table_lock;
1527 }
1528 static inline void ptlock_cache_init(void) {}
1529 static inline bool ptlock_init(struct page *page) { return true; }
1530 static inline void pte_lock_deinit(struct page *page) {}
1531 #endif /* USE_SPLIT_PTE_PTLOCKS */
1532
1533 static inline void pgtable_init(void)
1534 {
1535 ptlock_cache_init();
1536 pgtable_cache_init();
1537 }
1538
1539 static inline bool pgtable_page_ctor(struct page *page)
1540 {
1541 inc_zone_page_state(page, NR_PAGETABLE);
1542 return ptlock_init(page);
1543 }
1544
1545 static inline void pgtable_page_dtor(struct page *page)
1546 {
1547 pte_lock_deinit(page);
1548 dec_zone_page_state(page, NR_PAGETABLE);
1549 }
1550
1551 #define pte_offset_map_lock(mm, pmd, address, ptlp) \
1552 ({ \
1553 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
1554 pte_t *__pte = pte_offset_map(pmd, address); \
1555 *(ptlp) = __ptl; \
1556 spin_lock(__ptl); \
1557 __pte; \
1558 })
1559
1560 #define pte_unmap_unlock(pte, ptl) do { \
1561 spin_unlock(ptl); \
1562 pte_unmap(pte); \
1563 } while (0)
1564
1565 #define pte_alloc_map(mm, vma, pmd, address) \
1566 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, vma, \
1567 pmd, address))? \
1568 NULL: pte_offset_map(pmd, address))
1569
1570 #define pte_alloc_map_lock(mm, pmd, address, ptlp) \
1571 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, NULL, \
1572 pmd, address))? \
1573 NULL: pte_offset_map_lock(mm, pmd, address, ptlp))
1574
1575 #define pte_alloc_kernel(pmd, address) \
1576 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
1577 NULL: pte_offset_kernel(pmd, address))
1578
1579 #if USE_SPLIT_PMD_PTLOCKS
1580
1581 static struct page *pmd_to_page(pmd_t *pmd)
1582 {
1583 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
1584 return virt_to_page((void *)((unsigned long) pmd & mask));
1585 }
1586
1587 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1588 {
1589 return ptlock_ptr(pmd_to_page(pmd));
1590 }
1591
1592 static inline bool pgtable_pmd_page_ctor(struct page *page)
1593 {
1594 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1595 page->pmd_huge_pte = NULL;
1596 #endif
1597 return ptlock_init(page);
1598 }
1599
1600 static inline void pgtable_pmd_page_dtor(struct page *page)
1601 {
1602 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1603 VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
1604 #endif
1605 ptlock_free(page);
1606 }
1607
1608 #define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte)
1609
1610 #else
1611
1612 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1613 {
1614 return &mm->page_table_lock;
1615 }
1616
1617 static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; }
1618 static inline void pgtable_pmd_page_dtor(struct page *page) {}
1619
1620 #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
1621
1622 #endif
1623
1624 static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
1625 {
1626 spinlock_t *ptl = pmd_lockptr(mm, pmd);
1627 spin_lock(ptl);
1628 return ptl;
1629 }
1630
1631 extern void free_area_init(unsigned long * zones_size);
1632 extern void free_area_init_node(int nid, unsigned long * zones_size,
1633 unsigned long zone_start_pfn, unsigned long *zholes_size);
1634 extern void free_initmem(void);
1635
1636 /*
1637 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
1638 * into the buddy system. The freed pages will be poisoned with pattern
1639 * "poison" if it's within range [0, UCHAR_MAX].
1640 * Return pages freed into the buddy system.
1641 */
1642 extern unsigned long free_reserved_area(void *start, void *end,
1643 int poison, char *s);
1644
1645 #ifdef CONFIG_HIGHMEM
1646 /*
1647 * Free a highmem page into the buddy system, adjusting totalhigh_pages
1648 * and totalram_pages.
1649 */
1650 extern void free_highmem_page(struct page *page);
1651 #endif
1652
1653 extern void adjust_managed_page_count(struct page *page, long count);
1654 extern void mem_init_print_info(const char *str);
1655
1656 /* Free the reserved page into the buddy system, so it gets managed. */
1657 static inline void __free_reserved_page(struct page *page)
1658 {
1659 ClearPageReserved(page);
1660 init_page_count(page);
1661 __free_page(page);
1662 }
1663
1664 static inline void free_reserved_page(struct page *page)
1665 {
1666 __free_reserved_page(page);
1667 adjust_managed_page_count(page, 1);
1668 }
1669
1670 static inline void mark_page_reserved(struct page *page)
1671 {
1672 SetPageReserved(page);
1673 adjust_managed_page_count(page, -1);
1674 }
1675
1676 /*
1677 * Default method to free all the __init memory into the buddy system.
1678 * The freed pages will be poisoned with pattern "poison" if it's within
1679 * range [0, UCHAR_MAX].
1680 * Return pages freed into the buddy system.
1681 */
1682 static inline unsigned long free_initmem_default(int poison)
1683 {
1684 extern char __init_begin[], __init_end[];
1685
1686 return free_reserved_area(&__init_begin, &__init_end,
1687 poison, "unused kernel");
1688 }
1689
1690 static inline unsigned long get_num_physpages(void)
1691 {
1692 int nid;
1693 unsigned long phys_pages = 0;
1694
1695 for_each_online_node(nid)
1696 phys_pages += node_present_pages(nid);
1697
1698 return phys_pages;
1699 }
1700
1701 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1702 /*
1703 * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its
1704 * zones, allocate the backing mem_map and account for memory holes in a more
1705 * architecture independent manner. This is a substitute for creating the
1706 * zone_sizes[] and zholes_size[] arrays and passing them to
1707 * free_area_init_node()
1708 *
1709 * An architecture is expected to register range of page frames backed by
1710 * physical memory with memblock_add[_node]() before calling
1711 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
1712 * usage, an architecture is expected to do something like
1713 *
1714 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
1715 * max_highmem_pfn};
1716 * for_each_valid_physical_page_range()
1717 * memblock_add_node(base, size, nid)
1718 * free_area_init_nodes(max_zone_pfns);
1719 *
1720 * free_bootmem_with_active_regions() calls free_bootmem_node() for each
1721 * registered physical page range. Similarly
1722 * sparse_memory_present_with_active_regions() calls memory_present() for
1723 * each range when SPARSEMEM is enabled.
1724 *
1725 * See mm/page_alloc.c for more information on each function exposed by
1726 * CONFIG_HAVE_MEMBLOCK_NODE_MAP.
1727 */
1728 extern void free_area_init_nodes(unsigned long *max_zone_pfn);
1729 unsigned long node_map_pfn_alignment(void);
1730 unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
1731 unsigned long end_pfn);
1732 extern unsigned long absent_pages_in_range(unsigned long start_pfn,
1733 unsigned long end_pfn);
1734 extern void get_pfn_range_for_nid(unsigned int nid,
1735 unsigned long *start_pfn, unsigned long *end_pfn);
1736 extern unsigned long find_min_pfn_with_active_regions(void);
1737 extern void free_bootmem_with_active_regions(int nid,
1738 unsigned long max_low_pfn);
1739 extern void sparse_memory_present_with_active_regions(int nid);
1740
1741 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
1742
1743 #if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \
1744 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
1745 static inline int __early_pfn_to_nid(unsigned long pfn)
1746 {
1747 return 0;
1748 }
1749 #else
1750 /* please see mm/page_alloc.c */
1751 extern int __meminit early_pfn_to_nid(unsigned long pfn);
1752 /* there is a per-arch backend function. */
1753 extern int __meminit __early_pfn_to_nid(unsigned long pfn);
1754 #endif
1755
1756 extern void set_dma_reserve(unsigned long new_dma_reserve);
1757 extern void memmap_init_zone(unsigned long, int, unsigned long,
1758 unsigned long, enum memmap_context);
1759 extern void setup_per_zone_wmarks(void);
1760 extern int __meminit init_per_zone_wmark_min(void);
1761 extern void mem_init(void);
1762 extern void __init mmap_init(void);
1763 extern void show_mem(unsigned int flags);
1764 extern void si_meminfo(struct sysinfo * val);
1765 extern void si_meminfo_node(struct sysinfo *val, int nid);
1766
1767 extern __printf(3, 4)
1768 void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...);
1769
1770 extern void setup_per_cpu_pageset(void);
1771
1772 extern void zone_pcp_update(struct zone *zone);
1773 extern void zone_pcp_reset(struct zone *zone);
1774
1775 /* page_alloc.c */
1776 extern int min_free_kbytes;
1777
1778 /* nommu.c */
1779 extern atomic_long_t mmap_pages_allocated;
1780 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
1781
1782 /* interval_tree.c */
1783 void vma_interval_tree_insert(struct vm_area_struct *node,
1784 struct rb_root *root);
1785 void vma_interval_tree_insert_after(struct vm_area_struct *node,
1786 struct vm_area_struct *prev,
1787 struct rb_root *root);
1788 void vma_interval_tree_remove(struct vm_area_struct *node,
1789 struct rb_root *root);
1790 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root *root,
1791 unsigned long start, unsigned long last);
1792 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
1793 unsigned long start, unsigned long last);
1794
1795 #define vma_interval_tree_foreach(vma, root, start, last) \
1796 for (vma = vma_interval_tree_iter_first(root, start, last); \
1797 vma; vma = vma_interval_tree_iter_next(vma, start, last))
1798
1799 static inline void vma_nonlinear_insert(struct vm_area_struct *vma,
1800 struct list_head *list)
1801 {
1802 list_add_tail(&vma->shared.nonlinear, list);
1803 }
1804
1805 void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
1806 struct rb_root *root);
1807 void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
1808 struct rb_root *root);
1809 struct anon_vma_chain *anon_vma_interval_tree_iter_first(
1810 struct rb_root *root, unsigned long start, unsigned long last);
1811 struct anon_vma_chain *anon_vma_interval_tree_iter_next(
1812 struct anon_vma_chain *node, unsigned long start, unsigned long last);
1813 #ifdef CONFIG_DEBUG_VM_RB
1814 void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
1815 #endif
1816
1817 #define anon_vma_interval_tree_foreach(avc, root, start, last) \
1818 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
1819 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
1820
1821 /* mmap.c */
1822 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
1823 extern int vma_adjust(struct vm_area_struct *vma, unsigned long start,
1824 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert);
1825 extern struct vm_area_struct *vma_merge(struct mm_struct *,
1826 struct vm_area_struct *prev, unsigned long addr, unsigned long end,
1827 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
1828 struct mempolicy *);
1829 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
1830 extern int split_vma(struct mm_struct *,
1831 struct vm_area_struct *, unsigned long addr, int new_below);
1832 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
1833 extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
1834 struct rb_node **, struct rb_node *);
1835 extern void unlink_file_vma(struct vm_area_struct *);
1836 extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
1837 unsigned long addr, unsigned long len, pgoff_t pgoff,
1838 bool *need_rmap_locks);
1839 extern void exit_mmap(struct mm_struct *);
1840
1841 static inline int check_data_rlimit(unsigned long rlim,
1842 unsigned long new,
1843 unsigned long start,
1844 unsigned long end_data,
1845 unsigned long start_data)
1846 {
1847 if (rlim < RLIM_INFINITY) {
1848 if (((new - start) + (end_data - start_data)) > rlim)
1849 return -ENOSPC;
1850 }
1851
1852 return 0;
1853 }
1854
1855 extern int mm_take_all_locks(struct mm_struct *mm);
1856 extern void mm_drop_all_locks(struct mm_struct *mm);
1857
1858 extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
1859 extern struct file *get_mm_exe_file(struct mm_struct *mm);
1860
1861 extern int may_expand_vm(struct mm_struct *mm, unsigned long npages);
1862 extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
1863 unsigned long addr, unsigned long len,
1864 unsigned long flags,
1865 const struct vm_special_mapping *spec);
1866 /* This is an obsolete alternative to _install_special_mapping. */
1867 extern int install_special_mapping(struct mm_struct *mm,
1868 unsigned long addr, unsigned long len,
1869 unsigned long flags, struct page **pages);
1870
1871 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
1872
1873 extern unsigned long mmap_region(struct file *file, unsigned long addr,
1874 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff);
1875 extern unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
1876 unsigned long len, unsigned long prot, unsigned long flags,
1877 unsigned long pgoff, unsigned long *populate);
1878 extern int do_munmap(struct mm_struct *, unsigned long, size_t);
1879
1880 #ifdef CONFIG_MMU
1881 extern int __mm_populate(unsigned long addr, unsigned long len,
1882 int ignore_errors);
1883 static inline void mm_populate(unsigned long addr, unsigned long len)
1884 {
1885 /* Ignore errors */
1886 (void) __mm_populate(addr, len, 1);
1887 }
1888 #else
1889 static inline void mm_populate(unsigned long addr, unsigned long len) {}
1890 #endif
1891
1892 /* These take the mm semaphore themselves */
1893 extern unsigned long vm_brk(unsigned long, unsigned long);
1894 extern int vm_munmap(unsigned long, size_t);
1895 extern unsigned long vm_mmap(struct file *, unsigned long,
1896 unsigned long, unsigned long,
1897 unsigned long, unsigned long);
1898
1899 struct vm_unmapped_area_info {
1900 #define VM_UNMAPPED_AREA_TOPDOWN 1
1901 unsigned long flags;
1902 unsigned long length;
1903 unsigned long low_limit;
1904 unsigned long high_limit;
1905 unsigned long align_mask;
1906 unsigned long align_offset;
1907 };
1908
1909 extern unsigned long unmapped_area(struct vm_unmapped_area_info *info);
1910 extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info);
1911
1912 /*
1913 * Search for an unmapped address range.
1914 *
1915 * We are looking for a range that:
1916 * - does not intersect with any VMA;
1917 * - is contained within the [low_limit, high_limit) interval;
1918 * - is at least the desired size.
1919 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
1920 */
1921 static inline unsigned long
1922 vm_unmapped_area(struct vm_unmapped_area_info *info)
1923 {
1924 if (!(info->flags & VM_UNMAPPED_AREA_TOPDOWN))
1925 return unmapped_area(info);
1926 else
1927 return unmapped_area_topdown(info);
1928 }
1929
1930 /* truncate.c */
1931 extern void truncate_inode_pages(struct address_space *, loff_t);
1932 extern void truncate_inode_pages_range(struct address_space *,
1933 loff_t lstart, loff_t lend);
1934 extern void truncate_inode_pages_final(struct address_space *);
1935
1936 /* generic vm_area_ops exported for stackable file systems */
1937 extern int filemap_fault(struct vm_area_struct *, struct vm_fault *);
1938 extern void filemap_map_pages(struct vm_area_struct *vma, struct vm_fault *vmf);
1939 extern int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf);
1940
1941 /* mm/page-writeback.c */
1942 int write_one_page(struct page *page, int wait);
1943 void task_dirty_inc(struct task_struct *tsk);
1944
1945 /* readahead.c */
1946 #define VM_MAX_READAHEAD 128 /* kbytes */
1947 #define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */
1948
1949 int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
1950 pgoff_t offset, unsigned long nr_to_read);
1951
1952 void page_cache_sync_readahead(struct address_space *mapping,
1953 struct file_ra_state *ra,
1954 struct file *filp,
1955 pgoff_t offset,
1956 unsigned long size);
1957
1958 void page_cache_async_readahead(struct address_space *mapping,
1959 struct file_ra_state *ra,
1960 struct file *filp,
1961 struct page *pg,
1962 pgoff_t offset,
1963 unsigned long size);
1964
1965 unsigned long max_sane_readahead(unsigned long nr);
1966
1967 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
1968 extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
1969
1970 /* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
1971 extern int expand_downwards(struct vm_area_struct *vma,
1972 unsigned long address);
1973 #if VM_GROWSUP
1974 extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
1975 #else
1976 #define expand_upwards(vma, address) (0)
1977 #endif
1978
1979 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
1980 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
1981 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
1982 struct vm_area_struct **pprev);
1983
1984 /* Look up the first VMA which intersects the interval start_addr..end_addr-1,
1985 NULL if none. Assume start_addr < end_addr. */
1986 static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
1987 {
1988 struct vm_area_struct * vma = find_vma(mm,start_addr);
1989
1990 if (vma && end_addr <= vma->vm_start)
1991 vma = NULL;
1992 return vma;
1993 }
1994
1995 static inline unsigned long vma_pages(struct vm_area_struct *vma)
1996 {
1997 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
1998 }
1999
2000 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */
2001 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
2002 unsigned long vm_start, unsigned long vm_end)
2003 {
2004 struct vm_area_struct *vma = find_vma(mm, vm_start);
2005
2006 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
2007 vma = NULL;
2008
2009 return vma;
2010 }
2011
2012 #ifdef CONFIG_MMU
2013 pgprot_t vm_get_page_prot(unsigned long vm_flags);
2014 void vma_set_page_prot(struct vm_area_struct *vma);
2015 #else
2016 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
2017 {
2018 return __pgprot(0);
2019 }
2020 static inline void vma_set_page_prot(struct vm_area_struct *vma)
2021 {
2022 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2023 }
2024 #endif
2025
2026 #ifdef CONFIG_NUMA_BALANCING
2027 unsigned long change_prot_numa(struct vm_area_struct *vma,
2028 unsigned long start, unsigned long end);
2029 #endif
2030
2031 struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
2032 int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
2033 unsigned long pfn, unsigned long size, pgprot_t);
2034 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
2035 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2036 unsigned long pfn);
2037 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2038 unsigned long pfn);
2039 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
2040
2041
2042 struct page *follow_page_mask(struct vm_area_struct *vma,
2043 unsigned long address, unsigned int foll_flags,
2044 unsigned int *page_mask);
2045
2046 static inline struct page *follow_page(struct vm_area_struct *vma,
2047 unsigned long address, unsigned int foll_flags)
2048 {
2049 unsigned int unused_page_mask;
2050 return follow_page_mask(vma, address, foll_flags, &unused_page_mask);
2051 }
2052
2053 #define FOLL_WRITE 0x01 /* check pte is writable */
2054 #define FOLL_TOUCH 0x02 /* mark page accessed */
2055 #define FOLL_GET 0x04 /* do get_page on page */
2056 #define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
2057 #define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
2058 #define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO
2059 * and return without waiting upon it */
2060 #define FOLL_MLOCK 0x40 /* mark page as mlocked */
2061 #define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */
2062 #define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */
2063 #define FOLL_NUMA 0x200 /* force NUMA hinting page fault */
2064 #define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */
2065 #define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */
2066
2067 typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
2068 void *data);
2069 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
2070 unsigned long size, pte_fn_t fn, void *data);
2071
2072 #ifdef CONFIG_PROC_FS
2073 void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long);
2074 #else
2075 static inline void vm_stat_account(struct mm_struct *mm,
2076 unsigned long flags, struct file *file, long pages)
2077 {
2078 mm->total_vm += pages;
2079 }
2080 #endif /* CONFIG_PROC_FS */
2081
2082 #ifdef CONFIG_DEBUG_PAGEALLOC
2083 extern bool _debug_pagealloc_enabled;
2084 extern void __kernel_map_pages(struct page *page, int numpages, int enable);
2085
2086 static inline bool debug_pagealloc_enabled(void)
2087 {
2088 return _debug_pagealloc_enabled;
2089 }
2090
2091 static inline void
2092 kernel_map_pages(struct page *page, int numpages, int enable)
2093 {
2094 if (!debug_pagealloc_enabled())
2095 return;
2096
2097 __kernel_map_pages(page, numpages, enable);
2098 }
2099 #ifdef CONFIG_HIBERNATION
2100 extern bool kernel_page_present(struct page *page);
2101 #endif /* CONFIG_HIBERNATION */
2102 #else
2103 static inline void
2104 kernel_map_pages(struct page *page, int numpages, int enable) {}
2105 #ifdef CONFIG_HIBERNATION
2106 static inline bool kernel_page_present(struct page *page) { return true; }
2107 #endif /* CONFIG_HIBERNATION */
2108 #endif
2109
2110 #ifdef __HAVE_ARCH_GATE_AREA
2111 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
2112 extern int in_gate_area_no_mm(unsigned long addr);
2113 extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
2114 #else
2115 static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
2116 {
2117 return NULL;
2118 }
2119 static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
2120 static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
2121 {
2122 return 0;
2123 }
2124 #endif /* __HAVE_ARCH_GATE_AREA */
2125
2126 #ifdef CONFIG_SYSCTL
2127 extern int sysctl_drop_caches;
2128 int drop_caches_sysctl_handler(struct ctl_table *, int,
2129 void __user *, size_t *, loff_t *);
2130 #endif
2131
2132 unsigned long shrink_node_slabs(gfp_t gfp_mask, int nid,
2133 unsigned long nr_scanned,
2134 unsigned long nr_eligible);
2135
2136 #ifndef CONFIG_MMU
2137 #define randomize_va_space 0
2138 #else
2139 extern int randomize_va_space;
2140 #endif
2141
2142 const char * arch_vma_name(struct vm_area_struct *vma);
2143 void print_vma_addr(char *prefix, unsigned long rip);
2144
2145 void sparse_mem_maps_populate_node(struct page **map_map,
2146 unsigned long pnum_begin,
2147 unsigned long pnum_end,
2148 unsigned long map_count,
2149 int nodeid);
2150
2151 struct page *sparse_mem_map_populate(unsigned long pnum, int nid);
2152 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
2153 pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node);
2154 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
2155 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
2156 void *vmemmap_alloc_block(unsigned long size, int node);
2157 void *vmemmap_alloc_block_buf(unsigned long size, int node);
2158 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
2159 int vmemmap_populate_basepages(unsigned long start, unsigned long end,
2160 int node);
2161 int vmemmap_populate(unsigned long start, unsigned long end, int node);
2162 void vmemmap_populate_print_last(void);
2163 #ifdef CONFIG_MEMORY_HOTPLUG
2164 void vmemmap_free(unsigned long start, unsigned long end);
2165 #endif
2166 void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
2167 unsigned long size);
2168
2169 enum mf_flags {
2170 MF_COUNT_INCREASED = 1 << 0,
2171 MF_ACTION_REQUIRED = 1 << 1,
2172 MF_MUST_KILL = 1 << 2,
2173 MF_SOFT_OFFLINE = 1 << 3,
2174 };
2175 extern int memory_failure(unsigned long pfn, int trapno, int flags);
2176 extern void memory_failure_queue(unsigned long pfn, int trapno, int flags);
2177 extern int unpoison_memory(unsigned long pfn);
2178 extern int sysctl_memory_failure_early_kill;
2179 extern int sysctl_memory_failure_recovery;
2180 extern void shake_page(struct page *p, int access);
2181 extern atomic_long_t num_poisoned_pages;
2182 extern int soft_offline_page(struct page *page, int flags);
2183
2184 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
2185 extern void clear_huge_page(struct page *page,
2186 unsigned long addr,
2187 unsigned int pages_per_huge_page);
2188 extern void copy_user_huge_page(struct page *dst, struct page *src,
2189 unsigned long addr, struct vm_area_struct *vma,
2190 unsigned int pages_per_huge_page);
2191 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
2192
2193 extern struct page_ext_operations debug_guardpage_ops;
2194 extern struct page_ext_operations page_poisoning_ops;
2195
2196 #ifdef CONFIG_DEBUG_PAGEALLOC
2197 extern unsigned int _debug_guardpage_minorder;
2198 extern bool _debug_guardpage_enabled;
2199
2200 static inline unsigned int debug_guardpage_minorder(void)
2201 {
2202 return _debug_guardpage_minorder;
2203 }
2204
2205 static inline bool debug_guardpage_enabled(void)
2206 {
2207 return _debug_guardpage_enabled;
2208 }
2209
2210 static inline bool page_is_guard(struct page *page)
2211 {
2212 struct page_ext *page_ext;
2213
2214 if (!debug_guardpage_enabled())
2215 return false;
2216
2217 page_ext = lookup_page_ext(page);
2218 return test_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
2219 }
2220 #else
2221 static inline unsigned int debug_guardpage_minorder(void) { return 0; }
2222 static inline bool debug_guardpage_enabled(void) { return false; }
2223 static inline bool page_is_guard(struct page *page) { return false; }
2224 #endif /* CONFIG_DEBUG_PAGEALLOC */
2225
2226 #if MAX_NUMNODES > 1
2227 void __init setup_nr_node_ids(void);
2228 #else
2229 static inline void setup_nr_node_ids(void) {}
2230 #endif
2231
2232 #endif /* __KERNEL__ */
2233 #endif /* _LINUX_MM_H */
This page took 0.159333 seconds and 6 git commands to generate.