Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mpe/linux
[deliverable/linux.git] / include / linux / mm.h
1 #ifndef _LINUX_MM_H
2 #define _LINUX_MM_H
3
4 #include <linux/errno.h>
5
6 #ifdef __KERNEL__
7
8 #include <linux/mmdebug.h>
9 #include <linux/gfp.h>
10 #include <linux/bug.h>
11 #include <linux/list.h>
12 #include <linux/mmzone.h>
13 #include <linux/rbtree.h>
14 #include <linux/atomic.h>
15 #include <linux/debug_locks.h>
16 #include <linux/mm_types.h>
17 #include <linux/range.h>
18 #include <linux/pfn.h>
19 #include <linux/bit_spinlock.h>
20 #include <linux/shrinker.h>
21 #include <linux/resource.h>
22
23 struct mempolicy;
24 struct anon_vma;
25 struct anon_vma_chain;
26 struct file_ra_state;
27 struct user_struct;
28 struct writeback_control;
29
30 #ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */
31 extern unsigned long max_mapnr;
32
33 static inline void set_max_mapnr(unsigned long limit)
34 {
35 max_mapnr = limit;
36 }
37 #else
38 static inline void set_max_mapnr(unsigned long limit) { }
39 #endif
40
41 extern unsigned long totalram_pages;
42 extern void * high_memory;
43 extern int page_cluster;
44
45 #ifdef CONFIG_SYSCTL
46 extern int sysctl_legacy_va_layout;
47 #else
48 #define sysctl_legacy_va_layout 0
49 #endif
50
51 #include <asm/page.h>
52 #include <asm/pgtable.h>
53 #include <asm/processor.h>
54
55 #ifndef __pa_symbol
56 #define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0))
57 #endif
58
59 extern unsigned long sysctl_user_reserve_kbytes;
60 extern unsigned long sysctl_admin_reserve_kbytes;
61
62 extern int sysctl_overcommit_memory;
63 extern int sysctl_overcommit_ratio;
64 extern unsigned long sysctl_overcommit_kbytes;
65
66 extern int overcommit_ratio_handler(struct ctl_table *, int, void __user *,
67 size_t *, loff_t *);
68 extern int overcommit_kbytes_handler(struct ctl_table *, int, void __user *,
69 size_t *, loff_t *);
70
71 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
72
73 /* to align the pointer to the (next) page boundary */
74 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
75
76 /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
77 #define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)addr, PAGE_SIZE)
78
79 /*
80 * Linux kernel virtual memory manager primitives.
81 * The idea being to have a "virtual" mm in the same way
82 * we have a virtual fs - giving a cleaner interface to the
83 * mm details, and allowing different kinds of memory mappings
84 * (from shared memory to executable loading to arbitrary
85 * mmap() functions).
86 */
87
88 extern struct kmem_cache *vm_area_cachep;
89
90 #ifndef CONFIG_MMU
91 extern struct rb_root nommu_region_tree;
92 extern struct rw_semaphore nommu_region_sem;
93
94 extern unsigned int kobjsize(const void *objp);
95 #endif
96
97 /*
98 * vm_flags in vm_area_struct, see mm_types.h.
99 */
100 #define VM_NONE 0x00000000
101
102 #define VM_READ 0x00000001 /* currently active flags */
103 #define VM_WRITE 0x00000002
104 #define VM_EXEC 0x00000004
105 #define VM_SHARED 0x00000008
106
107 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
108 #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
109 #define VM_MAYWRITE 0x00000020
110 #define VM_MAYEXEC 0x00000040
111 #define VM_MAYSHARE 0x00000080
112
113 #define VM_GROWSDOWN 0x00000100 /* general info on the segment */
114 #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
115 #define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
116
117 #define VM_LOCKED 0x00002000
118 #define VM_IO 0x00004000 /* Memory mapped I/O or similar */
119
120 /* Used by sys_madvise() */
121 #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
122 #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
123
124 #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
125 #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
126 #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
127 #define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
128 #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
129 #define VM_NONLINEAR 0x00800000 /* Is non-linear (remap_file_pages) */
130 #define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
131 #define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
132
133 #ifdef CONFIG_MEM_SOFT_DIRTY
134 # define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */
135 #else
136 # define VM_SOFTDIRTY 0
137 #endif
138
139 #define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
140 #define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
141 #define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
142 #define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
143
144 #if defined(CONFIG_X86)
145 # define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
146 #elif defined(CONFIG_PPC)
147 # define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
148 #elif defined(CONFIG_PARISC)
149 # define VM_GROWSUP VM_ARCH_1
150 #elif defined(CONFIG_METAG)
151 # define VM_GROWSUP VM_ARCH_1
152 #elif defined(CONFIG_IA64)
153 # define VM_GROWSUP VM_ARCH_1
154 #elif !defined(CONFIG_MMU)
155 # define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
156 #endif
157
158 #ifndef VM_GROWSUP
159 # define VM_GROWSUP VM_NONE
160 #endif
161
162 /* Bits set in the VMA until the stack is in its final location */
163 #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
164
165 #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
166 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
167 #endif
168
169 #ifdef CONFIG_STACK_GROWSUP
170 #define VM_STACK_FLAGS (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
171 #else
172 #define VM_STACK_FLAGS (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
173 #endif
174
175 /*
176 * Special vmas that are non-mergable, non-mlock()able.
177 * Note: mm/huge_memory.c VM_NO_THP depends on this definition.
178 */
179 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
180
181 /* This mask defines which mm->def_flags a process can inherit its parent */
182 #define VM_INIT_DEF_MASK VM_NOHUGEPAGE
183
184 /*
185 * mapping from the currently active vm_flags protection bits (the
186 * low four bits) to a page protection mask..
187 */
188 extern pgprot_t protection_map[16];
189
190 #define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */
191 #define FAULT_FLAG_NONLINEAR 0x02 /* Fault was via a nonlinear mapping */
192 #define FAULT_FLAG_MKWRITE 0x04 /* Fault was mkwrite of existing pte */
193 #define FAULT_FLAG_ALLOW_RETRY 0x08 /* Retry fault if blocking */
194 #define FAULT_FLAG_RETRY_NOWAIT 0x10 /* Don't drop mmap_sem and wait when retrying */
195 #define FAULT_FLAG_KILLABLE 0x20 /* The fault task is in SIGKILL killable region */
196 #define FAULT_FLAG_TRIED 0x40 /* second try */
197 #define FAULT_FLAG_USER 0x80 /* The fault originated in userspace */
198
199 /*
200 * vm_fault is filled by the the pagefault handler and passed to the vma's
201 * ->fault function. The vma's ->fault is responsible for returning a bitmask
202 * of VM_FAULT_xxx flags that give details about how the fault was handled.
203 *
204 * pgoff should be used in favour of virtual_address, if possible. If pgoff
205 * is used, one may implement ->remap_pages to get nonlinear mapping support.
206 */
207 struct vm_fault {
208 unsigned int flags; /* FAULT_FLAG_xxx flags */
209 pgoff_t pgoff; /* Logical page offset based on vma */
210 void __user *virtual_address; /* Faulting virtual address */
211
212 struct page *page; /* ->fault handlers should return a
213 * page here, unless VM_FAULT_NOPAGE
214 * is set (which is also implied by
215 * VM_FAULT_ERROR).
216 */
217 /* for ->map_pages() only */
218 pgoff_t max_pgoff; /* map pages for offset from pgoff till
219 * max_pgoff inclusive */
220 pte_t *pte; /* pte entry associated with ->pgoff */
221 };
222
223 /*
224 * These are the virtual MM functions - opening of an area, closing and
225 * unmapping it (needed to keep files on disk up-to-date etc), pointer
226 * to the functions called when a no-page or a wp-page exception occurs.
227 */
228 struct vm_operations_struct {
229 void (*open)(struct vm_area_struct * area);
230 void (*close)(struct vm_area_struct * area);
231 int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf);
232 void (*map_pages)(struct vm_area_struct *vma, struct vm_fault *vmf);
233
234 /* notification that a previously read-only page is about to become
235 * writable, if an error is returned it will cause a SIGBUS */
236 int (*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
237
238 /* called by access_process_vm when get_user_pages() fails, typically
239 * for use by special VMAs that can switch between memory and hardware
240 */
241 int (*access)(struct vm_area_struct *vma, unsigned long addr,
242 void *buf, int len, int write);
243
244 /* Called by the /proc/PID/maps code to ask the vma whether it
245 * has a special name. Returning non-NULL will also cause this
246 * vma to be dumped unconditionally. */
247 const char *(*name)(struct vm_area_struct *vma);
248
249 #ifdef CONFIG_NUMA
250 /*
251 * set_policy() op must add a reference to any non-NULL @new mempolicy
252 * to hold the policy upon return. Caller should pass NULL @new to
253 * remove a policy and fall back to surrounding context--i.e. do not
254 * install a MPOL_DEFAULT policy, nor the task or system default
255 * mempolicy.
256 */
257 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
258
259 /*
260 * get_policy() op must add reference [mpol_get()] to any policy at
261 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
262 * in mm/mempolicy.c will do this automatically.
263 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
264 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
265 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
266 * must return NULL--i.e., do not "fallback" to task or system default
267 * policy.
268 */
269 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
270 unsigned long addr);
271 int (*migrate)(struct vm_area_struct *vma, const nodemask_t *from,
272 const nodemask_t *to, unsigned long flags);
273 #endif
274 /* called by sys_remap_file_pages() to populate non-linear mapping */
275 int (*remap_pages)(struct vm_area_struct *vma, unsigned long addr,
276 unsigned long size, pgoff_t pgoff);
277 };
278
279 struct mmu_gather;
280 struct inode;
281
282 #define page_private(page) ((page)->private)
283 #define set_page_private(page, v) ((page)->private = (v))
284
285 /* It's valid only if the page is free path or free_list */
286 static inline void set_freepage_migratetype(struct page *page, int migratetype)
287 {
288 page->index = migratetype;
289 }
290
291 /* It's valid only if the page is free path or free_list */
292 static inline int get_freepage_migratetype(struct page *page)
293 {
294 return page->index;
295 }
296
297 /*
298 * FIXME: take this include out, include page-flags.h in
299 * files which need it (119 of them)
300 */
301 #include <linux/page-flags.h>
302 #include <linux/huge_mm.h>
303
304 /*
305 * Methods to modify the page usage count.
306 *
307 * What counts for a page usage:
308 * - cache mapping (page->mapping)
309 * - private data (page->private)
310 * - page mapped in a task's page tables, each mapping
311 * is counted separately
312 *
313 * Also, many kernel routines increase the page count before a critical
314 * routine so they can be sure the page doesn't go away from under them.
315 */
316
317 /*
318 * Drop a ref, return true if the refcount fell to zero (the page has no users)
319 */
320 static inline int put_page_testzero(struct page *page)
321 {
322 VM_BUG_ON_PAGE(atomic_read(&page->_count) == 0, page);
323 return atomic_dec_and_test(&page->_count);
324 }
325
326 /*
327 * Try to grab a ref unless the page has a refcount of zero, return false if
328 * that is the case.
329 * This can be called when MMU is off so it must not access
330 * any of the virtual mappings.
331 */
332 static inline int get_page_unless_zero(struct page *page)
333 {
334 return atomic_inc_not_zero(&page->_count);
335 }
336
337 /*
338 * Try to drop a ref unless the page has a refcount of one, return false if
339 * that is the case.
340 * This is to make sure that the refcount won't become zero after this drop.
341 * This can be called when MMU is off so it must not access
342 * any of the virtual mappings.
343 */
344 static inline int put_page_unless_one(struct page *page)
345 {
346 return atomic_add_unless(&page->_count, -1, 1);
347 }
348
349 extern int page_is_ram(unsigned long pfn);
350
351 /* Support for virtually mapped pages */
352 struct page *vmalloc_to_page(const void *addr);
353 unsigned long vmalloc_to_pfn(const void *addr);
354
355 /*
356 * Determine if an address is within the vmalloc range
357 *
358 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
359 * is no special casing required.
360 */
361 static inline int is_vmalloc_addr(const void *x)
362 {
363 #ifdef CONFIG_MMU
364 unsigned long addr = (unsigned long)x;
365
366 return addr >= VMALLOC_START && addr < VMALLOC_END;
367 #else
368 return 0;
369 #endif
370 }
371 #ifdef CONFIG_MMU
372 extern int is_vmalloc_or_module_addr(const void *x);
373 #else
374 static inline int is_vmalloc_or_module_addr(const void *x)
375 {
376 return 0;
377 }
378 #endif
379
380 extern void kvfree(const void *addr);
381
382 static inline void compound_lock(struct page *page)
383 {
384 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
385 VM_BUG_ON_PAGE(PageSlab(page), page);
386 bit_spin_lock(PG_compound_lock, &page->flags);
387 #endif
388 }
389
390 static inline void compound_unlock(struct page *page)
391 {
392 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
393 VM_BUG_ON_PAGE(PageSlab(page), page);
394 bit_spin_unlock(PG_compound_lock, &page->flags);
395 #endif
396 }
397
398 static inline unsigned long compound_lock_irqsave(struct page *page)
399 {
400 unsigned long uninitialized_var(flags);
401 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
402 local_irq_save(flags);
403 compound_lock(page);
404 #endif
405 return flags;
406 }
407
408 static inline void compound_unlock_irqrestore(struct page *page,
409 unsigned long flags)
410 {
411 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
412 compound_unlock(page);
413 local_irq_restore(flags);
414 #endif
415 }
416
417 static inline struct page *compound_head_by_tail(struct page *tail)
418 {
419 struct page *head = tail->first_page;
420
421 /*
422 * page->first_page may be a dangling pointer to an old
423 * compound page, so recheck that it is still a tail
424 * page before returning.
425 */
426 smp_rmb();
427 if (likely(PageTail(tail)))
428 return head;
429 return tail;
430 }
431
432 static inline struct page *compound_head(struct page *page)
433 {
434 if (unlikely(PageTail(page)))
435 return compound_head_by_tail(page);
436 return page;
437 }
438
439 /*
440 * The atomic page->_mapcount, starts from -1: so that transitions
441 * both from it and to it can be tracked, using atomic_inc_and_test
442 * and atomic_add_negative(-1).
443 */
444 static inline void page_mapcount_reset(struct page *page)
445 {
446 atomic_set(&(page)->_mapcount, -1);
447 }
448
449 static inline int page_mapcount(struct page *page)
450 {
451 return atomic_read(&(page)->_mapcount) + 1;
452 }
453
454 static inline int page_count(struct page *page)
455 {
456 return atomic_read(&compound_head(page)->_count);
457 }
458
459 #ifdef CONFIG_HUGETLB_PAGE
460 extern int PageHeadHuge(struct page *page_head);
461 #else /* CONFIG_HUGETLB_PAGE */
462 static inline int PageHeadHuge(struct page *page_head)
463 {
464 return 0;
465 }
466 #endif /* CONFIG_HUGETLB_PAGE */
467
468 static inline bool __compound_tail_refcounted(struct page *page)
469 {
470 return !PageSlab(page) && !PageHeadHuge(page);
471 }
472
473 /*
474 * This takes a head page as parameter and tells if the
475 * tail page reference counting can be skipped.
476 *
477 * For this to be safe, PageSlab and PageHeadHuge must remain true on
478 * any given page where they return true here, until all tail pins
479 * have been released.
480 */
481 static inline bool compound_tail_refcounted(struct page *page)
482 {
483 VM_BUG_ON_PAGE(!PageHead(page), page);
484 return __compound_tail_refcounted(page);
485 }
486
487 static inline void get_huge_page_tail(struct page *page)
488 {
489 /*
490 * __split_huge_page_refcount() cannot run from under us.
491 */
492 VM_BUG_ON_PAGE(!PageTail(page), page);
493 VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
494 VM_BUG_ON_PAGE(atomic_read(&page->_count) != 0, page);
495 if (compound_tail_refcounted(page->first_page))
496 atomic_inc(&page->_mapcount);
497 }
498
499 extern bool __get_page_tail(struct page *page);
500
501 static inline void get_page(struct page *page)
502 {
503 if (unlikely(PageTail(page)))
504 if (likely(__get_page_tail(page)))
505 return;
506 /*
507 * Getting a normal page or the head of a compound page
508 * requires to already have an elevated page->_count.
509 */
510 VM_BUG_ON_PAGE(atomic_read(&page->_count) <= 0, page);
511 atomic_inc(&page->_count);
512 }
513
514 static inline struct page *virt_to_head_page(const void *x)
515 {
516 struct page *page = virt_to_page(x);
517 return compound_head(page);
518 }
519
520 /*
521 * Setup the page count before being freed into the page allocator for
522 * the first time (boot or memory hotplug)
523 */
524 static inline void init_page_count(struct page *page)
525 {
526 atomic_set(&page->_count, 1);
527 }
528
529 /*
530 * PageBuddy() indicate that the page is free and in the buddy system
531 * (see mm/page_alloc.c).
532 *
533 * PAGE_BUDDY_MAPCOUNT_VALUE must be <= -2 but better not too close to
534 * -2 so that an underflow of the page_mapcount() won't be mistaken
535 * for a genuine PAGE_BUDDY_MAPCOUNT_VALUE. -128 can be created very
536 * efficiently by most CPU architectures.
537 */
538 #define PAGE_BUDDY_MAPCOUNT_VALUE (-128)
539
540 static inline int PageBuddy(struct page *page)
541 {
542 return atomic_read(&page->_mapcount) == PAGE_BUDDY_MAPCOUNT_VALUE;
543 }
544
545 static inline void __SetPageBuddy(struct page *page)
546 {
547 VM_BUG_ON_PAGE(atomic_read(&page->_mapcount) != -1, page);
548 atomic_set(&page->_mapcount, PAGE_BUDDY_MAPCOUNT_VALUE);
549 }
550
551 static inline void __ClearPageBuddy(struct page *page)
552 {
553 VM_BUG_ON_PAGE(!PageBuddy(page), page);
554 atomic_set(&page->_mapcount, -1);
555 }
556
557 #define PAGE_BALLOON_MAPCOUNT_VALUE (-256)
558
559 static inline int PageBalloon(struct page *page)
560 {
561 return atomic_read(&page->_mapcount) == PAGE_BALLOON_MAPCOUNT_VALUE;
562 }
563
564 static inline void __SetPageBalloon(struct page *page)
565 {
566 VM_BUG_ON_PAGE(atomic_read(&page->_mapcount) != -1, page);
567 atomic_set(&page->_mapcount, PAGE_BALLOON_MAPCOUNT_VALUE);
568 }
569
570 static inline void __ClearPageBalloon(struct page *page)
571 {
572 VM_BUG_ON_PAGE(!PageBalloon(page), page);
573 atomic_set(&page->_mapcount, -1);
574 }
575
576 void put_page(struct page *page);
577 void put_pages_list(struct list_head *pages);
578
579 void split_page(struct page *page, unsigned int order);
580 int split_free_page(struct page *page);
581
582 /*
583 * Compound pages have a destructor function. Provide a
584 * prototype for that function and accessor functions.
585 * These are _only_ valid on the head of a PG_compound page.
586 */
587 typedef void compound_page_dtor(struct page *);
588
589 static inline void set_compound_page_dtor(struct page *page,
590 compound_page_dtor *dtor)
591 {
592 page[1].lru.next = (void *)dtor;
593 }
594
595 static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
596 {
597 return (compound_page_dtor *)page[1].lru.next;
598 }
599
600 static inline int compound_order(struct page *page)
601 {
602 if (!PageHead(page))
603 return 0;
604 return (unsigned long)page[1].lru.prev;
605 }
606
607 static inline void set_compound_order(struct page *page, unsigned long order)
608 {
609 page[1].lru.prev = (void *)order;
610 }
611
612 #ifdef CONFIG_MMU
613 /*
614 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
615 * servicing faults for write access. In the normal case, do always want
616 * pte_mkwrite. But get_user_pages can cause write faults for mappings
617 * that do not have writing enabled, when used by access_process_vm.
618 */
619 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
620 {
621 if (likely(vma->vm_flags & VM_WRITE))
622 pte = pte_mkwrite(pte);
623 return pte;
624 }
625
626 void do_set_pte(struct vm_area_struct *vma, unsigned long address,
627 struct page *page, pte_t *pte, bool write, bool anon);
628 #endif
629
630 /*
631 * Multiple processes may "see" the same page. E.g. for untouched
632 * mappings of /dev/null, all processes see the same page full of
633 * zeroes, and text pages of executables and shared libraries have
634 * only one copy in memory, at most, normally.
635 *
636 * For the non-reserved pages, page_count(page) denotes a reference count.
637 * page_count() == 0 means the page is free. page->lru is then used for
638 * freelist management in the buddy allocator.
639 * page_count() > 0 means the page has been allocated.
640 *
641 * Pages are allocated by the slab allocator in order to provide memory
642 * to kmalloc and kmem_cache_alloc. In this case, the management of the
643 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
644 * unless a particular usage is carefully commented. (the responsibility of
645 * freeing the kmalloc memory is the caller's, of course).
646 *
647 * A page may be used by anyone else who does a __get_free_page().
648 * In this case, page_count still tracks the references, and should only
649 * be used through the normal accessor functions. The top bits of page->flags
650 * and page->virtual store page management information, but all other fields
651 * are unused and could be used privately, carefully. The management of this
652 * page is the responsibility of the one who allocated it, and those who have
653 * subsequently been given references to it.
654 *
655 * The other pages (we may call them "pagecache pages") are completely
656 * managed by the Linux memory manager: I/O, buffers, swapping etc.
657 * The following discussion applies only to them.
658 *
659 * A pagecache page contains an opaque `private' member, which belongs to the
660 * page's address_space. Usually, this is the address of a circular list of
661 * the page's disk buffers. PG_private must be set to tell the VM to call
662 * into the filesystem to release these pages.
663 *
664 * A page may belong to an inode's memory mapping. In this case, page->mapping
665 * is the pointer to the inode, and page->index is the file offset of the page,
666 * in units of PAGE_CACHE_SIZE.
667 *
668 * If pagecache pages are not associated with an inode, they are said to be
669 * anonymous pages. These may become associated with the swapcache, and in that
670 * case PG_swapcache is set, and page->private is an offset into the swapcache.
671 *
672 * In either case (swapcache or inode backed), the pagecache itself holds one
673 * reference to the page. Setting PG_private should also increment the
674 * refcount. The each user mapping also has a reference to the page.
675 *
676 * The pagecache pages are stored in a per-mapping radix tree, which is
677 * rooted at mapping->page_tree, and indexed by offset.
678 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
679 * lists, we instead now tag pages as dirty/writeback in the radix tree.
680 *
681 * All pagecache pages may be subject to I/O:
682 * - inode pages may need to be read from disk,
683 * - inode pages which have been modified and are MAP_SHARED may need
684 * to be written back to the inode on disk,
685 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
686 * modified may need to be swapped out to swap space and (later) to be read
687 * back into memory.
688 */
689
690 /*
691 * The zone field is never updated after free_area_init_core()
692 * sets it, so none of the operations on it need to be atomic.
693 */
694
695 /* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
696 #define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
697 #define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
698 #define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
699 #define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH)
700
701 /*
702 * Define the bit shifts to access each section. For non-existent
703 * sections we define the shift as 0; that plus a 0 mask ensures
704 * the compiler will optimise away reference to them.
705 */
706 #define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
707 #define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
708 #define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
709 #define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
710
711 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
712 #ifdef NODE_NOT_IN_PAGE_FLAGS
713 #define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
714 #define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
715 SECTIONS_PGOFF : ZONES_PGOFF)
716 #else
717 #define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
718 #define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
719 NODES_PGOFF : ZONES_PGOFF)
720 #endif
721
722 #define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
723
724 #if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
725 #error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
726 #endif
727
728 #define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
729 #define NODES_MASK ((1UL << NODES_WIDTH) - 1)
730 #define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
731 #define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1)
732 #define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
733
734 static inline enum zone_type page_zonenum(const struct page *page)
735 {
736 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
737 }
738
739 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
740 #define SECTION_IN_PAGE_FLAGS
741 #endif
742
743 /*
744 * The identification function is mainly used by the buddy allocator for
745 * determining if two pages could be buddies. We are not really identifying
746 * the zone since we could be using the section number id if we do not have
747 * node id available in page flags.
748 * We only guarantee that it will return the same value for two combinable
749 * pages in a zone.
750 */
751 static inline int page_zone_id(struct page *page)
752 {
753 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
754 }
755
756 static inline int zone_to_nid(struct zone *zone)
757 {
758 #ifdef CONFIG_NUMA
759 return zone->node;
760 #else
761 return 0;
762 #endif
763 }
764
765 #ifdef NODE_NOT_IN_PAGE_FLAGS
766 extern int page_to_nid(const struct page *page);
767 #else
768 static inline int page_to_nid(const struct page *page)
769 {
770 return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
771 }
772 #endif
773
774 #ifdef CONFIG_NUMA_BALANCING
775 static inline int cpu_pid_to_cpupid(int cpu, int pid)
776 {
777 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
778 }
779
780 static inline int cpupid_to_pid(int cpupid)
781 {
782 return cpupid & LAST__PID_MASK;
783 }
784
785 static inline int cpupid_to_cpu(int cpupid)
786 {
787 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
788 }
789
790 static inline int cpupid_to_nid(int cpupid)
791 {
792 return cpu_to_node(cpupid_to_cpu(cpupid));
793 }
794
795 static inline bool cpupid_pid_unset(int cpupid)
796 {
797 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
798 }
799
800 static inline bool cpupid_cpu_unset(int cpupid)
801 {
802 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
803 }
804
805 static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
806 {
807 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
808 }
809
810 #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
811 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
812 static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
813 {
814 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
815 }
816
817 static inline int page_cpupid_last(struct page *page)
818 {
819 return page->_last_cpupid;
820 }
821 static inline void page_cpupid_reset_last(struct page *page)
822 {
823 page->_last_cpupid = -1 & LAST_CPUPID_MASK;
824 }
825 #else
826 static inline int page_cpupid_last(struct page *page)
827 {
828 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
829 }
830
831 extern int page_cpupid_xchg_last(struct page *page, int cpupid);
832
833 static inline void page_cpupid_reset_last(struct page *page)
834 {
835 int cpupid = (1 << LAST_CPUPID_SHIFT) - 1;
836
837 page->flags &= ~(LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT);
838 page->flags |= (cpupid & LAST_CPUPID_MASK) << LAST_CPUPID_PGSHIFT;
839 }
840 #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
841 #else /* !CONFIG_NUMA_BALANCING */
842 static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
843 {
844 return page_to_nid(page); /* XXX */
845 }
846
847 static inline int page_cpupid_last(struct page *page)
848 {
849 return page_to_nid(page); /* XXX */
850 }
851
852 static inline int cpupid_to_nid(int cpupid)
853 {
854 return -1;
855 }
856
857 static inline int cpupid_to_pid(int cpupid)
858 {
859 return -1;
860 }
861
862 static inline int cpupid_to_cpu(int cpupid)
863 {
864 return -1;
865 }
866
867 static inline int cpu_pid_to_cpupid(int nid, int pid)
868 {
869 return -1;
870 }
871
872 static inline bool cpupid_pid_unset(int cpupid)
873 {
874 return 1;
875 }
876
877 static inline void page_cpupid_reset_last(struct page *page)
878 {
879 }
880
881 static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
882 {
883 return false;
884 }
885 #endif /* CONFIG_NUMA_BALANCING */
886
887 static inline struct zone *page_zone(const struct page *page)
888 {
889 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
890 }
891
892 #ifdef SECTION_IN_PAGE_FLAGS
893 static inline void set_page_section(struct page *page, unsigned long section)
894 {
895 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
896 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
897 }
898
899 static inline unsigned long page_to_section(const struct page *page)
900 {
901 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
902 }
903 #endif
904
905 static inline void set_page_zone(struct page *page, enum zone_type zone)
906 {
907 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
908 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
909 }
910
911 static inline void set_page_node(struct page *page, unsigned long node)
912 {
913 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
914 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
915 }
916
917 static inline void set_page_links(struct page *page, enum zone_type zone,
918 unsigned long node, unsigned long pfn)
919 {
920 set_page_zone(page, zone);
921 set_page_node(page, node);
922 #ifdef SECTION_IN_PAGE_FLAGS
923 set_page_section(page, pfn_to_section_nr(pfn));
924 #endif
925 }
926
927 /*
928 * Some inline functions in vmstat.h depend on page_zone()
929 */
930 #include <linux/vmstat.h>
931
932 static __always_inline void *lowmem_page_address(const struct page *page)
933 {
934 return __va(PFN_PHYS(page_to_pfn(page)));
935 }
936
937 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
938 #define HASHED_PAGE_VIRTUAL
939 #endif
940
941 #if defined(WANT_PAGE_VIRTUAL)
942 static inline void *page_address(const struct page *page)
943 {
944 return page->virtual;
945 }
946 static inline void set_page_address(struct page *page, void *address)
947 {
948 page->virtual = address;
949 }
950 #define page_address_init() do { } while(0)
951 #endif
952
953 #if defined(HASHED_PAGE_VIRTUAL)
954 void *page_address(const struct page *page);
955 void set_page_address(struct page *page, void *virtual);
956 void page_address_init(void);
957 #endif
958
959 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
960 #define page_address(page) lowmem_page_address(page)
961 #define set_page_address(page, address) do { } while(0)
962 #define page_address_init() do { } while(0)
963 #endif
964
965 /*
966 * On an anonymous page mapped into a user virtual memory area,
967 * page->mapping points to its anon_vma, not to a struct address_space;
968 * with the PAGE_MAPPING_ANON bit set to distinguish it. See rmap.h.
969 *
970 * On an anonymous page in a VM_MERGEABLE area, if CONFIG_KSM is enabled,
971 * the PAGE_MAPPING_KSM bit may be set along with the PAGE_MAPPING_ANON bit;
972 * and then page->mapping points, not to an anon_vma, but to a private
973 * structure which KSM associates with that merged page. See ksm.h.
974 *
975 * PAGE_MAPPING_KSM without PAGE_MAPPING_ANON is currently never used.
976 *
977 * Please note that, confusingly, "page_mapping" refers to the inode
978 * address_space which maps the page from disk; whereas "page_mapped"
979 * refers to user virtual address space into which the page is mapped.
980 */
981 #define PAGE_MAPPING_ANON 1
982 #define PAGE_MAPPING_KSM 2
983 #define PAGE_MAPPING_FLAGS (PAGE_MAPPING_ANON | PAGE_MAPPING_KSM)
984
985 extern struct address_space *page_mapping(struct page *page);
986
987 /* Neutral page->mapping pointer to address_space or anon_vma or other */
988 static inline void *page_rmapping(struct page *page)
989 {
990 return (void *)((unsigned long)page->mapping & ~PAGE_MAPPING_FLAGS);
991 }
992
993 extern struct address_space *__page_file_mapping(struct page *);
994
995 static inline
996 struct address_space *page_file_mapping(struct page *page)
997 {
998 if (unlikely(PageSwapCache(page)))
999 return __page_file_mapping(page);
1000
1001 return page->mapping;
1002 }
1003
1004 static inline int PageAnon(struct page *page)
1005 {
1006 return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0;
1007 }
1008
1009 /*
1010 * Return the pagecache index of the passed page. Regular pagecache pages
1011 * use ->index whereas swapcache pages use ->private
1012 */
1013 static inline pgoff_t page_index(struct page *page)
1014 {
1015 if (unlikely(PageSwapCache(page)))
1016 return page_private(page);
1017 return page->index;
1018 }
1019
1020 extern pgoff_t __page_file_index(struct page *page);
1021
1022 /*
1023 * Return the file index of the page. Regular pagecache pages use ->index
1024 * whereas swapcache pages use swp_offset(->private)
1025 */
1026 static inline pgoff_t page_file_index(struct page *page)
1027 {
1028 if (unlikely(PageSwapCache(page)))
1029 return __page_file_index(page);
1030
1031 return page->index;
1032 }
1033
1034 /*
1035 * Return true if this page is mapped into pagetables.
1036 */
1037 static inline int page_mapped(struct page *page)
1038 {
1039 return atomic_read(&(page)->_mapcount) >= 0;
1040 }
1041
1042 /*
1043 * Different kinds of faults, as returned by handle_mm_fault().
1044 * Used to decide whether a process gets delivered SIGBUS or
1045 * just gets major/minor fault counters bumped up.
1046 */
1047
1048 #define VM_FAULT_MINOR 0 /* For backwards compat. Remove me quickly. */
1049
1050 #define VM_FAULT_OOM 0x0001
1051 #define VM_FAULT_SIGBUS 0x0002
1052 #define VM_FAULT_MAJOR 0x0004
1053 #define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */
1054 #define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */
1055 #define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */
1056
1057 #define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */
1058 #define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */
1059 #define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */
1060 #define VM_FAULT_FALLBACK 0x0800 /* huge page fault failed, fall back to small */
1061
1062 #define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */
1063
1064 #define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_HWPOISON | \
1065 VM_FAULT_FALLBACK | VM_FAULT_HWPOISON_LARGE)
1066
1067 /* Encode hstate index for a hwpoisoned large page */
1068 #define VM_FAULT_SET_HINDEX(x) ((x) << 12)
1069 #define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf)
1070
1071 /*
1072 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
1073 */
1074 extern void pagefault_out_of_memory(void);
1075
1076 #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
1077
1078 /*
1079 * Flags passed to show_mem() and show_free_areas() to suppress output in
1080 * various contexts.
1081 */
1082 #define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */
1083
1084 extern void show_free_areas(unsigned int flags);
1085 extern bool skip_free_areas_node(unsigned int flags, int nid);
1086
1087 int shmem_zero_setup(struct vm_area_struct *);
1088 #ifdef CONFIG_SHMEM
1089 bool shmem_mapping(struct address_space *mapping);
1090 #else
1091 static inline bool shmem_mapping(struct address_space *mapping)
1092 {
1093 return false;
1094 }
1095 #endif
1096
1097 extern int can_do_mlock(void);
1098 extern int user_shm_lock(size_t, struct user_struct *);
1099 extern void user_shm_unlock(size_t, struct user_struct *);
1100
1101 /*
1102 * Parameter block passed down to zap_pte_range in exceptional cases.
1103 */
1104 struct zap_details {
1105 struct vm_area_struct *nonlinear_vma; /* Check page->index if set */
1106 struct address_space *check_mapping; /* Check page->mapping if set */
1107 pgoff_t first_index; /* Lowest page->index to unmap */
1108 pgoff_t last_index; /* Highest page->index to unmap */
1109 };
1110
1111 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
1112 pte_t pte);
1113
1114 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1115 unsigned long size);
1116 void zap_page_range(struct vm_area_struct *vma, unsigned long address,
1117 unsigned long size, struct zap_details *);
1118 void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
1119 unsigned long start, unsigned long end);
1120
1121 /**
1122 * mm_walk - callbacks for walk_page_range
1123 * @pgd_entry: if set, called for each non-empty PGD (top-level) entry
1124 * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry
1125 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
1126 * this handler is required to be able to handle
1127 * pmd_trans_huge() pmds. They may simply choose to
1128 * split_huge_page() instead of handling it explicitly.
1129 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
1130 * @pte_hole: if set, called for each hole at all levels
1131 * @hugetlb_entry: if set, called for each hugetlb entry
1132 * *Caution*: The caller must hold mmap_sem() if @hugetlb_entry
1133 * is used.
1134 *
1135 * (see walk_page_range for more details)
1136 */
1137 struct mm_walk {
1138 int (*pgd_entry)(pgd_t *pgd, unsigned long addr,
1139 unsigned long next, struct mm_walk *walk);
1140 int (*pud_entry)(pud_t *pud, unsigned long addr,
1141 unsigned long next, struct mm_walk *walk);
1142 int (*pmd_entry)(pmd_t *pmd, unsigned long addr,
1143 unsigned long next, struct mm_walk *walk);
1144 int (*pte_entry)(pte_t *pte, unsigned long addr,
1145 unsigned long next, struct mm_walk *walk);
1146 int (*pte_hole)(unsigned long addr, unsigned long next,
1147 struct mm_walk *walk);
1148 int (*hugetlb_entry)(pte_t *pte, unsigned long hmask,
1149 unsigned long addr, unsigned long next,
1150 struct mm_walk *walk);
1151 struct mm_struct *mm;
1152 void *private;
1153 };
1154
1155 int walk_page_range(unsigned long addr, unsigned long end,
1156 struct mm_walk *walk);
1157 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
1158 unsigned long end, unsigned long floor, unsigned long ceiling);
1159 int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
1160 struct vm_area_struct *vma);
1161 void unmap_mapping_range(struct address_space *mapping,
1162 loff_t const holebegin, loff_t const holelen, int even_cows);
1163 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
1164 unsigned long *pfn);
1165 int follow_phys(struct vm_area_struct *vma, unsigned long address,
1166 unsigned int flags, unsigned long *prot, resource_size_t *phys);
1167 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
1168 void *buf, int len, int write);
1169
1170 static inline void unmap_shared_mapping_range(struct address_space *mapping,
1171 loff_t const holebegin, loff_t const holelen)
1172 {
1173 unmap_mapping_range(mapping, holebegin, holelen, 0);
1174 }
1175
1176 extern void truncate_pagecache(struct inode *inode, loff_t new);
1177 extern void truncate_setsize(struct inode *inode, loff_t newsize);
1178 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
1179 int truncate_inode_page(struct address_space *mapping, struct page *page);
1180 int generic_error_remove_page(struct address_space *mapping, struct page *page);
1181 int invalidate_inode_page(struct page *page);
1182
1183 #ifdef CONFIG_MMU
1184 extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
1185 unsigned long address, unsigned int flags);
1186 extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1187 unsigned long address, unsigned int fault_flags);
1188 #else
1189 static inline int handle_mm_fault(struct mm_struct *mm,
1190 struct vm_area_struct *vma, unsigned long address,
1191 unsigned int flags)
1192 {
1193 /* should never happen if there's no MMU */
1194 BUG();
1195 return VM_FAULT_SIGBUS;
1196 }
1197 static inline int fixup_user_fault(struct task_struct *tsk,
1198 struct mm_struct *mm, unsigned long address,
1199 unsigned int fault_flags)
1200 {
1201 /* should never happen if there's no MMU */
1202 BUG();
1203 return -EFAULT;
1204 }
1205 #endif
1206
1207 extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write);
1208 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1209 void *buf, int len, int write);
1210
1211 long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1212 unsigned long start, unsigned long nr_pages,
1213 unsigned int foll_flags, struct page **pages,
1214 struct vm_area_struct **vmas, int *nonblocking);
1215 long get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1216 unsigned long start, unsigned long nr_pages,
1217 int write, int force, struct page **pages,
1218 struct vm_area_struct **vmas);
1219 int get_user_pages_fast(unsigned long start, int nr_pages, int write,
1220 struct page **pages);
1221 struct kvec;
1222 int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1223 struct page **pages);
1224 int get_kernel_page(unsigned long start, int write, struct page **pages);
1225 struct page *get_dump_page(unsigned long addr);
1226
1227 extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
1228 extern void do_invalidatepage(struct page *page, unsigned int offset,
1229 unsigned int length);
1230
1231 int __set_page_dirty_nobuffers(struct page *page);
1232 int __set_page_dirty_no_writeback(struct page *page);
1233 int redirty_page_for_writepage(struct writeback_control *wbc,
1234 struct page *page);
1235 void account_page_dirtied(struct page *page, struct address_space *mapping);
1236 void account_page_writeback(struct page *page);
1237 int set_page_dirty(struct page *page);
1238 int set_page_dirty_lock(struct page *page);
1239 int clear_page_dirty_for_io(struct page *page);
1240 int get_cmdline(struct task_struct *task, char *buffer, int buflen);
1241
1242 /* Is the vma a continuation of the stack vma above it? */
1243 static inline int vma_growsdown(struct vm_area_struct *vma, unsigned long addr)
1244 {
1245 return vma && (vma->vm_end == addr) && (vma->vm_flags & VM_GROWSDOWN);
1246 }
1247
1248 static inline int stack_guard_page_start(struct vm_area_struct *vma,
1249 unsigned long addr)
1250 {
1251 return (vma->vm_flags & VM_GROWSDOWN) &&
1252 (vma->vm_start == addr) &&
1253 !vma_growsdown(vma->vm_prev, addr);
1254 }
1255
1256 /* Is the vma a continuation of the stack vma below it? */
1257 static inline int vma_growsup(struct vm_area_struct *vma, unsigned long addr)
1258 {
1259 return vma && (vma->vm_start == addr) && (vma->vm_flags & VM_GROWSUP);
1260 }
1261
1262 static inline int stack_guard_page_end(struct vm_area_struct *vma,
1263 unsigned long addr)
1264 {
1265 return (vma->vm_flags & VM_GROWSUP) &&
1266 (vma->vm_end == addr) &&
1267 !vma_growsup(vma->vm_next, addr);
1268 }
1269
1270 extern struct task_struct *task_of_stack(struct task_struct *task,
1271 struct vm_area_struct *vma, bool in_group);
1272
1273 extern unsigned long move_page_tables(struct vm_area_struct *vma,
1274 unsigned long old_addr, struct vm_area_struct *new_vma,
1275 unsigned long new_addr, unsigned long len,
1276 bool need_rmap_locks);
1277 extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
1278 unsigned long end, pgprot_t newprot,
1279 int dirty_accountable, int prot_numa);
1280 extern int mprotect_fixup(struct vm_area_struct *vma,
1281 struct vm_area_struct **pprev, unsigned long start,
1282 unsigned long end, unsigned long newflags);
1283
1284 /*
1285 * doesn't attempt to fault and will return short.
1286 */
1287 int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1288 struct page **pages);
1289 /*
1290 * per-process(per-mm_struct) statistics.
1291 */
1292 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1293 {
1294 long val = atomic_long_read(&mm->rss_stat.count[member]);
1295
1296 #ifdef SPLIT_RSS_COUNTING
1297 /*
1298 * counter is updated in asynchronous manner and may go to minus.
1299 * But it's never be expected number for users.
1300 */
1301 if (val < 0)
1302 val = 0;
1303 #endif
1304 return (unsigned long)val;
1305 }
1306
1307 static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1308 {
1309 atomic_long_add(value, &mm->rss_stat.count[member]);
1310 }
1311
1312 static inline void inc_mm_counter(struct mm_struct *mm, int member)
1313 {
1314 atomic_long_inc(&mm->rss_stat.count[member]);
1315 }
1316
1317 static inline void dec_mm_counter(struct mm_struct *mm, int member)
1318 {
1319 atomic_long_dec(&mm->rss_stat.count[member]);
1320 }
1321
1322 static inline unsigned long get_mm_rss(struct mm_struct *mm)
1323 {
1324 return get_mm_counter(mm, MM_FILEPAGES) +
1325 get_mm_counter(mm, MM_ANONPAGES);
1326 }
1327
1328 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1329 {
1330 return max(mm->hiwater_rss, get_mm_rss(mm));
1331 }
1332
1333 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1334 {
1335 return max(mm->hiwater_vm, mm->total_vm);
1336 }
1337
1338 static inline void update_hiwater_rss(struct mm_struct *mm)
1339 {
1340 unsigned long _rss = get_mm_rss(mm);
1341
1342 if ((mm)->hiwater_rss < _rss)
1343 (mm)->hiwater_rss = _rss;
1344 }
1345
1346 static inline void update_hiwater_vm(struct mm_struct *mm)
1347 {
1348 if (mm->hiwater_vm < mm->total_vm)
1349 mm->hiwater_vm = mm->total_vm;
1350 }
1351
1352 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1353 struct mm_struct *mm)
1354 {
1355 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1356
1357 if (*maxrss < hiwater_rss)
1358 *maxrss = hiwater_rss;
1359 }
1360
1361 #if defined(SPLIT_RSS_COUNTING)
1362 void sync_mm_rss(struct mm_struct *mm);
1363 #else
1364 static inline void sync_mm_rss(struct mm_struct *mm)
1365 {
1366 }
1367 #endif
1368
1369 int vma_wants_writenotify(struct vm_area_struct *vma);
1370
1371 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1372 spinlock_t **ptl);
1373 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1374 spinlock_t **ptl)
1375 {
1376 pte_t *ptep;
1377 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
1378 return ptep;
1379 }
1380
1381 #ifdef __PAGETABLE_PUD_FOLDED
1382 static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd,
1383 unsigned long address)
1384 {
1385 return 0;
1386 }
1387 #else
1388 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
1389 #endif
1390
1391 #ifdef __PAGETABLE_PMD_FOLDED
1392 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
1393 unsigned long address)
1394 {
1395 return 0;
1396 }
1397 #else
1398 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
1399 #endif
1400
1401 int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
1402 pmd_t *pmd, unsigned long address);
1403 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
1404
1405 /*
1406 * The following ifdef needed to get the 4level-fixup.h header to work.
1407 * Remove it when 4level-fixup.h has been removed.
1408 */
1409 #if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
1410 static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
1411 {
1412 return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))?
1413 NULL: pud_offset(pgd, address);
1414 }
1415
1416 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1417 {
1418 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
1419 NULL: pmd_offset(pud, address);
1420 }
1421 #endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
1422
1423 #if USE_SPLIT_PTE_PTLOCKS
1424 #if ALLOC_SPLIT_PTLOCKS
1425 void __init ptlock_cache_init(void);
1426 extern bool ptlock_alloc(struct page *page);
1427 extern void ptlock_free(struct page *page);
1428
1429 static inline spinlock_t *ptlock_ptr(struct page *page)
1430 {
1431 return page->ptl;
1432 }
1433 #else /* ALLOC_SPLIT_PTLOCKS */
1434 static inline void ptlock_cache_init(void)
1435 {
1436 }
1437
1438 static inline bool ptlock_alloc(struct page *page)
1439 {
1440 return true;
1441 }
1442
1443 static inline void ptlock_free(struct page *page)
1444 {
1445 }
1446
1447 static inline spinlock_t *ptlock_ptr(struct page *page)
1448 {
1449 return &page->ptl;
1450 }
1451 #endif /* ALLOC_SPLIT_PTLOCKS */
1452
1453 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1454 {
1455 return ptlock_ptr(pmd_page(*pmd));
1456 }
1457
1458 static inline bool ptlock_init(struct page *page)
1459 {
1460 /*
1461 * prep_new_page() initialize page->private (and therefore page->ptl)
1462 * with 0. Make sure nobody took it in use in between.
1463 *
1464 * It can happen if arch try to use slab for page table allocation:
1465 * slab code uses page->slab_cache and page->first_page (for tail
1466 * pages), which share storage with page->ptl.
1467 */
1468 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
1469 if (!ptlock_alloc(page))
1470 return false;
1471 spin_lock_init(ptlock_ptr(page));
1472 return true;
1473 }
1474
1475 /* Reset page->mapping so free_pages_check won't complain. */
1476 static inline void pte_lock_deinit(struct page *page)
1477 {
1478 page->mapping = NULL;
1479 ptlock_free(page);
1480 }
1481
1482 #else /* !USE_SPLIT_PTE_PTLOCKS */
1483 /*
1484 * We use mm->page_table_lock to guard all pagetable pages of the mm.
1485 */
1486 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1487 {
1488 return &mm->page_table_lock;
1489 }
1490 static inline void ptlock_cache_init(void) {}
1491 static inline bool ptlock_init(struct page *page) { return true; }
1492 static inline void pte_lock_deinit(struct page *page) {}
1493 #endif /* USE_SPLIT_PTE_PTLOCKS */
1494
1495 static inline void pgtable_init(void)
1496 {
1497 ptlock_cache_init();
1498 pgtable_cache_init();
1499 }
1500
1501 static inline bool pgtable_page_ctor(struct page *page)
1502 {
1503 inc_zone_page_state(page, NR_PAGETABLE);
1504 return ptlock_init(page);
1505 }
1506
1507 static inline void pgtable_page_dtor(struct page *page)
1508 {
1509 pte_lock_deinit(page);
1510 dec_zone_page_state(page, NR_PAGETABLE);
1511 }
1512
1513 #define pte_offset_map_lock(mm, pmd, address, ptlp) \
1514 ({ \
1515 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
1516 pte_t *__pte = pte_offset_map(pmd, address); \
1517 *(ptlp) = __ptl; \
1518 spin_lock(__ptl); \
1519 __pte; \
1520 })
1521
1522 #define pte_unmap_unlock(pte, ptl) do { \
1523 spin_unlock(ptl); \
1524 pte_unmap(pte); \
1525 } while (0)
1526
1527 #define pte_alloc_map(mm, vma, pmd, address) \
1528 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, vma, \
1529 pmd, address))? \
1530 NULL: pte_offset_map(pmd, address))
1531
1532 #define pte_alloc_map_lock(mm, pmd, address, ptlp) \
1533 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, NULL, \
1534 pmd, address))? \
1535 NULL: pte_offset_map_lock(mm, pmd, address, ptlp))
1536
1537 #define pte_alloc_kernel(pmd, address) \
1538 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
1539 NULL: pte_offset_kernel(pmd, address))
1540
1541 #if USE_SPLIT_PMD_PTLOCKS
1542
1543 static struct page *pmd_to_page(pmd_t *pmd)
1544 {
1545 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
1546 return virt_to_page((void *)((unsigned long) pmd & mask));
1547 }
1548
1549 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1550 {
1551 return ptlock_ptr(pmd_to_page(pmd));
1552 }
1553
1554 static inline bool pgtable_pmd_page_ctor(struct page *page)
1555 {
1556 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1557 page->pmd_huge_pte = NULL;
1558 #endif
1559 return ptlock_init(page);
1560 }
1561
1562 static inline void pgtable_pmd_page_dtor(struct page *page)
1563 {
1564 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1565 VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
1566 #endif
1567 ptlock_free(page);
1568 }
1569
1570 #define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte)
1571
1572 #else
1573
1574 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1575 {
1576 return &mm->page_table_lock;
1577 }
1578
1579 static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; }
1580 static inline void pgtable_pmd_page_dtor(struct page *page) {}
1581
1582 #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
1583
1584 #endif
1585
1586 static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
1587 {
1588 spinlock_t *ptl = pmd_lockptr(mm, pmd);
1589 spin_lock(ptl);
1590 return ptl;
1591 }
1592
1593 extern void free_area_init(unsigned long * zones_size);
1594 extern void free_area_init_node(int nid, unsigned long * zones_size,
1595 unsigned long zone_start_pfn, unsigned long *zholes_size);
1596 extern void free_initmem(void);
1597
1598 /*
1599 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
1600 * into the buddy system. The freed pages will be poisoned with pattern
1601 * "poison" if it's within range [0, UCHAR_MAX].
1602 * Return pages freed into the buddy system.
1603 */
1604 extern unsigned long free_reserved_area(void *start, void *end,
1605 int poison, char *s);
1606
1607 #ifdef CONFIG_HIGHMEM
1608 /*
1609 * Free a highmem page into the buddy system, adjusting totalhigh_pages
1610 * and totalram_pages.
1611 */
1612 extern void free_highmem_page(struct page *page);
1613 #endif
1614
1615 extern void adjust_managed_page_count(struct page *page, long count);
1616 extern void mem_init_print_info(const char *str);
1617
1618 /* Free the reserved page into the buddy system, so it gets managed. */
1619 static inline void __free_reserved_page(struct page *page)
1620 {
1621 ClearPageReserved(page);
1622 init_page_count(page);
1623 __free_page(page);
1624 }
1625
1626 static inline void free_reserved_page(struct page *page)
1627 {
1628 __free_reserved_page(page);
1629 adjust_managed_page_count(page, 1);
1630 }
1631
1632 static inline void mark_page_reserved(struct page *page)
1633 {
1634 SetPageReserved(page);
1635 adjust_managed_page_count(page, -1);
1636 }
1637
1638 /*
1639 * Default method to free all the __init memory into the buddy system.
1640 * The freed pages will be poisoned with pattern "poison" if it's within
1641 * range [0, UCHAR_MAX].
1642 * Return pages freed into the buddy system.
1643 */
1644 static inline unsigned long free_initmem_default(int poison)
1645 {
1646 extern char __init_begin[], __init_end[];
1647
1648 return free_reserved_area(&__init_begin, &__init_end,
1649 poison, "unused kernel");
1650 }
1651
1652 static inline unsigned long get_num_physpages(void)
1653 {
1654 int nid;
1655 unsigned long phys_pages = 0;
1656
1657 for_each_online_node(nid)
1658 phys_pages += node_present_pages(nid);
1659
1660 return phys_pages;
1661 }
1662
1663 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1664 /*
1665 * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its
1666 * zones, allocate the backing mem_map and account for memory holes in a more
1667 * architecture independent manner. This is a substitute for creating the
1668 * zone_sizes[] and zholes_size[] arrays and passing them to
1669 * free_area_init_node()
1670 *
1671 * An architecture is expected to register range of page frames backed by
1672 * physical memory with memblock_add[_node]() before calling
1673 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
1674 * usage, an architecture is expected to do something like
1675 *
1676 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
1677 * max_highmem_pfn};
1678 * for_each_valid_physical_page_range()
1679 * memblock_add_node(base, size, nid)
1680 * free_area_init_nodes(max_zone_pfns);
1681 *
1682 * free_bootmem_with_active_regions() calls free_bootmem_node() for each
1683 * registered physical page range. Similarly
1684 * sparse_memory_present_with_active_regions() calls memory_present() for
1685 * each range when SPARSEMEM is enabled.
1686 *
1687 * See mm/page_alloc.c for more information on each function exposed by
1688 * CONFIG_HAVE_MEMBLOCK_NODE_MAP.
1689 */
1690 extern void free_area_init_nodes(unsigned long *max_zone_pfn);
1691 unsigned long node_map_pfn_alignment(void);
1692 unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
1693 unsigned long end_pfn);
1694 extern unsigned long absent_pages_in_range(unsigned long start_pfn,
1695 unsigned long end_pfn);
1696 extern void get_pfn_range_for_nid(unsigned int nid,
1697 unsigned long *start_pfn, unsigned long *end_pfn);
1698 extern unsigned long find_min_pfn_with_active_regions(void);
1699 extern void free_bootmem_with_active_regions(int nid,
1700 unsigned long max_low_pfn);
1701 extern void sparse_memory_present_with_active_regions(int nid);
1702
1703 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
1704
1705 #if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \
1706 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
1707 static inline int __early_pfn_to_nid(unsigned long pfn)
1708 {
1709 return 0;
1710 }
1711 #else
1712 /* please see mm/page_alloc.c */
1713 extern int __meminit early_pfn_to_nid(unsigned long pfn);
1714 /* there is a per-arch backend function. */
1715 extern int __meminit __early_pfn_to_nid(unsigned long pfn);
1716 #endif
1717
1718 extern void set_dma_reserve(unsigned long new_dma_reserve);
1719 extern void memmap_init_zone(unsigned long, int, unsigned long,
1720 unsigned long, enum memmap_context);
1721 extern void setup_per_zone_wmarks(void);
1722 extern int __meminit init_per_zone_wmark_min(void);
1723 extern void mem_init(void);
1724 extern void __init mmap_init(void);
1725 extern void show_mem(unsigned int flags);
1726 extern void si_meminfo(struct sysinfo * val);
1727 extern void si_meminfo_node(struct sysinfo *val, int nid);
1728
1729 extern __printf(3, 4)
1730 void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...);
1731
1732 extern void setup_per_cpu_pageset(void);
1733
1734 extern void zone_pcp_update(struct zone *zone);
1735 extern void zone_pcp_reset(struct zone *zone);
1736
1737 /* page_alloc.c */
1738 extern int min_free_kbytes;
1739
1740 /* nommu.c */
1741 extern atomic_long_t mmap_pages_allocated;
1742 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
1743
1744 /* interval_tree.c */
1745 void vma_interval_tree_insert(struct vm_area_struct *node,
1746 struct rb_root *root);
1747 void vma_interval_tree_insert_after(struct vm_area_struct *node,
1748 struct vm_area_struct *prev,
1749 struct rb_root *root);
1750 void vma_interval_tree_remove(struct vm_area_struct *node,
1751 struct rb_root *root);
1752 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root *root,
1753 unsigned long start, unsigned long last);
1754 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
1755 unsigned long start, unsigned long last);
1756
1757 #define vma_interval_tree_foreach(vma, root, start, last) \
1758 for (vma = vma_interval_tree_iter_first(root, start, last); \
1759 vma; vma = vma_interval_tree_iter_next(vma, start, last))
1760
1761 static inline void vma_nonlinear_insert(struct vm_area_struct *vma,
1762 struct list_head *list)
1763 {
1764 list_add_tail(&vma->shared.nonlinear, list);
1765 }
1766
1767 void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
1768 struct rb_root *root);
1769 void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
1770 struct rb_root *root);
1771 struct anon_vma_chain *anon_vma_interval_tree_iter_first(
1772 struct rb_root *root, unsigned long start, unsigned long last);
1773 struct anon_vma_chain *anon_vma_interval_tree_iter_next(
1774 struct anon_vma_chain *node, unsigned long start, unsigned long last);
1775 #ifdef CONFIG_DEBUG_VM_RB
1776 void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
1777 #endif
1778
1779 #define anon_vma_interval_tree_foreach(avc, root, start, last) \
1780 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
1781 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
1782
1783 /* mmap.c */
1784 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
1785 extern int vma_adjust(struct vm_area_struct *vma, unsigned long start,
1786 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert);
1787 extern struct vm_area_struct *vma_merge(struct mm_struct *,
1788 struct vm_area_struct *prev, unsigned long addr, unsigned long end,
1789 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
1790 struct mempolicy *);
1791 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
1792 extern int split_vma(struct mm_struct *,
1793 struct vm_area_struct *, unsigned long addr, int new_below);
1794 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
1795 extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
1796 struct rb_node **, struct rb_node *);
1797 extern void unlink_file_vma(struct vm_area_struct *);
1798 extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
1799 unsigned long addr, unsigned long len, pgoff_t pgoff,
1800 bool *need_rmap_locks);
1801 extern void exit_mmap(struct mm_struct *);
1802
1803 static inline int check_data_rlimit(unsigned long rlim,
1804 unsigned long new,
1805 unsigned long start,
1806 unsigned long end_data,
1807 unsigned long start_data)
1808 {
1809 if (rlim < RLIM_INFINITY) {
1810 if (((new - start) + (end_data - start_data)) > rlim)
1811 return -ENOSPC;
1812 }
1813
1814 return 0;
1815 }
1816
1817 extern int mm_take_all_locks(struct mm_struct *mm);
1818 extern void mm_drop_all_locks(struct mm_struct *mm);
1819
1820 extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
1821 extern struct file *get_mm_exe_file(struct mm_struct *mm);
1822
1823 extern int may_expand_vm(struct mm_struct *mm, unsigned long npages);
1824 extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
1825 unsigned long addr, unsigned long len,
1826 unsigned long flags,
1827 const struct vm_special_mapping *spec);
1828 /* This is an obsolete alternative to _install_special_mapping. */
1829 extern int install_special_mapping(struct mm_struct *mm,
1830 unsigned long addr, unsigned long len,
1831 unsigned long flags, struct page **pages);
1832
1833 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
1834
1835 extern unsigned long mmap_region(struct file *file, unsigned long addr,
1836 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff);
1837 extern unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
1838 unsigned long len, unsigned long prot, unsigned long flags,
1839 unsigned long pgoff, unsigned long *populate);
1840 extern int do_munmap(struct mm_struct *, unsigned long, size_t);
1841
1842 #ifdef CONFIG_MMU
1843 extern int __mm_populate(unsigned long addr, unsigned long len,
1844 int ignore_errors);
1845 static inline void mm_populate(unsigned long addr, unsigned long len)
1846 {
1847 /* Ignore errors */
1848 (void) __mm_populate(addr, len, 1);
1849 }
1850 #else
1851 static inline void mm_populate(unsigned long addr, unsigned long len) {}
1852 #endif
1853
1854 /* These take the mm semaphore themselves */
1855 extern unsigned long vm_brk(unsigned long, unsigned long);
1856 extern int vm_munmap(unsigned long, size_t);
1857 extern unsigned long vm_mmap(struct file *, unsigned long,
1858 unsigned long, unsigned long,
1859 unsigned long, unsigned long);
1860
1861 struct vm_unmapped_area_info {
1862 #define VM_UNMAPPED_AREA_TOPDOWN 1
1863 unsigned long flags;
1864 unsigned long length;
1865 unsigned long low_limit;
1866 unsigned long high_limit;
1867 unsigned long align_mask;
1868 unsigned long align_offset;
1869 };
1870
1871 extern unsigned long unmapped_area(struct vm_unmapped_area_info *info);
1872 extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info);
1873
1874 /*
1875 * Search for an unmapped address range.
1876 *
1877 * We are looking for a range that:
1878 * - does not intersect with any VMA;
1879 * - is contained within the [low_limit, high_limit) interval;
1880 * - is at least the desired size.
1881 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
1882 */
1883 static inline unsigned long
1884 vm_unmapped_area(struct vm_unmapped_area_info *info)
1885 {
1886 if (!(info->flags & VM_UNMAPPED_AREA_TOPDOWN))
1887 return unmapped_area(info);
1888 else
1889 return unmapped_area_topdown(info);
1890 }
1891
1892 /* truncate.c */
1893 extern void truncate_inode_pages(struct address_space *, loff_t);
1894 extern void truncate_inode_pages_range(struct address_space *,
1895 loff_t lstart, loff_t lend);
1896 extern void truncate_inode_pages_final(struct address_space *);
1897
1898 /* generic vm_area_ops exported for stackable file systems */
1899 extern int filemap_fault(struct vm_area_struct *, struct vm_fault *);
1900 extern void filemap_map_pages(struct vm_area_struct *vma, struct vm_fault *vmf);
1901 extern int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf);
1902
1903 /* mm/page-writeback.c */
1904 int write_one_page(struct page *page, int wait);
1905 void task_dirty_inc(struct task_struct *tsk);
1906
1907 /* readahead.c */
1908 #define VM_MAX_READAHEAD 128 /* kbytes */
1909 #define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */
1910
1911 int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
1912 pgoff_t offset, unsigned long nr_to_read);
1913
1914 void page_cache_sync_readahead(struct address_space *mapping,
1915 struct file_ra_state *ra,
1916 struct file *filp,
1917 pgoff_t offset,
1918 unsigned long size);
1919
1920 void page_cache_async_readahead(struct address_space *mapping,
1921 struct file_ra_state *ra,
1922 struct file *filp,
1923 struct page *pg,
1924 pgoff_t offset,
1925 unsigned long size);
1926
1927 unsigned long max_sane_readahead(unsigned long nr);
1928
1929 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
1930 extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
1931
1932 /* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
1933 extern int expand_downwards(struct vm_area_struct *vma,
1934 unsigned long address);
1935 #if VM_GROWSUP
1936 extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
1937 #else
1938 #define expand_upwards(vma, address) do { } while (0)
1939 #endif
1940
1941 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
1942 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
1943 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
1944 struct vm_area_struct **pprev);
1945
1946 /* Look up the first VMA which intersects the interval start_addr..end_addr-1,
1947 NULL if none. Assume start_addr < end_addr. */
1948 static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
1949 {
1950 struct vm_area_struct * vma = find_vma(mm,start_addr);
1951
1952 if (vma && end_addr <= vma->vm_start)
1953 vma = NULL;
1954 return vma;
1955 }
1956
1957 static inline unsigned long vma_pages(struct vm_area_struct *vma)
1958 {
1959 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
1960 }
1961
1962 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */
1963 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
1964 unsigned long vm_start, unsigned long vm_end)
1965 {
1966 struct vm_area_struct *vma = find_vma(mm, vm_start);
1967
1968 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
1969 vma = NULL;
1970
1971 return vma;
1972 }
1973
1974 #ifdef CONFIG_MMU
1975 pgprot_t vm_get_page_prot(unsigned long vm_flags);
1976 #else
1977 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
1978 {
1979 return __pgprot(0);
1980 }
1981 #endif
1982
1983 #ifdef CONFIG_NUMA_BALANCING
1984 unsigned long change_prot_numa(struct vm_area_struct *vma,
1985 unsigned long start, unsigned long end);
1986 #endif
1987
1988 struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
1989 int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
1990 unsigned long pfn, unsigned long size, pgprot_t);
1991 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
1992 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1993 unsigned long pfn);
1994 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1995 unsigned long pfn);
1996 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
1997
1998
1999 struct page *follow_page_mask(struct vm_area_struct *vma,
2000 unsigned long address, unsigned int foll_flags,
2001 unsigned int *page_mask);
2002
2003 static inline struct page *follow_page(struct vm_area_struct *vma,
2004 unsigned long address, unsigned int foll_flags)
2005 {
2006 unsigned int unused_page_mask;
2007 return follow_page_mask(vma, address, foll_flags, &unused_page_mask);
2008 }
2009
2010 #define FOLL_WRITE 0x01 /* check pte is writable */
2011 #define FOLL_TOUCH 0x02 /* mark page accessed */
2012 #define FOLL_GET 0x04 /* do get_page on page */
2013 #define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
2014 #define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
2015 #define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO
2016 * and return without waiting upon it */
2017 #define FOLL_MLOCK 0x40 /* mark page as mlocked */
2018 #define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */
2019 #define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */
2020 #define FOLL_NUMA 0x200 /* force NUMA hinting page fault */
2021 #define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */
2022 #define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */
2023
2024 typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
2025 void *data);
2026 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
2027 unsigned long size, pte_fn_t fn, void *data);
2028
2029 #ifdef CONFIG_PROC_FS
2030 void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long);
2031 #else
2032 static inline void vm_stat_account(struct mm_struct *mm,
2033 unsigned long flags, struct file *file, long pages)
2034 {
2035 mm->total_vm += pages;
2036 }
2037 #endif /* CONFIG_PROC_FS */
2038
2039 #ifdef CONFIG_DEBUG_PAGEALLOC
2040 extern void kernel_map_pages(struct page *page, int numpages, int enable);
2041 #ifdef CONFIG_HIBERNATION
2042 extern bool kernel_page_present(struct page *page);
2043 #endif /* CONFIG_HIBERNATION */
2044 #else
2045 static inline void
2046 kernel_map_pages(struct page *page, int numpages, int enable) {}
2047 #ifdef CONFIG_HIBERNATION
2048 static inline bool kernel_page_present(struct page *page) { return true; }
2049 #endif /* CONFIG_HIBERNATION */
2050 #endif
2051
2052 #ifdef __HAVE_ARCH_GATE_AREA
2053 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
2054 extern int in_gate_area_no_mm(unsigned long addr);
2055 extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
2056 #else
2057 static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
2058 {
2059 return NULL;
2060 }
2061 static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
2062 static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
2063 {
2064 return 0;
2065 }
2066 #endif /* __HAVE_ARCH_GATE_AREA */
2067
2068 #ifdef CONFIG_SYSCTL
2069 extern int sysctl_drop_caches;
2070 int drop_caches_sysctl_handler(struct ctl_table *, int,
2071 void __user *, size_t *, loff_t *);
2072 #endif
2073
2074 unsigned long shrink_slab(struct shrink_control *shrink,
2075 unsigned long nr_pages_scanned,
2076 unsigned long lru_pages);
2077
2078 #ifndef CONFIG_MMU
2079 #define randomize_va_space 0
2080 #else
2081 extern int randomize_va_space;
2082 #endif
2083
2084 const char * arch_vma_name(struct vm_area_struct *vma);
2085 void print_vma_addr(char *prefix, unsigned long rip);
2086
2087 void sparse_mem_maps_populate_node(struct page **map_map,
2088 unsigned long pnum_begin,
2089 unsigned long pnum_end,
2090 unsigned long map_count,
2091 int nodeid);
2092
2093 struct page *sparse_mem_map_populate(unsigned long pnum, int nid);
2094 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
2095 pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node);
2096 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
2097 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
2098 void *vmemmap_alloc_block(unsigned long size, int node);
2099 void *vmemmap_alloc_block_buf(unsigned long size, int node);
2100 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
2101 int vmemmap_populate_basepages(unsigned long start, unsigned long end,
2102 int node);
2103 int vmemmap_populate(unsigned long start, unsigned long end, int node);
2104 void vmemmap_populate_print_last(void);
2105 #ifdef CONFIG_MEMORY_HOTPLUG
2106 void vmemmap_free(unsigned long start, unsigned long end);
2107 #endif
2108 void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
2109 unsigned long size);
2110
2111 enum mf_flags {
2112 MF_COUNT_INCREASED = 1 << 0,
2113 MF_ACTION_REQUIRED = 1 << 1,
2114 MF_MUST_KILL = 1 << 2,
2115 MF_SOFT_OFFLINE = 1 << 3,
2116 };
2117 extern int memory_failure(unsigned long pfn, int trapno, int flags);
2118 extern void memory_failure_queue(unsigned long pfn, int trapno, int flags);
2119 extern int unpoison_memory(unsigned long pfn);
2120 extern int sysctl_memory_failure_early_kill;
2121 extern int sysctl_memory_failure_recovery;
2122 extern void shake_page(struct page *p, int access);
2123 extern atomic_long_t num_poisoned_pages;
2124 extern int soft_offline_page(struct page *page, int flags);
2125
2126 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
2127 extern void clear_huge_page(struct page *page,
2128 unsigned long addr,
2129 unsigned int pages_per_huge_page);
2130 extern void copy_user_huge_page(struct page *dst, struct page *src,
2131 unsigned long addr, struct vm_area_struct *vma,
2132 unsigned int pages_per_huge_page);
2133 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
2134
2135 #ifdef CONFIG_DEBUG_PAGEALLOC
2136 extern unsigned int _debug_guardpage_minorder;
2137
2138 static inline unsigned int debug_guardpage_minorder(void)
2139 {
2140 return _debug_guardpage_minorder;
2141 }
2142
2143 static inline bool page_is_guard(struct page *page)
2144 {
2145 return test_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
2146 }
2147 #else
2148 static inline unsigned int debug_guardpage_minorder(void) { return 0; }
2149 static inline bool page_is_guard(struct page *page) { return false; }
2150 #endif /* CONFIG_DEBUG_PAGEALLOC */
2151
2152 #if MAX_NUMNODES > 1
2153 void __init setup_nr_node_ids(void);
2154 #else
2155 static inline void setup_nr_node_ids(void) {}
2156 #endif
2157
2158 #endif /* __KERNEL__ */
2159 #endif /* _LINUX_MM_H */
This page took 0.134152 seconds and 6 git commands to generate.