mm: pack compound_dtor and compound_order into one word in struct page
[deliverable/linux.git] / include / linux / mm.h
1 #ifndef _LINUX_MM_H
2 #define _LINUX_MM_H
3
4 #include <linux/errno.h>
5
6 #ifdef __KERNEL__
7
8 #include <linux/mmdebug.h>
9 #include <linux/gfp.h>
10 #include <linux/bug.h>
11 #include <linux/list.h>
12 #include <linux/mmzone.h>
13 #include <linux/rbtree.h>
14 #include <linux/atomic.h>
15 #include <linux/debug_locks.h>
16 #include <linux/mm_types.h>
17 #include <linux/range.h>
18 #include <linux/pfn.h>
19 #include <linux/bit_spinlock.h>
20 #include <linux/shrinker.h>
21 #include <linux/resource.h>
22 #include <linux/page_ext.h>
23 #include <linux/err.h>
24
25 struct mempolicy;
26 struct anon_vma;
27 struct anon_vma_chain;
28 struct file_ra_state;
29 struct user_struct;
30 struct writeback_control;
31 struct bdi_writeback;
32
33 #ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */
34 extern unsigned long max_mapnr;
35
36 static inline void set_max_mapnr(unsigned long limit)
37 {
38 max_mapnr = limit;
39 }
40 #else
41 static inline void set_max_mapnr(unsigned long limit) { }
42 #endif
43
44 extern unsigned long totalram_pages;
45 extern void * high_memory;
46 extern int page_cluster;
47
48 #ifdef CONFIG_SYSCTL
49 extern int sysctl_legacy_va_layout;
50 #else
51 #define sysctl_legacy_va_layout 0
52 #endif
53
54 #include <asm/page.h>
55 #include <asm/pgtable.h>
56 #include <asm/processor.h>
57
58 #ifndef __pa_symbol
59 #define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0))
60 #endif
61
62 /*
63 * To prevent common memory management code establishing
64 * a zero page mapping on a read fault.
65 * This macro should be defined within <asm/pgtable.h>.
66 * s390 does this to prevent multiplexing of hardware bits
67 * related to the physical page in case of virtualization.
68 */
69 #ifndef mm_forbids_zeropage
70 #define mm_forbids_zeropage(X) (0)
71 #endif
72
73 extern unsigned long sysctl_user_reserve_kbytes;
74 extern unsigned long sysctl_admin_reserve_kbytes;
75
76 extern int sysctl_overcommit_memory;
77 extern int sysctl_overcommit_ratio;
78 extern unsigned long sysctl_overcommit_kbytes;
79
80 extern int overcommit_ratio_handler(struct ctl_table *, int, void __user *,
81 size_t *, loff_t *);
82 extern int overcommit_kbytes_handler(struct ctl_table *, int, void __user *,
83 size_t *, loff_t *);
84
85 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
86
87 /* to align the pointer to the (next) page boundary */
88 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
89
90 /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
91 #define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)addr, PAGE_SIZE)
92
93 /*
94 * Linux kernel virtual memory manager primitives.
95 * The idea being to have a "virtual" mm in the same way
96 * we have a virtual fs - giving a cleaner interface to the
97 * mm details, and allowing different kinds of memory mappings
98 * (from shared memory to executable loading to arbitrary
99 * mmap() functions).
100 */
101
102 extern struct kmem_cache *vm_area_cachep;
103
104 #ifndef CONFIG_MMU
105 extern struct rb_root nommu_region_tree;
106 extern struct rw_semaphore nommu_region_sem;
107
108 extern unsigned int kobjsize(const void *objp);
109 #endif
110
111 /*
112 * vm_flags in vm_area_struct, see mm_types.h.
113 */
114 #define VM_NONE 0x00000000
115
116 #define VM_READ 0x00000001 /* currently active flags */
117 #define VM_WRITE 0x00000002
118 #define VM_EXEC 0x00000004
119 #define VM_SHARED 0x00000008
120
121 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
122 #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
123 #define VM_MAYWRITE 0x00000020
124 #define VM_MAYEXEC 0x00000040
125 #define VM_MAYSHARE 0x00000080
126
127 #define VM_GROWSDOWN 0x00000100 /* general info on the segment */
128 #define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */
129 #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
130 #define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
131 #define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */
132
133 #define VM_LOCKED 0x00002000
134 #define VM_IO 0x00004000 /* Memory mapped I/O or similar */
135
136 /* Used by sys_madvise() */
137 #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
138 #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
139
140 #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
141 #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
142 #define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */
143 #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
144 #define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
145 #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
146 #define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
147 #define VM_ARCH_2 0x02000000
148 #define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
149
150 #ifdef CONFIG_MEM_SOFT_DIRTY
151 # define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */
152 #else
153 # define VM_SOFTDIRTY 0
154 #endif
155
156 #define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
157 #define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
158 #define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
159 #define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
160
161 #if defined(CONFIG_X86)
162 # define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
163 #elif defined(CONFIG_PPC)
164 # define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
165 #elif defined(CONFIG_PARISC)
166 # define VM_GROWSUP VM_ARCH_1
167 #elif defined(CONFIG_METAG)
168 # define VM_GROWSUP VM_ARCH_1
169 #elif defined(CONFIG_IA64)
170 # define VM_GROWSUP VM_ARCH_1
171 #elif !defined(CONFIG_MMU)
172 # define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
173 #endif
174
175 #if defined(CONFIG_X86)
176 /* MPX specific bounds table or bounds directory */
177 # define VM_MPX VM_ARCH_2
178 #endif
179
180 #ifndef VM_GROWSUP
181 # define VM_GROWSUP VM_NONE
182 #endif
183
184 /* Bits set in the VMA until the stack is in its final location */
185 #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
186
187 #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
188 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
189 #endif
190
191 #ifdef CONFIG_STACK_GROWSUP
192 #define VM_STACK_FLAGS (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
193 #else
194 #define VM_STACK_FLAGS (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
195 #endif
196
197 /*
198 * Special vmas that are non-mergable, non-mlock()able.
199 * Note: mm/huge_memory.c VM_NO_THP depends on this definition.
200 */
201 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
202
203 /* This mask defines which mm->def_flags a process can inherit its parent */
204 #define VM_INIT_DEF_MASK VM_NOHUGEPAGE
205
206 /* This mask is used to clear all the VMA flags used by mlock */
207 #define VM_LOCKED_CLEAR_MASK (~(VM_LOCKED | VM_LOCKONFAULT))
208
209 /*
210 * mapping from the currently active vm_flags protection bits (the
211 * low four bits) to a page protection mask..
212 */
213 extern pgprot_t protection_map[16];
214
215 #define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */
216 #define FAULT_FLAG_MKWRITE 0x02 /* Fault was mkwrite of existing pte */
217 #define FAULT_FLAG_ALLOW_RETRY 0x04 /* Retry fault if blocking */
218 #define FAULT_FLAG_RETRY_NOWAIT 0x08 /* Don't drop mmap_sem and wait when retrying */
219 #define FAULT_FLAG_KILLABLE 0x10 /* The fault task is in SIGKILL killable region */
220 #define FAULT_FLAG_TRIED 0x20 /* Second try */
221 #define FAULT_FLAG_USER 0x40 /* The fault originated in userspace */
222
223 /*
224 * vm_fault is filled by the the pagefault handler and passed to the vma's
225 * ->fault function. The vma's ->fault is responsible for returning a bitmask
226 * of VM_FAULT_xxx flags that give details about how the fault was handled.
227 *
228 * pgoff should be used in favour of virtual_address, if possible.
229 */
230 struct vm_fault {
231 unsigned int flags; /* FAULT_FLAG_xxx flags */
232 pgoff_t pgoff; /* Logical page offset based on vma */
233 void __user *virtual_address; /* Faulting virtual address */
234
235 struct page *cow_page; /* Handler may choose to COW */
236 struct page *page; /* ->fault handlers should return a
237 * page here, unless VM_FAULT_NOPAGE
238 * is set (which is also implied by
239 * VM_FAULT_ERROR).
240 */
241 /* for ->map_pages() only */
242 pgoff_t max_pgoff; /* map pages for offset from pgoff till
243 * max_pgoff inclusive */
244 pte_t *pte; /* pte entry associated with ->pgoff */
245 };
246
247 /*
248 * These are the virtual MM functions - opening of an area, closing and
249 * unmapping it (needed to keep files on disk up-to-date etc), pointer
250 * to the functions called when a no-page or a wp-page exception occurs.
251 */
252 struct vm_operations_struct {
253 void (*open)(struct vm_area_struct * area);
254 void (*close)(struct vm_area_struct * area);
255 int (*mremap)(struct vm_area_struct * area);
256 int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf);
257 int (*pmd_fault)(struct vm_area_struct *, unsigned long address,
258 pmd_t *, unsigned int flags);
259 void (*map_pages)(struct vm_area_struct *vma, struct vm_fault *vmf);
260
261 /* notification that a previously read-only page is about to become
262 * writable, if an error is returned it will cause a SIGBUS */
263 int (*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
264
265 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
266 int (*pfn_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
267
268 /* called by access_process_vm when get_user_pages() fails, typically
269 * for use by special VMAs that can switch between memory and hardware
270 */
271 int (*access)(struct vm_area_struct *vma, unsigned long addr,
272 void *buf, int len, int write);
273
274 /* Called by the /proc/PID/maps code to ask the vma whether it
275 * has a special name. Returning non-NULL will also cause this
276 * vma to be dumped unconditionally. */
277 const char *(*name)(struct vm_area_struct *vma);
278
279 #ifdef CONFIG_NUMA
280 /*
281 * set_policy() op must add a reference to any non-NULL @new mempolicy
282 * to hold the policy upon return. Caller should pass NULL @new to
283 * remove a policy and fall back to surrounding context--i.e. do not
284 * install a MPOL_DEFAULT policy, nor the task or system default
285 * mempolicy.
286 */
287 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
288
289 /*
290 * get_policy() op must add reference [mpol_get()] to any policy at
291 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
292 * in mm/mempolicy.c will do this automatically.
293 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
294 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
295 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
296 * must return NULL--i.e., do not "fallback" to task or system default
297 * policy.
298 */
299 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
300 unsigned long addr);
301 #endif
302 /*
303 * Called by vm_normal_page() for special PTEs to find the
304 * page for @addr. This is useful if the default behavior
305 * (using pte_page()) would not find the correct page.
306 */
307 struct page *(*find_special_page)(struct vm_area_struct *vma,
308 unsigned long addr);
309 };
310
311 struct mmu_gather;
312 struct inode;
313
314 #define page_private(page) ((page)->private)
315 #define set_page_private(page, v) ((page)->private = (v))
316
317 /*
318 * FIXME: take this include out, include page-flags.h in
319 * files which need it (119 of them)
320 */
321 #include <linux/page-flags.h>
322 #include <linux/huge_mm.h>
323
324 /*
325 * Methods to modify the page usage count.
326 *
327 * What counts for a page usage:
328 * - cache mapping (page->mapping)
329 * - private data (page->private)
330 * - page mapped in a task's page tables, each mapping
331 * is counted separately
332 *
333 * Also, many kernel routines increase the page count before a critical
334 * routine so they can be sure the page doesn't go away from under them.
335 */
336
337 /*
338 * Drop a ref, return true if the refcount fell to zero (the page has no users)
339 */
340 static inline int put_page_testzero(struct page *page)
341 {
342 VM_BUG_ON_PAGE(atomic_read(&page->_count) == 0, page);
343 return atomic_dec_and_test(&page->_count);
344 }
345
346 /*
347 * Try to grab a ref unless the page has a refcount of zero, return false if
348 * that is the case.
349 * This can be called when MMU is off so it must not access
350 * any of the virtual mappings.
351 */
352 static inline int get_page_unless_zero(struct page *page)
353 {
354 return atomic_inc_not_zero(&page->_count);
355 }
356
357 extern int page_is_ram(unsigned long pfn);
358
359 enum {
360 REGION_INTERSECTS,
361 REGION_DISJOINT,
362 REGION_MIXED,
363 };
364
365 int region_intersects(resource_size_t offset, size_t size, const char *type);
366
367 /* Support for virtually mapped pages */
368 struct page *vmalloc_to_page(const void *addr);
369 unsigned long vmalloc_to_pfn(const void *addr);
370
371 /*
372 * Determine if an address is within the vmalloc range
373 *
374 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
375 * is no special casing required.
376 */
377 static inline int is_vmalloc_addr(const void *x)
378 {
379 #ifdef CONFIG_MMU
380 unsigned long addr = (unsigned long)x;
381
382 return addr >= VMALLOC_START && addr < VMALLOC_END;
383 #else
384 return 0;
385 #endif
386 }
387 #ifdef CONFIG_MMU
388 extern int is_vmalloc_or_module_addr(const void *x);
389 #else
390 static inline int is_vmalloc_or_module_addr(const void *x)
391 {
392 return 0;
393 }
394 #endif
395
396 extern void kvfree(const void *addr);
397
398 static inline void compound_lock(struct page *page)
399 {
400 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
401 VM_BUG_ON_PAGE(PageSlab(page), page);
402 bit_spin_lock(PG_compound_lock, &page->flags);
403 #endif
404 }
405
406 static inline void compound_unlock(struct page *page)
407 {
408 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
409 VM_BUG_ON_PAGE(PageSlab(page), page);
410 bit_spin_unlock(PG_compound_lock, &page->flags);
411 #endif
412 }
413
414 static inline unsigned long compound_lock_irqsave(struct page *page)
415 {
416 unsigned long uninitialized_var(flags);
417 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
418 local_irq_save(flags);
419 compound_lock(page);
420 #endif
421 return flags;
422 }
423
424 static inline void compound_unlock_irqrestore(struct page *page,
425 unsigned long flags)
426 {
427 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
428 compound_unlock(page);
429 local_irq_restore(flags);
430 #endif
431 }
432
433 static inline struct page *compound_head_by_tail(struct page *tail)
434 {
435 struct page *head = tail->first_page;
436
437 /*
438 * page->first_page may be a dangling pointer to an old
439 * compound page, so recheck that it is still a tail
440 * page before returning.
441 */
442 smp_rmb();
443 if (likely(PageTail(tail)))
444 return head;
445 return tail;
446 }
447
448 /*
449 * Since either compound page could be dismantled asynchronously in THP
450 * or we access asynchronously arbitrary positioned struct page, there
451 * would be tail flag race. To handle this race, we should call
452 * smp_rmb() before checking tail flag. compound_head_by_tail() did it.
453 */
454 static inline struct page *compound_head(struct page *page)
455 {
456 if (unlikely(PageTail(page)))
457 return compound_head_by_tail(page);
458 return page;
459 }
460
461 /*
462 * If we access compound page synchronously such as access to
463 * allocated page, there is no need to handle tail flag race, so we can
464 * check tail flag directly without any synchronization primitive.
465 */
466 static inline struct page *compound_head_fast(struct page *page)
467 {
468 if (unlikely(PageTail(page)))
469 return page->first_page;
470 return page;
471 }
472
473 /*
474 * The atomic page->_mapcount, starts from -1: so that transitions
475 * both from it and to it can be tracked, using atomic_inc_and_test
476 * and atomic_add_negative(-1).
477 */
478 static inline void page_mapcount_reset(struct page *page)
479 {
480 atomic_set(&(page)->_mapcount, -1);
481 }
482
483 static inline int page_mapcount(struct page *page)
484 {
485 VM_BUG_ON_PAGE(PageSlab(page), page);
486 return atomic_read(&page->_mapcount) + 1;
487 }
488
489 static inline int page_count(struct page *page)
490 {
491 return atomic_read(&compound_head(page)->_count);
492 }
493
494 static inline bool __compound_tail_refcounted(struct page *page)
495 {
496 return PageAnon(page) && !PageSlab(page) && !PageHeadHuge(page);
497 }
498
499 /*
500 * This takes a head page as parameter and tells if the
501 * tail page reference counting can be skipped.
502 *
503 * For this to be safe, PageSlab and PageHeadHuge must remain true on
504 * any given page where they return true here, until all tail pins
505 * have been released.
506 */
507 static inline bool compound_tail_refcounted(struct page *page)
508 {
509 VM_BUG_ON_PAGE(!PageHead(page), page);
510 return __compound_tail_refcounted(page);
511 }
512
513 static inline void get_huge_page_tail(struct page *page)
514 {
515 /*
516 * __split_huge_page_refcount() cannot run from under us.
517 */
518 VM_BUG_ON_PAGE(!PageTail(page), page);
519 VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
520 VM_BUG_ON_PAGE(atomic_read(&page->_count) != 0, page);
521 if (compound_tail_refcounted(page->first_page))
522 atomic_inc(&page->_mapcount);
523 }
524
525 extern bool __get_page_tail(struct page *page);
526
527 static inline void get_page(struct page *page)
528 {
529 if (unlikely(PageTail(page)))
530 if (likely(__get_page_tail(page)))
531 return;
532 /*
533 * Getting a normal page or the head of a compound page
534 * requires to already have an elevated page->_count.
535 */
536 VM_BUG_ON_PAGE(atomic_read(&page->_count) <= 0, page);
537 atomic_inc(&page->_count);
538 }
539
540 static inline struct page *virt_to_head_page(const void *x)
541 {
542 struct page *page = virt_to_page(x);
543
544 /*
545 * We don't need to worry about synchronization of tail flag
546 * when we call virt_to_head_page() since it is only called for
547 * already allocated page and this page won't be freed until
548 * this virt_to_head_page() is finished. So use _fast variant.
549 */
550 return compound_head_fast(page);
551 }
552
553 /*
554 * Setup the page count before being freed into the page allocator for
555 * the first time (boot or memory hotplug)
556 */
557 static inline void init_page_count(struct page *page)
558 {
559 atomic_set(&page->_count, 1);
560 }
561
562 void put_page(struct page *page);
563 void put_pages_list(struct list_head *pages);
564
565 void split_page(struct page *page, unsigned int order);
566 int split_free_page(struct page *page);
567
568 /*
569 * Compound pages have a destructor function. Provide a
570 * prototype for that function and accessor functions.
571 * These are _only_ valid on the head of a compound page.
572 */
573 typedef void compound_page_dtor(struct page *);
574
575 /* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */
576 enum compound_dtor_id {
577 NULL_COMPOUND_DTOR,
578 COMPOUND_PAGE_DTOR,
579 #ifdef CONFIG_HUGETLB_PAGE
580 HUGETLB_PAGE_DTOR,
581 #endif
582 NR_COMPOUND_DTORS,
583 };
584 extern compound_page_dtor * const compound_page_dtors[];
585
586 static inline void set_compound_page_dtor(struct page *page,
587 enum compound_dtor_id compound_dtor)
588 {
589 VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page);
590 page[1].compound_dtor = compound_dtor;
591 }
592
593 static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
594 {
595 VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page);
596 return compound_page_dtors[page[1].compound_dtor];
597 }
598
599 static inline int compound_order(struct page *page)
600 {
601 if (!PageHead(page))
602 return 0;
603 return page[1].compound_order;
604 }
605
606 static inline void set_compound_order(struct page *page, unsigned int order)
607 {
608 page[1].compound_order = order;
609 }
610
611 #ifdef CONFIG_MMU
612 /*
613 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
614 * servicing faults for write access. In the normal case, do always want
615 * pte_mkwrite. But get_user_pages can cause write faults for mappings
616 * that do not have writing enabled, when used by access_process_vm.
617 */
618 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
619 {
620 if (likely(vma->vm_flags & VM_WRITE))
621 pte = pte_mkwrite(pte);
622 return pte;
623 }
624
625 void do_set_pte(struct vm_area_struct *vma, unsigned long address,
626 struct page *page, pte_t *pte, bool write, bool anon);
627 #endif
628
629 /*
630 * Multiple processes may "see" the same page. E.g. for untouched
631 * mappings of /dev/null, all processes see the same page full of
632 * zeroes, and text pages of executables and shared libraries have
633 * only one copy in memory, at most, normally.
634 *
635 * For the non-reserved pages, page_count(page) denotes a reference count.
636 * page_count() == 0 means the page is free. page->lru is then used for
637 * freelist management in the buddy allocator.
638 * page_count() > 0 means the page has been allocated.
639 *
640 * Pages are allocated by the slab allocator in order to provide memory
641 * to kmalloc and kmem_cache_alloc. In this case, the management of the
642 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
643 * unless a particular usage is carefully commented. (the responsibility of
644 * freeing the kmalloc memory is the caller's, of course).
645 *
646 * A page may be used by anyone else who does a __get_free_page().
647 * In this case, page_count still tracks the references, and should only
648 * be used through the normal accessor functions. The top bits of page->flags
649 * and page->virtual store page management information, but all other fields
650 * are unused and could be used privately, carefully. The management of this
651 * page is the responsibility of the one who allocated it, and those who have
652 * subsequently been given references to it.
653 *
654 * The other pages (we may call them "pagecache pages") are completely
655 * managed by the Linux memory manager: I/O, buffers, swapping etc.
656 * The following discussion applies only to them.
657 *
658 * A pagecache page contains an opaque `private' member, which belongs to the
659 * page's address_space. Usually, this is the address of a circular list of
660 * the page's disk buffers. PG_private must be set to tell the VM to call
661 * into the filesystem to release these pages.
662 *
663 * A page may belong to an inode's memory mapping. In this case, page->mapping
664 * is the pointer to the inode, and page->index is the file offset of the page,
665 * in units of PAGE_CACHE_SIZE.
666 *
667 * If pagecache pages are not associated with an inode, they are said to be
668 * anonymous pages. These may become associated with the swapcache, and in that
669 * case PG_swapcache is set, and page->private is an offset into the swapcache.
670 *
671 * In either case (swapcache or inode backed), the pagecache itself holds one
672 * reference to the page. Setting PG_private should also increment the
673 * refcount. The each user mapping also has a reference to the page.
674 *
675 * The pagecache pages are stored in a per-mapping radix tree, which is
676 * rooted at mapping->page_tree, and indexed by offset.
677 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
678 * lists, we instead now tag pages as dirty/writeback in the radix tree.
679 *
680 * All pagecache pages may be subject to I/O:
681 * - inode pages may need to be read from disk,
682 * - inode pages which have been modified and are MAP_SHARED may need
683 * to be written back to the inode on disk,
684 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
685 * modified may need to be swapped out to swap space and (later) to be read
686 * back into memory.
687 */
688
689 /*
690 * The zone field is never updated after free_area_init_core()
691 * sets it, so none of the operations on it need to be atomic.
692 */
693
694 /* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
695 #define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
696 #define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
697 #define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
698 #define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH)
699
700 /*
701 * Define the bit shifts to access each section. For non-existent
702 * sections we define the shift as 0; that plus a 0 mask ensures
703 * the compiler will optimise away reference to them.
704 */
705 #define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
706 #define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
707 #define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
708 #define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
709
710 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
711 #ifdef NODE_NOT_IN_PAGE_FLAGS
712 #define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
713 #define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
714 SECTIONS_PGOFF : ZONES_PGOFF)
715 #else
716 #define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
717 #define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
718 NODES_PGOFF : ZONES_PGOFF)
719 #endif
720
721 #define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
722
723 #if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
724 #error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
725 #endif
726
727 #define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
728 #define NODES_MASK ((1UL << NODES_WIDTH) - 1)
729 #define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
730 #define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1)
731 #define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
732
733 static inline enum zone_type page_zonenum(const struct page *page)
734 {
735 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
736 }
737
738 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
739 #define SECTION_IN_PAGE_FLAGS
740 #endif
741
742 /*
743 * The identification function is mainly used by the buddy allocator for
744 * determining if two pages could be buddies. We are not really identifying
745 * the zone since we could be using the section number id if we do not have
746 * node id available in page flags.
747 * We only guarantee that it will return the same value for two combinable
748 * pages in a zone.
749 */
750 static inline int page_zone_id(struct page *page)
751 {
752 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
753 }
754
755 static inline int zone_to_nid(struct zone *zone)
756 {
757 #ifdef CONFIG_NUMA
758 return zone->node;
759 #else
760 return 0;
761 #endif
762 }
763
764 #ifdef NODE_NOT_IN_PAGE_FLAGS
765 extern int page_to_nid(const struct page *page);
766 #else
767 static inline int page_to_nid(const struct page *page)
768 {
769 return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
770 }
771 #endif
772
773 #ifdef CONFIG_NUMA_BALANCING
774 static inline int cpu_pid_to_cpupid(int cpu, int pid)
775 {
776 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
777 }
778
779 static inline int cpupid_to_pid(int cpupid)
780 {
781 return cpupid & LAST__PID_MASK;
782 }
783
784 static inline int cpupid_to_cpu(int cpupid)
785 {
786 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
787 }
788
789 static inline int cpupid_to_nid(int cpupid)
790 {
791 return cpu_to_node(cpupid_to_cpu(cpupid));
792 }
793
794 static inline bool cpupid_pid_unset(int cpupid)
795 {
796 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
797 }
798
799 static inline bool cpupid_cpu_unset(int cpupid)
800 {
801 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
802 }
803
804 static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
805 {
806 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
807 }
808
809 #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
810 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
811 static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
812 {
813 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
814 }
815
816 static inline int page_cpupid_last(struct page *page)
817 {
818 return page->_last_cpupid;
819 }
820 static inline void page_cpupid_reset_last(struct page *page)
821 {
822 page->_last_cpupid = -1 & LAST_CPUPID_MASK;
823 }
824 #else
825 static inline int page_cpupid_last(struct page *page)
826 {
827 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
828 }
829
830 extern int page_cpupid_xchg_last(struct page *page, int cpupid);
831
832 static inline void page_cpupid_reset_last(struct page *page)
833 {
834 int cpupid = (1 << LAST_CPUPID_SHIFT) - 1;
835
836 page->flags &= ~(LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT);
837 page->flags |= (cpupid & LAST_CPUPID_MASK) << LAST_CPUPID_PGSHIFT;
838 }
839 #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
840 #else /* !CONFIG_NUMA_BALANCING */
841 static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
842 {
843 return page_to_nid(page); /* XXX */
844 }
845
846 static inline int page_cpupid_last(struct page *page)
847 {
848 return page_to_nid(page); /* XXX */
849 }
850
851 static inline int cpupid_to_nid(int cpupid)
852 {
853 return -1;
854 }
855
856 static inline int cpupid_to_pid(int cpupid)
857 {
858 return -1;
859 }
860
861 static inline int cpupid_to_cpu(int cpupid)
862 {
863 return -1;
864 }
865
866 static inline int cpu_pid_to_cpupid(int nid, int pid)
867 {
868 return -1;
869 }
870
871 static inline bool cpupid_pid_unset(int cpupid)
872 {
873 return 1;
874 }
875
876 static inline void page_cpupid_reset_last(struct page *page)
877 {
878 }
879
880 static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
881 {
882 return false;
883 }
884 #endif /* CONFIG_NUMA_BALANCING */
885
886 static inline struct zone *page_zone(const struct page *page)
887 {
888 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
889 }
890
891 #ifdef SECTION_IN_PAGE_FLAGS
892 static inline void set_page_section(struct page *page, unsigned long section)
893 {
894 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
895 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
896 }
897
898 static inline unsigned long page_to_section(const struct page *page)
899 {
900 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
901 }
902 #endif
903
904 static inline void set_page_zone(struct page *page, enum zone_type zone)
905 {
906 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
907 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
908 }
909
910 static inline void set_page_node(struct page *page, unsigned long node)
911 {
912 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
913 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
914 }
915
916 static inline void set_page_links(struct page *page, enum zone_type zone,
917 unsigned long node, unsigned long pfn)
918 {
919 set_page_zone(page, zone);
920 set_page_node(page, node);
921 #ifdef SECTION_IN_PAGE_FLAGS
922 set_page_section(page, pfn_to_section_nr(pfn));
923 #endif
924 }
925
926 #ifdef CONFIG_MEMCG
927 static inline struct mem_cgroup *page_memcg(struct page *page)
928 {
929 return page->mem_cgroup;
930 }
931
932 static inline void set_page_memcg(struct page *page, struct mem_cgroup *memcg)
933 {
934 page->mem_cgroup = memcg;
935 }
936 #else
937 static inline struct mem_cgroup *page_memcg(struct page *page)
938 {
939 return NULL;
940 }
941
942 static inline void set_page_memcg(struct page *page, struct mem_cgroup *memcg)
943 {
944 }
945 #endif
946
947 /*
948 * Some inline functions in vmstat.h depend on page_zone()
949 */
950 #include <linux/vmstat.h>
951
952 static __always_inline void *lowmem_page_address(const struct page *page)
953 {
954 return __va(PFN_PHYS(page_to_pfn(page)));
955 }
956
957 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
958 #define HASHED_PAGE_VIRTUAL
959 #endif
960
961 #if defined(WANT_PAGE_VIRTUAL)
962 static inline void *page_address(const struct page *page)
963 {
964 return page->virtual;
965 }
966 static inline void set_page_address(struct page *page, void *address)
967 {
968 page->virtual = address;
969 }
970 #define page_address_init() do { } while(0)
971 #endif
972
973 #if defined(HASHED_PAGE_VIRTUAL)
974 void *page_address(const struct page *page);
975 void set_page_address(struct page *page, void *virtual);
976 void page_address_init(void);
977 #endif
978
979 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
980 #define page_address(page) lowmem_page_address(page)
981 #define set_page_address(page, address) do { } while(0)
982 #define page_address_init() do { } while(0)
983 #endif
984
985 extern void *page_rmapping(struct page *page);
986 extern struct anon_vma *page_anon_vma(struct page *page);
987 extern struct address_space *page_mapping(struct page *page);
988
989 extern struct address_space *__page_file_mapping(struct page *);
990
991 static inline
992 struct address_space *page_file_mapping(struct page *page)
993 {
994 if (unlikely(PageSwapCache(page)))
995 return __page_file_mapping(page);
996
997 return page->mapping;
998 }
999
1000 /*
1001 * Return the pagecache index of the passed page. Regular pagecache pages
1002 * use ->index whereas swapcache pages use ->private
1003 */
1004 static inline pgoff_t page_index(struct page *page)
1005 {
1006 if (unlikely(PageSwapCache(page)))
1007 return page_private(page);
1008 return page->index;
1009 }
1010
1011 extern pgoff_t __page_file_index(struct page *page);
1012
1013 /*
1014 * Return the file index of the page. Regular pagecache pages use ->index
1015 * whereas swapcache pages use swp_offset(->private)
1016 */
1017 static inline pgoff_t page_file_index(struct page *page)
1018 {
1019 if (unlikely(PageSwapCache(page)))
1020 return __page_file_index(page);
1021
1022 return page->index;
1023 }
1024
1025 /*
1026 * Return true if this page is mapped into pagetables.
1027 */
1028 static inline int page_mapped(struct page *page)
1029 {
1030 return atomic_read(&(page)->_mapcount) >= 0;
1031 }
1032
1033 /*
1034 * Return true only if the page has been allocated with
1035 * ALLOC_NO_WATERMARKS and the low watermark was not
1036 * met implying that the system is under some pressure.
1037 */
1038 static inline bool page_is_pfmemalloc(struct page *page)
1039 {
1040 /*
1041 * Page index cannot be this large so this must be
1042 * a pfmemalloc page.
1043 */
1044 return page->index == -1UL;
1045 }
1046
1047 /*
1048 * Only to be called by the page allocator on a freshly allocated
1049 * page.
1050 */
1051 static inline void set_page_pfmemalloc(struct page *page)
1052 {
1053 page->index = -1UL;
1054 }
1055
1056 static inline void clear_page_pfmemalloc(struct page *page)
1057 {
1058 page->index = 0;
1059 }
1060
1061 /*
1062 * Different kinds of faults, as returned by handle_mm_fault().
1063 * Used to decide whether a process gets delivered SIGBUS or
1064 * just gets major/minor fault counters bumped up.
1065 */
1066
1067 #define VM_FAULT_MINOR 0 /* For backwards compat. Remove me quickly. */
1068
1069 #define VM_FAULT_OOM 0x0001
1070 #define VM_FAULT_SIGBUS 0x0002
1071 #define VM_FAULT_MAJOR 0x0004
1072 #define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */
1073 #define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */
1074 #define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */
1075 #define VM_FAULT_SIGSEGV 0x0040
1076
1077 #define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */
1078 #define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */
1079 #define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */
1080 #define VM_FAULT_FALLBACK 0x0800 /* huge page fault failed, fall back to small */
1081
1082 #define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */
1083
1084 #define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | \
1085 VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE | \
1086 VM_FAULT_FALLBACK)
1087
1088 /* Encode hstate index for a hwpoisoned large page */
1089 #define VM_FAULT_SET_HINDEX(x) ((x) << 12)
1090 #define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf)
1091
1092 /*
1093 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
1094 */
1095 extern void pagefault_out_of_memory(void);
1096
1097 #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
1098
1099 /*
1100 * Flags passed to show_mem() and show_free_areas() to suppress output in
1101 * various contexts.
1102 */
1103 #define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */
1104
1105 extern void show_free_areas(unsigned int flags);
1106 extern bool skip_free_areas_node(unsigned int flags, int nid);
1107
1108 int shmem_zero_setup(struct vm_area_struct *);
1109 #ifdef CONFIG_SHMEM
1110 bool shmem_mapping(struct address_space *mapping);
1111 #else
1112 static inline bool shmem_mapping(struct address_space *mapping)
1113 {
1114 return false;
1115 }
1116 #endif
1117
1118 extern int can_do_mlock(void);
1119 extern int user_shm_lock(size_t, struct user_struct *);
1120 extern void user_shm_unlock(size_t, struct user_struct *);
1121
1122 /*
1123 * Parameter block passed down to zap_pte_range in exceptional cases.
1124 */
1125 struct zap_details {
1126 struct address_space *check_mapping; /* Check page->mapping if set */
1127 pgoff_t first_index; /* Lowest page->index to unmap */
1128 pgoff_t last_index; /* Highest page->index to unmap */
1129 };
1130
1131 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
1132 pte_t pte);
1133
1134 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1135 unsigned long size);
1136 void zap_page_range(struct vm_area_struct *vma, unsigned long address,
1137 unsigned long size, struct zap_details *);
1138 void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
1139 unsigned long start, unsigned long end);
1140
1141 /**
1142 * mm_walk - callbacks for walk_page_range
1143 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
1144 * this handler is required to be able to handle
1145 * pmd_trans_huge() pmds. They may simply choose to
1146 * split_huge_page() instead of handling it explicitly.
1147 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
1148 * @pte_hole: if set, called for each hole at all levels
1149 * @hugetlb_entry: if set, called for each hugetlb entry
1150 * @test_walk: caller specific callback function to determine whether
1151 * we walk over the current vma or not. A positive returned
1152 * value means "do page table walk over the current vma,"
1153 * and a negative one means "abort current page table walk
1154 * right now." 0 means "skip the current vma."
1155 * @mm: mm_struct representing the target process of page table walk
1156 * @vma: vma currently walked (NULL if walking outside vmas)
1157 * @private: private data for callbacks' usage
1158 *
1159 * (see the comment on walk_page_range() for more details)
1160 */
1161 struct mm_walk {
1162 int (*pmd_entry)(pmd_t *pmd, unsigned long addr,
1163 unsigned long next, struct mm_walk *walk);
1164 int (*pte_entry)(pte_t *pte, unsigned long addr,
1165 unsigned long next, struct mm_walk *walk);
1166 int (*pte_hole)(unsigned long addr, unsigned long next,
1167 struct mm_walk *walk);
1168 int (*hugetlb_entry)(pte_t *pte, unsigned long hmask,
1169 unsigned long addr, unsigned long next,
1170 struct mm_walk *walk);
1171 int (*test_walk)(unsigned long addr, unsigned long next,
1172 struct mm_walk *walk);
1173 struct mm_struct *mm;
1174 struct vm_area_struct *vma;
1175 void *private;
1176 };
1177
1178 int walk_page_range(unsigned long addr, unsigned long end,
1179 struct mm_walk *walk);
1180 int walk_page_vma(struct vm_area_struct *vma, struct mm_walk *walk);
1181 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
1182 unsigned long end, unsigned long floor, unsigned long ceiling);
1183 int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
1184 struct vm_area_struct *vma);
1185 void unmap_mapping_range(struct address_space *mapping,
1186 loff_t const holebegin, loff_t const holelen, int even_cows);
1187 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
1188 unsigned long *pfn);
1189 int follow_phys(struct vm_area_struct *vma, unsigned long address,
1190 unsigned int flags, unsigned long *prot, resource_size_t *phys);
1191 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
1192 void *buf, int len, int write);
1193
1194 static inline void unmap_shared_mapping_range(struct address_space *mapping,
1195 loff_t const holebegin, loff_t const holelen)
1196 {
1197 unmap_mapping_range(mapping, holebegin, holelen, 0);
1198 }
1199
1200 extern void truncate_pagecache(struct inode *inode, loff_t new);
1201 extern void truncate_setsize(struct inode *inode, loff_t newsize);
1202 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
1203 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
1204 int truncate_inode_page(struct address_space *mapping, struct page *page);
1205 int generic_error_remove_page(struct address_space *mapping, struct page *page);
1206 int invalidate_inode_page(struct page *page);
1207
1208 #ifdef CONFIG_MMU
1209 extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
1210 unsigned long address, unsigned int flags);
1211 extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1212 unsigned long address, unsigned int fault_flags);
1213 #else
1214 static inline int handle_mm_fault(struct mm_struct *mm,
1215 struct vm_area_struct *vma, unsigned long address,
1216 unsigned int flags)
1217 {
1218 /* should never happen if there's no MMU */
1219 BUG();
1220 return VM_FAULT_SIGBUS;
1221 }
1222 static inline int fixup_user_fault(struct task_struct *tsk,
1223 struct mm_struct *mm, unsigned long address,
1224 unsigned int fault_flags)
1225 {
1226 /* should never happen if there's no MMU */
1227 BUG();
1228 return -EFAULT;
1229 }
1230 #endif
1231
1232 extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write);
1233 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1234 void *buf, int len, int write);
1235
1236 long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1237 unsigned long start, unsigned long nr_pages,
1238 unsigned int foll_flags, struct page **pages,
1239 struct vm_area_struct **vmas, int *nonblocking);
1240 long get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1241 unsigned long start, unsigned long nr_pages,
1242 int write, int force, struct page **pages,
1243 struct vm_area_struct **vmas);
1244 long get_user_pages_locked(struct task_struct *tsk, struct mm_struct *mm,
1245 unsigned long start, unsigned long nr_pages,
1246 int write, int force, struct page **pages,
1247 int *locked);
1248 long __get_user_pages_unlocked(struct task_struct *tsk, struct mm_struct *mm,
1249 unsigned long start, unsigned long nr_pages,
1250 int write, int force, struct page **pages,
1251 unsigned int gup_flags);
1252 long get_user_pages_unlocked(struct task_struct *tsk, struct mm_struct *mm,
1253 unsigned long start, unsigned long nr_pages,
1254 int write, int force, struct page **pages);
1255 int get_user_pages_fast(unsigned long start, int nr_pages, int write,
1256 struct page **pages);
1257
1258 /* Container for pinned pfns / pages */
1259 struct frame_vector {
1260 unsigned int nr_allocated; /* Number of frames we have space for */
1261 unsigned int nr_frames; /* Number of frames stored in ptrs array */
1262 bool got_ref; /* Did we pin pages by getting page ref? */
1263 bool is_pfns; /* Does array contain pages or pfns? */
1264 void *ptrs[0]; /* Array of pinned pfns / pages. Use
1265 * pfns_vector_pages() or pfns_vector_pfns()
1266 * for access */
1267 };
1268
1269 struct frame_vector *frame_vector_create(unsigned int nr_frames);
1270 void frame_vector_destroy(struct frame_vector *vec);
1271 int get_vaddr_frames(unsigned long start, unsigned int nr_pfns,
1272 bool write, bool force, struct frame_vector *vec);
1273 void put_vaddr_frames(struct frame_vector *vec);
1274 int frame_vector_to_pages(struct frame_vector *vec);
1275 void frame_vector_to_pfns(struct frame_vector *vec);
1276
1277 static inline unsigned int frame_vector_count(struct frame_vector *vec)
1278 {
1279 return vec->nr_frames;
1280 }
1281
1282 static inline struct page **frame_vector_pages(struct frame_vector *vec)
1283 {
1284 if (vec->is_pfns) {
1285 int err = frame_vector_to_pages(vec);
1286
1287 if (err)
1288 return ERR_PTR(err);
1289 }
1290 return (struct page **)(vec->ptrs);
1291 }
1292
1293 static inline unsigned long *frame_vector_pfns(struct frame_vector *vec)
1294 {
1295 if (!vec->is_pfns)
1296 frame_vector_to_pfns(vec);
1297 return (unsigned long *)(vec->ptrs);
1298 }
1299
1300 struct kvec;
1301 int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1302 struct page **pages);
1303 int get_kernel_page(unsigned long start, int write, struct page **pages);
1304 struct page *get_dump_page(unsigned long addr);
1305
1306 extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
1307 extern void do_invalidatepage(struct page *page, unsigned int offset,
1308 unsigned int length);
1309
1310 int __set_page_dirty_nobuffers(struct page *page);
1311 int __set_page_dirty_no_writeback(struct page *page);
1312 int redirty_page_for_writepage(struct writeback_control *wbc,
1313 struct page *page);
1314 void account_page_dirtied(struct page *page, struct address_space *mapping,
1315 struct mem_cgroup *memcg);
1316 void account_page_cleaned(struct page *page, struct address_space *mapping,
1317 struct mem_cgroup *memcg, struct bdi_writeback *wb);
1318 int set_page_dirty(struct page *page);
1319 int set_page_dirty_lock(struct page *page);
1320 void cancel_dirty_page(struct page *page);
1321 int clear_page_dirty_for_io(struct page *page);
1322
1323 int get_cmdline(struct task_struct *task, char *buffer, int buflen);
1324
1325 /* Is the vma a continuation of the stack vma above it? */
1326 static inline int vma_growsdown(struct vm_area_struct *vma, unsigned long addr)
1327 {
1328 return vma && (vma->vm_end == addr) && (vma->vm_flags & VM_GROWSDOWN);
1329 }
1330
1331 static inline bool vma_is_anonymous(struct vm_area_struct *vma)
1332 {
1333 return !vma->vm_ops;
1334 }
1335
1336 static inline int stack_guard_page_start(struct vm_area_struct *vma,
1337 unsigned long addr)
1338 {
1339 return (vma->vm_flags & VM_GROWSDOWN) &&
1340 (vma->vm_start == addr) &&
1341 !vma_growsdown(vma->vm_prev, addr);
1342 }
1343
1344 /* Is the vma a continuation of the stack vma below it? */
1345 static inline int vma_growsup(struct vm_area_struct *vma, unsigned long addr)
1346 {
1347 return vma && (vma->vm_start == addr) && (vma->vm_flags & VM_GROWSUP);
1348 }
1349
1350 static inline int stack_guard_page_end(struct vm_area_struct *vma,
1351 unsigned long addr)
1352 {
1353 return (vma->vm_flags & VM_GROWSUP) &&
1354 (vma->vm_end == addr) &&
1355 !vma_growsup(vma->vm_next, addr);
1356 }
1357
1358 extern struct task_struct *task_of_stack(struct task_struct *task,
1359 struct vm_area_struct *vma, bool in_group);
1360
1361 extern unsigned long move_page_tables(struct vm_area_struct *vma,
1362 unsigned long old_addr, struct vm_area_struct *new_vma,
1363 unsigned long new_addr, unsigned long len,
1364 bool need_rmap_locks);
1365 extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
1366 unsigned long end, pgprot_t newprot,
1367 int dirty_accountable, int prot_numa);
1368 extern int mprotect_fixup(struct vm_area_struct *vma,
1369 struct vm_area_struct **pprev, unsigned long start,
1370 unsigned long end, unsigned long newflags);
1371
1372 /*
1373 * doesn't attempt to fault and will return short.
1374 */
1375 int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1376 struct page **pages);
1377 /*
1378 * per-process(per-mm_struct) statistics.
1379 */
1380 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1381 {
1382 long val = atomic_long_read(&mm->rss_stat.count[member]);
1383
1384 #ifdef SPLIT_RSS_COUNTING
1385 /*
1386 * counter is updated in asynchronous manner and may go to minus.
1387 * But it's never be expected number for users.
1388 */
1389 if (val < 0)
1390 val = 0;
1391 #endif
1392 return (unsigned long)val;
1393 }
1394
1395 static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1396 {
1397 atomic_long_add(value, &mm->rss_stat.count[member]);
1398 }
1399
1400 static inline void inc_mm_counter(struct mm_struct *mm, int member)
1401 {
1402 atomic_long_inc(&mm->rss_stat.count[member]);
1403 }
1404
1405 static inline void dec_mm_counter(struct mm_struct *mm, int member)
1406 {
1407 atomic_long_dec(&mm->rss_stat.count[member]);
1408 }
1409
1410 static inline unsigned long get_mm_rss(struct mm_struct *mm)
1411 {
1412 return get_mm_counter(mm, MM_FILEPAGES) +
1413 get_mm_counter(mm, MM_ANONPAGES);
1414 }
1415
1416 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1417 {
1418 return max(mm->hiwater_rss, get_mm_rss(mm));
1419 }
1420
1421 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1422 {
1423 return max(mm->hiwater_vm, mm->total_vm);
1424 }
1425
1426 static inline void update_hiwater_rss(struct mm_struct *mm)
1427 {
1428 unsigned long _rss = get_mm_rss(mm);
1429
1430 if ((mm)->hiwater_rss < _rss)
1431 (mm)->hiwater_rss = _rss;
1432 }
1433
1434 static inline void update_hiwater_vm(struct mm_struct *mm)
1435 {
1436 if (mm->hiwater_vm < mm->total_vm)
1437 mm->hiwater_vm = mm->total_vm;
1438 }
1439
1440 static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
1441 {
1442 mm->hiwater_rss = get_mm_rss(mm);
1443 }
1444
1445 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1446 struct mm_struct *mm)
1447 {
1448 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1449
1450 if (*maxrss < hiwater_rss)
1451 *maxrss = hiwater_rss;
1452 }
1453
1454 #if defined(SPLIT_RSS_COUNTING)
1455 void sync_mm_rss(struct mm_struct *mm);
1456 #else
1457 static inline void sync_mm_rss(struct mm_struct *mm)
1458 {
1459 }
1460 #endif
1461
1462 int vma_wants_writenotify(struct vm_area_struct *vma);
1463
1464 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1465 spinlock_t **ptl);
1466 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1467 spinlock_t **ptl)
1468 {
1469 pte_t *ptep;
1470 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
1471 return ptep;
1472 }
1473
1474 #ifdef __PAGETABLE_PUD_FOLDED
1475 static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd,
1476 unsigned long address)
1477 {
1478 return 0;
1479 }
1480 #else
1481 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
1482 #endif
1483
1484 #if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
1485 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
1486 unsigned long address)
1487 {
1488 return 0;
1489 }
1490
1491 static inline void mm_nr_pmds_init(struct mm_struct *mm) {}
1492
1493 static inline unsigned long mm_nr_pmds(struct mm_struct *mm)
1494 {
1495 return 0;
1496 }
1497
1498 static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
1499 static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
1500
1501 #else
1502 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
1503
1504 static inline void mm_nr_pmds_init(struct mm_struct *mm)
1505 {
1506 atomic_long_set(&mm->nr_pmds, 0);
1507 }
1508
1509 static inline unsigned long mm_nr_pmds(struct mm_struct *mm)
1510 {
1511 return atomic_long_read(&mm->nr_pmds);
1512 }
1513
1514 static inline void mm_inc_nr_pmds(struct mm_struct *mm)
1515 {
1516 atomic_long_inc(&mm->nr_pmds);
1517 }
1518
1519 static inline void mm_dec_nr_pmds(struct mm_struct *mm)
1520 {
1521 atomic_long_dec(&mm->nr_pmds);
1522 }
1523 #endif
1524
1525 int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
1526 pmd_t *pmd, unsigned long address);
1527 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
1528
1529 /*
1530 * The following ifdef needed to get the 4level-fixup.h header to work.
1531 * Remove it when 4level-fixup.h has been removed.
1532 */
1533 #if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
1534 static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
1535 {
1536 return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))?
1537 NULL: pud_offset(pgd, address);
1538 }
1539
1540 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1541 {
1542 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
1543 NULL: pmd_offset(pud, address);
1544 }
1545 #endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
1546
1547 #if USE_SPLIT_PTE_PTLOCKS
1548 #if ALLOC_SPLIT_PTLOCKS
1549 void __init ptlock_cache_init(void);
1550 extern bool ptlock_alloc(struct page *page);
1551 extern void ptlock_free(struct page *page);
1552
1553 static inline spinlock_t *ptlock_ptr(struct page *page)
1554 {
1555 return page->ptl;
1556 }
1557 #else /* ALLOC_SPLIT_PTLOCKS */
1558 static inline void ptlock_cache_init(void)
1559 {
1560 }
1561
1562 static inline bool ptlock_alloc(struct page *page)
1563 {
1564 return true;
1565 }
1566
1567 static inline void ptlock_free(struct page *page)
1568 {
1569 }
1570
1571 static inline spinlock_t *ptlock_ptr(struct page *page)
1572 {
1573 return &page->ptl;
1574 }
1575 #endif /* ALLOC_SPLIT_PTLOCKS */
1576
1577 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1578 {
1579 return ptlock_ptr(pmd_page(*pmd));
1580 }
1581
1582 static inline bool ptlock_init(struct page *page)
1583 {
1584 /*
1585 * prep_new_page() initialize page->private (and therefore page->ptl)
1586 * with 0. Make sure nobody took it in use in between.
1587 *
1588 * It can happen if arch try to use slab for page table allocation:
1589 * slab code uses page->slab_cache and page->first_page (for tail
1590 * pages), which share storage with page->ptl.
1591 */
1592 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
1593 if (!ptlock_alloc(page))
1594 return false;
1595 spin_lock_init(ptlock_ptr(page));
1596 return true;
1597 }
1598
1599 /* Reset page->mapping so free_pages_check won't complain. */
1600 static inline void pte_lock_deinit(struct page *page)
1601 {
1602 page->mapping = NULL;
1603 ptlock_free(page);
1604 }
1605
1606 #else /* !USE_SPLIT_PTE_PTLOCKS */
1607 /*
1608 * We use mm->page_table_lock to guard all pagetable pages of the mm.
1609 */
1610 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1611 {
1612 return &mm->page_table_lock;
1613 }
1614 static inline void ptlock_cache_init(void) {}
1615 static inline bool ptlock_init(struct page *page) { return true; }
1616 static inline void pte_lock_deinit(struct page *page) {}
1617 #endif /* USE_SPLIT_PTE_PTLOCKS */
1618
1619 static inline void pgtable_init(void)
1620 {
1621 ptlock_cache_init();
1622 pgtable_cache_init();
1623 }
1624
1625 static inline bool pgtable_page_ctor(struct page *page)
1626 {
1627 if (!ptlock_init(page))
1628 return false;
1629 inc_zone_page_state(page, NR_PAGETABLE);
1630 return true;
1631 }
1632
1633 static inline void pgtable_page_dtor(struct page *page)
1634 {
1635 pte_lock_deinit(page);
1636 dec_zone_page_state(page, NR_PAGETABLE);
1637 }
1638
1639 #define pte_offset_map_lock(mm, pmd, address, ptlp) \
1640 ({ \
1641 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
1642 pte_t *__pte = pte_offset_map(pmd, address); \
1643 *(ptlp) = __ptl; \
1644 spin_lock(__ptl); \
1645 __pte; \
1646 })
1647
1648 #define pte_unmap_unlock(pte, ptl) do { \
1649 spin_unlock(ptl); \
1650 pte_unmap(pte); \
1651 } while (0)
1652
1653 #define pte_alloc_map(mm, vma, pmd, address) \
1654 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, vma, \
1655 pmd, address))? \
1656 NULL: pte_offset_map(pmd, address))
1657
1658 #define pte_alloc_map_lock(mm, pmd, address, ptlp) \
1659 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, NULL, \
1660 pmd, address))? \
1661 NULL: pte_offset_map_lock(mm, pmd, address, ptlp))
1662
1663 #define pte_alloc_kernel(pmd, address) \
1664 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
1665 NULL: pte_offset_kernel(pmd, address))
1666
1667 #if USE_SPLIT_PMD_PTLOCKS
1668
1669 static struct page *pmd_to_page(pmd_t *pmd)
1670 {
1671 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
1672 return virt_to_page((void *)((unsigned long) pmd & mask));
1673 }
1674
1675 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1676 {
1677 return ptlock_ptr(pmd_to_page(pmd));
1678 }
1679
1680 static inline bool pgtable_pmd_page_ctor(struct page *page)
1681 {
1682 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1683 page->pmd_huge_pte = NULL;
1684 #endif
1685 return ptlock_init(page);
1686 }
1687
1688 static inline void pgtable_pmd_page_dtor(struct page *page)
1689 {
1690 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1691 VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
1692 #endif
1693 ptlock_free(page);
1694 }
1695
1696 #define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte)
1697
1698 #else
1699
1700 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1701 {
1702 return &mm->page_table_lock;
1703 }
1704
1705 static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; }
1706 static inline void pgtable_pmd_page_dtor(struct page *page) {}
1707
1708 #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
1709
1710 #endif
1711
1712 static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
1713 {
1714 spinlock_t *ptl = pmd_lockptr(mm, pmd);
1715 spin_lock(ptl);
1716 return ptl;
1717 }
1718
1719 extern void free_area_init(unsigned long * zones_size);
1720 extern void free_area_init_node(int nid, unsigned long * zones_size,
1721 unsigned long zone_start_pfn, unsigned long *zholes_size);
1722 extern void free_initmem(void);
1723
1724 /*
1725 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
1726 * into the buddy system. The freed pages will be poisoned with pattern
1727 * "poison" if it's within range [0, UCHAR_MAX].
1728 * Return pages freed into the buddy system.
1729 */
1730 extern unsigned long free_reserved_area(void *start, void *end,
1731 int poison, char *s);
1732
1733 #ifdef CONFIG_HIGHMEM
1734 /*
1735 * Free a highmem page into the buddy system, adjusting totalhigh_pages
1736 * and totalram_pages.
1737 */
1738 extern void free_highmem_page(struct page *page);
1739 #endif
1740
1741 extern void adjust_managed_page_count(struct page *page, long count);
1742 extern void mem_init_print_info(const char *str);
1743
1744 extern void reserve_bootmem_region(unsigned long start, unsigned long end);
1745
1746 /* Free the reserved page into the buddy system, so it gets managed. */
1747 static inline void __free_reserved_page(struct page *page)
1748 {
1749 ClearPageReserved(page);
1750 init_page_count(page);
1751 __free_page(page);
1752 }
1753
1754 static inline void free_reserved_page(struct page *page)
1755 {
1756 __free_reserved_page(page);
1757 adjust_managed_page_count(page, 1);
1758 }
1759
1760 static inline void mark_page_reserved(struct page *page)
1761 {
1762 SetPageReserved(page);
1763 adjust_managed_page_count(page, -1);
1764 }
1765
1766 /*
1767 * Default method to free all the __init memory into the buddy system.
1768 * The freed pages will be poisoned with pattern "poison" if it's within
1769 * range [0, UCHAR_MAX].
1770 * Return pages freed into the buddy system.
1771 */
1772 static inline unsigned long free_initmem_default(int poison)
1773 {
1774 extern char __init_begin[], __init_end[];
1775
1776 return free_reserved_area(&__init_begin, &__init_end,
1777 poison, "unused kernel");
1778 }
1779
1780 static inline unsigned long get_num_physpages(void)
1781 {
1782 int nid;
1783 unsigned long phys_pages = 0;
1784
1785 for_each_online_node(nid)
1786 phys_pages += node_present_pages(nid);
1787
1788 return phys_pages;
1789 }
1790
1791 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1792 /*
1793 * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its
1794 * zones, allocate the backing mem_map and account for memory holes in a more
1795 * architecture independent manner. This is a substitute for creating the
1796 * zone_sizes[] and zholes_size[] arrays and passing them to
1797 * free_area_init_node()
1798 *
1799 * An architecture is expected to register range of page frames backed by
1800 * physical memory with memblock_add[_node]() before calling
1801 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
1802 * usage, an architecture is expected to do something like
1803 *
1804 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
1805 * max_highmem_pfn};
1806 * for_each_valid_physical_page_range()
1807 * memblock_add_node(base, size, nid)
1808 * free_area_init_nodes(max_zone_pfns);
1809 *
1810 * free_bootmem_with_active_regions() calls free_bootmem_node() for each
1811 * registered physical page range. Similarly
1812 * sparse_memory_present_with_active_regions() calls memory_present() for
1813 * each range when SPARSEMEM is enabled.
1814 *
1815 * See mm/page_alloc.c for more information on each function exposed by
1816 * CONFIG_HAVE_MEMBLOCK_NODE_MAP.
1817 */
1818 extern void free_area_init_nodes(unsigned long *max_zone_pfn);
1819 unsigned long node_map_pfn_alignment(void);
1820 unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
1821 unsigned long end_pfn);
1822 extern unsigned long absent_pages_in_range(unsigned long start_pfn,
1823 unsigned long end_pfn);
1824 extern void get_pfn_range_for_nid(unsigned int nid,
1825 unsigned long *start_pfn, unsigned long *end_pfn);
1826 extern unsigned long find_min_pfn_with_active_regions(void);
1827 extern void free_bootmem_with_active_regions(int nid,
1828 unsigned long max_low_pfn);
1829 extern void sparse_memory_present_with_active_regions(int nid);
1830
1831 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
1832
1833 #if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \
1834 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
1835 static inline int __early_pfn_to_nid(unsigned long pfn,
1836 struct mminit_pfnnid_cache *state)
1837 {
1838 return 0;
1839 }
1840 #else
1841 /* please see mm/page_alloc.c */
1842 extern int __meminit early_pfn_to_nid(unsigned long pfn);
1843 /* there is a per-arch backend function. */
1844 extern int __meminit __early_pfn_to_nid(unsigned long pfn,
1845 struct mminit_pfnnid_cache *state);
1846 #endif
1847
1848 extern void set_dma_reserve(unsigned long new_dma_reserve);
1849 extern void memmap_init_zone(unsigned long, int, unsigned long,
1850 unsigned long, enum memmap_context);
1851 extern void setup_per_zone_wmarks(void);
1852 extern int __meminit init_per_zone_wmark_min(void);
1853 extern void mem_init(void);
1854 extern void __init mmap_init(void);
1855 extern void show_mem(unsigned int flags);
1856 extern void si_meminfo(struct sysinfo * val);
1857 extern void si_meminfo_node(struct sysinfo *val, int nid);
1858
1859 extern __printf(3, 4)
1860 void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...);
1861
1862 extern void setup_per_cpu_pageset(void);
1863
1864 extern void zone_pcp_update(struct zone *zone);
1865 extern void zone_pcp_reset(struct zone *zone);
1866
1867 /* page_alloc.c */
1868 extern int min_free_kbytes;
1869
1870 /* nommu.c */
1871 extern atomic_long_t mmap_pages_allocated;
1872 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
1873
1874 /* interval_tree.c */
1875 void vma_interval_tree_insert(struct vm_area_struct *node,
1876 struct rb_root *root);
1877 void vma_interval_tree_insert_after(struct vm_area_struct *node,
1878 struct vm_area_struct *prev,
1879 struct rb_root *root);
1880 void vma_interval_tree_remove(struct vm_area_struct *node,
1881 struct rb_root *root);
1882 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root *root,
1883 unsigned long start, unsigned long last);
1884 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
1885 unsigned long start, unsigned long last);
1886
1887 #define vma_interval_tree_foreach(vma, root, start, last) \
1888 for (vma = vma_interval_tree_iter_first(root, start, last); \
1889 vma; vma = vma_interval_tree_iter_next(vma, start, last))
1890
1891 void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
1892 struct rb_root *root);
1893 void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
1894 struct rb_root *root);
1895 struct anon_vma_chain *anon_vma_interval_tree_iter_first(
1896 struct rb_root *root, unsigned long start, unsigned long last);
1897 struct anon_vma_chain *anon_vma_interval_tree_iter_next(
1898 struct anon_vma_chain *node, unsigned long start, unsigned long last);
1899 #ifdef CONFIG_DEBUG_VM_RB
1900 void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
1901 #endif
1902
1903 #define anon_vma_interval_tree_foreach(avc, root, start, last) \
1904 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
1905 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
1906
1907 /* mmap.c */
1908 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
1909 extern int vma_adjust(struct vm_area_struct *vma, unsigned long start,
1910 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert);
1911 extern struct vm_area_struct *vma_merge(struct mm_struct *,
1912 struct vm_area_struct *prev, unsigned long addr, unsigned long end,
1913 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
1914 struct mempolicy *, struct vm_userfaultfd_ctx);
1915 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
1916 extern int split_vma(struct mm_struct *,
1917 struct vm_area_struct *, unsigned long addr, int new_below);
1918 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
1919 extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
1920 struct rb_node **, struct rb_node *);
1921 extern void unlink_file_vma(struct vm_area_struct *);
1922 extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
1923 unsigned long addr, unsigned long len, pgoff_t pgoff,
1924 bool *need_rmap_locks);
1925 extern void exit_mmap(struct mm_struct *);
1926
1927 static inline int check_data_rlimit(unsigned long rlim,
1928 unsigned long new,
1929 unsigned long start,
1930 unsigned long end_data,
1931 unsigned long start_data)
1932 {
1933 if (rlim < RLIM_INFINITY) {
1934 if (((new - start) + (end_data - start_data)) > rlim)
1935 return -ENOSPC;
1936 }
1937
1938 return 0;
1939 }
1940
1941 extern int mm_take_all_locks(struct mm_struct *mm);
1942 extern void mm_drop_all_locks(struct mm_struct *mm);
1943
1944 extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
1945 extern struct file *get_mm_exe_file(struct mm_struct *mm);
1946
1947 extern int may_expand_vm(struct mm_struct *mm, unsigned long npages);
1948 extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
1949 unsigned long addr, unsigned long len,
1950 unsigned long flags,
1951 const struct vm_special_mapping *spec);
1952 /* This is an obsolete alternative to _install_special_mapping. */
1953 extern int install_special_mapping(struct mm_struct *mm,
1954 unsigned long addr, unsigned long len,
1955 unsigned long flags, struct page **pages);
1956
1957 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
1958
1959 extern unsigned long mmap_region(struct file *file, unsigned long addr,
1960 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff);
1961 extern unsigned long do_mmap(struct file *file, unsigned long addr,
1962 unsigned long len, unsigned long prot, unsigned long flags,
1963 vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate);
1964 extern int do_munmap(struct mm_struct *, unsigned long, size_t);
1965
1966 static inline unsigned long
1967 do_mmap_pgoff(struct file *file, unsigned long addr,
1968 unsigned long len, unsigned long prot, unsigned long flags,
1969 unsigned long pgoff, unsigned long *populate)
1970 {
1971 return do_mmap(file, addr, len, prot, flags, 0, pgoff, populate);
1972 }
1973
1974 #ifdef CONFIG_MMU
1975 extern int __mm_populate(unsigned long addr, unsigned long len,
1976 int ignore_errors);
1977 static inline void mm_populate(unsigned long addr, unsigned long len)
1978 {
1979 /* Ignore errors */
1980 (void) __mm_populate(addr, len, 1);
1981 }
1982 #else
1983 static inline void mm_populate(unsigned long addr, unsigned long len) {}
1984 #endif
1985
1986 /* These take the mm semaphore themselves */
1987 extern unsigned long vm_brk(unsigned long, unsigned long);
1988 extern int vm_munmap(unsigned long, size_t);
1989 extern unsigned long vm_mmap(struct file *, unsigned long,
1990 unsigned long, unsigned long,
1991 unsigned long, unsigned long);
1992
1993 struct vm_unmapped_area_info {
1994 #define VM_UNMAPPED_AREA_TOPDOWN 1
1995 unsigned long flags;
1996 unsigned long length;
1997 unsigned long low_limit;
1998 unsigned long high_limit;
1999 unsigned long align_mask;
2000 unsigned long align_offset;
2001 };
2002
2003 extern unsigned long unmapped_area(struct vm_unmapped_area_info *info);
2004 extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info);
2005
2006 /*
2007 * Search for an unmapped address range.
2008 *
2009 * We are looking for a range that:
2010 * - does not intersect with any VMA;
2011 * - is contained within the [low_limit, high_limit) interval;
2012 * - is at least the desired size.
2013 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
2014 */
2015 static inline unsigned long
2016 vm_unmapped_area(struct vm_unmapped_area_info *info)
2017 {
2018 if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
2019 return unmapped_area_topdown(info);
2020 else
2021 return unmapped_area(info);
2022 }
2023
2024 /* truncate.c */
2025 extern void truncate_inode_pages(struct address_space *, loff_t);
2026 extern void truncate_inode_pages_range(struct address_space *,
2027 loff_t lstart, loff_t lend);
2028 extern void truncate_inode_pages_final(struct address_space *);
2029
2030 /* generic vm_area_ops exported for stackable file systems */
2031 extern int filemap_fault(struct vm_area_struct *, struct vm_fault *);
2032 extern void filemap_map_pages(struct vm_area_struct *vma, struct vm_fault *vmf);
2033 extern int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf);
2034
2035 /* mm/page-writeback.c */
2036 int write_one_page(struct page *page, int wait);
2037 void task_dirty_inc(struct task_struct *tsk);
2038
2039 /* readahead.c */
2040 #define VM_MAX_READAHEAD 128 /* kbytes */
2041 #define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */
2042
2043 int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
2044 pgoff_t offset, unsigned long nr_to_read);
2045
2046 void page_cache_sync_readahead(struct address_space *mapping,
2047 struct file_ra_state *ra,
2048 struct file *filp,
2049 pgoff_t offset,
2050 unsigned long size);
2051
2052 void page_cache_async_readahead(struct address_space *mapping,
2053 struct file_ra_state *ra,
2054 struct file *filp,
2055 struct page *pg,
2056 pgoff_t offset,
2057 unsigned long size);
2058
2059 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
2060 extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
2061
2062 /* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
2063 extern int expand_downwards(struct vm_area_struct *vma,
2064 unsigned long address);
2065 #if VM_GROWSUP
2066 extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
2067 #else
2068 #define expand_upwards(vma, address) (0)
2069 #endif
2070
2071 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
2072 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
2073 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
2074 struct vm_area_struct **pprev);
2075
2076 /* Look up the first VMA which intersects the interval start_addr..end_addr-1,
2077 NULL if none. Assume start_addr < end_addr. */
2078 static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
2079 {
2080 struct vm_area_struct * vma = find_vma(mm,start_addr);
2081
2082 if (vma && end_addr <= vma->vm_start)
2083 vma = NULL;
2084 return vma;
2085 }
2086
2087 static inline unsigned long vma_pages(struct vm_area_struct *vma)
2088 {
2089 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
2090 }
2091
2092 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */
2093 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
2094 unsigned long vm_start, unsigned long vm_end)
2095 {
2096 struct vm_area_struct *vma = find_vma(mm, vm_start);
2097
2098 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
2099 vma = NULL;
2100
2101 return vma;
2102 }
2103
2104 #ifdef CONFIG_MMU
2105 pgprot_t vm_get_page_prot(unsigned long vm_flags);
2106 void vma_set_page_prot(struct vm_area_struct *vma);
2107 #else
2108 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
2109 {
2110 return __pgprot(0);
2111 }
2112 static inline void vma_set_page_prot(struct vm_area_struct *vma)
2113 {
2114 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2115 }
2116 #endif
2117
2118 #ifdef CONFIG_NUMA_BALANCING
2119 unsigned long change_prot_numa(struct vm_area_struct *vma,
2120 unsigned long start, unsigned long end);
2121 #endif
2122
2123 struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
2124 int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
2125 unsigned long pfn, unsigned long size, pgprot_t);
2126 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
2127 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2128 unsigned long pfn);
2129 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2130 unsigned long pfn);
2131 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
2132
2133
2134 struct page *follow_page_mask(struct vm_area_struct *vma,
2135 unsigned long address, unsigned int foll_flags,
2136 unsigned int *page_mask);
2137
2138 static inline struct page *follow_page(struct vm_area_struct *vma,
2139 unsigned long address, unsigned int foll_flags)
2140 {
2141 unsigned int unused_page_mask;
2142 return follow_page_mask(vma, address, foll_flags, &unused_page_mask);
2143 }
2144
2145 #define FOLL_WRITE 0x01 /* check pte is writable */
2146 #define FOLL_TOUCH 0x02 /* mark page accessed */
2147 #define FOLL_GET 0x04 /* do get_page on page */
2148 #define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
2149 #define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
2150 #define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO
2151 * and return without waiting upon it */
2152 #define FOLL_POPULATE 0x40 /* fault in page */
2153 #define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */
2154 #define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */
2155 #define FOLL_NUMA 0x200 /* force NUMA hinting page fault */
2156 #define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */
2157 #define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */
2158 #define FOLL_MLOCK 0x1000 /* lock present pages */
2159
2160 typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
2161 void *data);
2162 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
2163 unsigned long size, pte_fn_t fn, void *data);
2164
2165 #ifdef CONFIG_PROC_FS
2166 void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long);
2167 #else
2168 static inline void vm_stat_account(struct mm_struct *mm,
2169 unsigned long flags, struct file *file, long pages)
2170 {
2171 mm->total_vm += pages;
2172 }
2173 #endif /* CONFIG_PROC_FS */
2174
2175 #ifdef CONFIG_DEBUG_PAGEALLOC
2176 extern bool _debug_pagealloc_enabled;
2177 extern void __kernel_map_pages(struct page *page, int numpages, int enable);
2178
2179 static inline bool debug_pagealloc_enabled(void)
2180 {
2181 return _debug_pagealloc_enabled;
2182 }
2183
2184 static inline void
2185 kernel_map_pages(struct page *page, int numpages, int enable)
2186 {
2187 if (!debug_pagealloc_enabled())
2188 return;
2189
2190 __kernel_map_pages(page, numpages, enable);
2191 }
2192 #ifdef CONFIG_HIBERNATION
2193 extern bool kernel_page_present(struct page *page);
2194 #endif /* CONFIG_HIBERNATION */
2195 #else
2196 static inline void
2197 kernel_map_pages(struct page *page, int numpages, int enable) {}
2198 #ifdef CONFIG_HIBERNATION
2199 static inline bool kernel_page_present(struct page *page) { return true; }
2200 #endif /* CONFIG_HIBERNATION */
2201 #endif
2202
2203 #ifdef __HAVE_ARCH_GATE_AREA
2204 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
2205 extern int in_gate_area_no_mm(unsigned long addr);
2206 extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
2207 #else
2208 static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
2209 {
2210 return NULL;
2211 }
2212 static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
2213 static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
2214 {
2215 return 0;
2216 }
2217 #endif /* __HAVE_ARCH_GATE_AREA */
2218
2219 #ifdef CONFIG_SYSCTL
2220 extern int sysctl_drop_caches;
2221 int drop_caches_sysctl_handler(struct ctl_table *, int,
2222 void __user *, size_t *, loff_t *);
2223 #endif
2224
2225 void drop_slab(void);
2226 void drop_slab_node(int nid);
2227
2228 #ifndef CONFIG_MMU
2229 #define randomize_va_space 0
2230 #else
2231 extern int randomize_va_space;
2232 #endif
2233
2234 const char * arch_vma_name(struct vm_area_struct *vma);
2235 void print_vma_addr(char *prefix, unsigned long rip);
2236
2237 void sparse_mem_maps_populate_node(struct page **map_map,
2238 unsigned long pnum_begin,
2239 unsigned long pnum_end,
2240 unsigned long map_count,
2241 int nodeid);
2242
2243 struct page *sparse_mem_map_populate(unsigned long pnum, int nid);
2244 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
2245 pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node);
2246 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
2247 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
2248 void *vmemmap_alloc_block(unsigned long size, int node);
2249 void *vmemmap_alloc_block_buf(unsigned long size, int node);
2250 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
2251 int vmemmap_populate_basepages(unsigned long start, unsigned long end,
2252 int node);
2253 int vmemmap_populate(unsigned long start, unsigned long end, int node);
2254 void vmemmap_populate_print_last(void);
2255 #ifdef CONFIG_MEMORY_HOTPLUG
2256 void vmemmap_free(unsigned long start, unsigned long end);
2257 #endif
2258 void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
2259 unsigned long size);
2260
2261 enum mf_flags {
2262 MF_COUNT_INCREASED = 1 << 0,
2263 MF_ACTION_REQUIRED = 1 << 1,
2264 MF_MUST_KILL = 1 << 2,
2265 MF_SOFT_OFFLINE = 1 << 3,
2266 };
2267 extern int memory_failure(unsigned long pfn, int trapno, int flags);
2268 extern void memory_failure_queue(unsigned long pfn, int trapno, int flags);
2269 extern int unpoison_memory(unsigned long pfn);
2270 extern int get_hwpoison_page(struct page *page);
2271 extern void put_hwpoison_page(struct page *page);
2272 extern int sysctl_memory_failure_early_kill;
2273 extern int sysctl_memory_failure_recovery;
2274 extern void shake_page(struct page *p, int access);
2275 extern atomic_long_t num_poisoned_pages;
2276 extern int soft_offline_page(struct page *page, int flags);
2277
2278
2279 /*
2280 * Error handlers for various types of pages.
2281 */
2282 enum mf_result {
2283 MF_IGNORED, /* Error: cannot be handled */
2284 MF_FAILED, /* Error: handling failed */
2285 MF_DELAYED, /* Will be handled later */
2286 MF_RECOVERED, /* Successfully recovered */
2287 };
2288
2289 enum mf_action_page_type {
2290 MF_MSG_KERNEL,
2291 MF_MSG_KERNEL_HIGH_ORDER,
2292 MF_MSG_SLAB,
2293 MF_MSG_DIFFERENT_COMPOUND,
2294 MF_MSG_POISONED_HUGE,
2295 MF_MSG_HUGE,
2296 MF_MSG_FREE_HUGE,
2297 MF_MSG_UNMAP_FAILED,
2298 MF_MSG_DIRTY_SWAPCACHE,
2299 MF_MSG_CLEAN_SWAPCACHE,
2300 MF_MSG_DIRTY_MLOCKED_LRU,
2301 MF_MSG_CLEAN_MLOCKED_LRU,
2302 MF_MSG_DIRTY_UNEVICTABLE_LRU,
2303 MF_MSG_CLEAN_UNEVICTABLE_LRU,
2304 MF_MSG_DIRTY_LRU,
2305 MF_MSG_CLEAN_LRU,
2306 MF_MSG_TRUNCATED_LRU,
2307 MF_MSG_BUDDY,
2308 MF_MSG_BUDDY_2ND,
2309 MF_MSG_UNKNOWN,
2310 };
2311
2312 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
2313 extern void clear_huge_page(struct page *page,
2314 unsigned long addr,
2315 unsigned int pages_per_huge_page);
2316 extern void copy_user_huge_page(struct page *dst, struct page *src,
2317 unsigned long addr, struct vm_area_struct *vma,
2318 unsigned int pages_per_huge_page);
2319 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
2320
2321 extern struct page_ext_operations debug_guardpage_ops;
2322 extern struct page_ext_operations page_poisoning_ops;
2323
2324 #ifdef CONFIG_DEBUG_PAGEALLOC
2325 extern unsigned int _debug_guardpage_minorder;
2326 extern bool _debug_guardpage_enabled;
2327
2328 static inline unsigned int debug_guardpage_minorder(void)
2329 {
2330 return _debug_guardpage_minorder;
2331 }
2332
2333 static inline bool debug_guardpage_enabled(void)
2334 {
2335 return _debug_guardpage_enabled;
2336 }
2337
2338 static inline bool page_is_guard(struct page *page)
2339 {
2340 struct page_ext *page_ext;
2341
2342 if (!debug_guardpage_enabled())
2343 return false;
2344
2345 page_ext = lookup_page_ext(page);
2346 return test_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
2347 }
2348 #else
2349 static inline unsigned int debug_guardpage_minorder(void) { return 0; }
2350 static inline bool debug_guardpage_enabled(void) { return false; }
2351 static inline bool page_is_guard(struct page *page) { return false; }
2352 #endif /* CONFIG_DEBUG_PAGEALLOC */
2353
2354 #if MAX_NUMNODES > 1
2355 void __init setup_nr_node_ids(void);
2356 #else
2357 static inline void setup_nr_node_ids(void) {}
2358 #endif
2359
2360 #endif /* __KERNEL__ */
2361 #endif /* _LINUX_MM_H */
This page took 0.105124 seconds and 6 git commands to generate.